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Guest Editorial
Prognostics and structural health management has become an active interdisciplinary research area all 

over the world. Infrastructures are deteriorating, some of them are over their design life, or they are being 
exposed to natural extreme events like strong earthquakes or high winds, or man-made events like blasts or 
explosions. Due to severe shortage of resources to replace them, it is now necessary to extend their design life 
without exposing public to unnecessary risk. One approach has attracted a considerable amount of attention 
is inspecting the infrastructures as thoroughly as practicable in a timely manner to identify the defect spots, 
quantify their severity and then take appropriate remedial actions so that they can be used for which they 
were initially designed. Researchers from many different disciplines are now concentrating on developing new 
mathematical techniques, inspection methods, necessary instruments or sensors, sources of energy require to 
operate the sensors in field conditions, etc. The first two issues of 2015 of this journal Life Cycle Reliability and 
Safety Engineering are dedicated to these special topics. 

Five papers from renowned scholars from all over the world were published in the first issue and another 
five papers are presented in this second issue.  

The state-of-the-art of health assessment of large structural systems using dynamic response information 
measured at a small part has advanced significantly in the recent past.  The related information is summarized 
in the first paper. The authors and their research team conducted extensive analytical and experimental 
investigations. The team demonstrated in numerous published articles the technical concepts behind some of 
the advanced data processing algorithms (filters) they used to extract the information on structural health. It 
was not possible to elaborate the issues related to non-convergence in the iterative process, uncertainties in the 
responses induced by measurement devices and during the numerical integration process, phase and amplitude 
errors inherent in the measured responses, the presence of severe nonlinearities caused by defects, and other 
related important issues in these articles. The success of any new procedure will depend on the process used 
to mitigate these challenges and cannot be overlooked. These challenges are multidisciplinary in nature and 
are emphasized in this paper.

It is widely known that in civil structures, the modal properties of higher modes are difficult to obtain using 
ambient excitations. This is because under ambient conditions, sufficient energy is not available to reasonably 
excite the higher modes. This scarcity of data coupled with the problem associated with large dimensionality 
of the uncertain parameter space often makes the damage quantification a challenging job. In the second paper, 
damage quantification in a numerically simulated 16-storey and a 6-storey moment resisting frame is done under 
Bayesian framework with different approaches. In the first approach, a two-stage damage quantification approach 
is employed where the stages differ with the choice of starting value of Markov Chain. In the second approach, 
the issue of lack of appropriate data is resolved by modifying the structure with adding some known masses 
such that its natural frequencies and mode shapes get changed. Therefore, more data can be acquired from the 
same structure to improve the efficiency of the updating algorithm. Results show that both approaches seem 
to be promising in model updating/damage quantification based on only a few lower mode shape data.

The problem of estimating reduced complexity metamodels for the accurate representation of computationally 
costly numerical models with time-varying properties and uncertain input parameters is addressed in this 
third paper. The introduced metamodeling method is based on the discrete wavelet transform of the dynamic 
response signals. The coefficients of this transform are defined as random parameters, in this way accounting 
for the inherent system uncertainties. These random coefficients are expanded onto a polynomial chaos basis 
resulting into a representation that is fully described via a finite number of deterministic projection coefficients. 
The effectiveness of the proposed methodology is illustrated through its application on the metamodeling of 
a finite element model of a simply supported beam featuring a moving mass, simulating the vehicle crossing 
problem. The attained results demonstrate the efficiency of the proposed methodology for accurate simulation 
of the involved time-varying dynamics.

In the fourth paper, three methods are presented to reduce the influence of measurement errors in parameter 
estimation in finite element model updating for structural health monitoring and damage assessment. First, a 
method using the Fisher information matrix is developed to choose an efficient set of measurement locations. 
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This ensures efficient setup of a non-destructive test for finite element model updating for a given set of unknown 
parameters. Second, a normalization scheme is presented that, generally speaking, weighs data in a manner 
that varies inversely to the level of measurement error. This normalization results in a final estimate that is very 
close to the maximum likelihood estimator of the unknown parameters. Finally, the Fisher information matrix 
and its inverse, the Cramer-Rao lower bound covariance matrix, are used to quantify the uncertainty in the 
final estimates. Numerical examples showed the proposed methods are effective in improving observability 
and accuracy of parameter estimates in finite element model updating. Minimizing the effect of measurement 
errors and their propagation in parameter estimates can greatly improve the finite element model updating 
for structural health monitoring.

Many of the available approaches for Structural Health Monitoring (SHM) can benefit from the availability 
of dynamic displacement measurements. However, current SHM technologies rarely support dynamic 
displacement monitoring, primarily due to the difficulty in measuring absolute displacements. The newly 
developed smartphone application presented in this paper allows measuring absolute dynamic displacements 
in real time using state-of-the-art smartphone technologies, such as high-performance graphics processing unit 
(GPU), in addition to already powerful CPU and memories, embedded high-speed/resolution camera, and 
open-source computer vision libraries. A carefully designed color-patterned target and user-adjustable crop 
filter enable accurate and fast image processing, allowing up to 120Hz frame rate for complete displacement 
calculation. The performances of the developed smartphone application are experimentally validated, showing 
comparable results with those of conventional laser displacement sensor.

Achintya Haldar 
Guest Editor 
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1. Introduction 

Extending the life of existing structures has 
become an economic necessity all over the world. It has 
attracted a multi-disciplinary research interest. Several 
methods with various degrees of sophistication are 
now available. The research team at the University 
of Arizona has been working on the related areas 
and proposed various methods. The team conducted 
extensive analytical and experimental investigations 
and published extensively. However, some of the 
fine but important observations the team made are 
not properly clarified or explained in the published 
technical articles; emphasis was given to the major 
mathematical developments. The authors would like 
to present some of these observations in this paper.     

Structural health assessment and monitoring 
(SHAM) is the process of assessing the state of health 
(defect-free or defective) of structures. Most of the civil 
engineering structures are expected to be defective 
from the very early stage of their operation. Defects 
are expected to be very minor in nature and may 
not compromise the intended use of the structures.  
Thus, assessing the overall health of a structure is not 
the primary goal of SHAM at the time of inspection. 
Furthermore, all defects are not equally important. The 
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Abstract 

The state-of-the-art of health assessment of large structural systems using dynamic response 
information measured at a small part has advanced significantly in the recent past. The authors 
and their research team played an important role in developing the area and published extensively. 
They conducted extensive analytical and experimental investigations. The team demonstrated in 
numerous published articles the technical concepts behind some of the advanced data processing 
algorithms (filters) they used to extract the information on structural health. It was not possible 
to elaborate the issues of non-convergence in the iterative process, uncertainties in the responses 
induced by measurement devices and during the numerical integration process, phase and amplitude 
errors inherent in the measured responses, the presence of severe nonlinearities caused by defects, 
and other related important issues. The success and failure of any new procedure will depend 
on the process used to mitigate these challenges and cannot be overlooked. These challenges are 
multidisciplinary in nature and are emphasized in this paper.       

Keywords: System identification; Uncertainty and nonlinearity; Dynamic responses; Mathematical 
model; Unknown excitation.

challenges are to detect defects at the element level 
and then assess defect severity in terms of structural 
integrity to provide services for which they were 
built. For the rapid assessment of structural health, 
the process should be based on some measure of 
the structural behavior at the time of inspection. It 
should be simple to implement, robust, economical, 
and accurate.

Because of its numerous advantages, dynamic 
response information measured during an inspection 
has become one of the most widely used approaches 
to the scholars [1]. The research team also concluded 
that to avoid contamination from several sources of 
excitation, a very small duration of acceleration time 
histories measured at a high sampling rate will be 
ideal for the SHAM purpose.  To detect defects at the 
element level, the team decided to represent a real 
structure by Finite Elements (FEs). By tracking the 
changes in the dynamic properties (essentially the 
stiffness) of each element with respect to previous 
value, or expected value obtained from the design, 
or variation with respect to other similar elements, 
the health of a structure can be assessed at the 
local element level. By knowing the excitation and 
response information and using an inverse technique 
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commonly known as System Identification (SI), the 
current stiffness properties of all the elements can 
be estimated. Mathematically, the concept can be 
represented as discussed below.

For a multi-degree of freedom (MDOF) structural 
system with ne number of elements and N number of 
dynamic degrees of freedom (DDOFs), the governing 
differential equation of motion in the matrix form can 
be written as:

( ) ( ) ( ) ( )t t t t+ + =MX CX KX F                                              (1)

where F(t) is the N × 1 input excitation force vector;  
X , X , and X  are the N × 1 output vectors containing 
measured information on acceleration, velocity, and 
displacement at all the DDOFs at time t; M, K, and 
C are the N × N  global mass, stiffness, and damping 
matrices, respectively. They are the system parameters 
and assumed to be time-invariant at the time of 
inspection. 

For the purpose of SI, the above mathematical 
model can be represented in a block diagram, as shown 
in Figure 1. The SI block consists of three components; 
(a) the input excitation that generated the responses, 
(b) the parameters in the mathematical model using 
FEs and the governing differential equation of motion 
represented by Eq. 1, and (c) output responses caused 
by the excitation. To calculate the system parameters 
using a SI technique, two approaches are commonly 
used; (a) development of an over-determined linear 
system of equations and the solution using the least-
squares procedure and (b) development of state 
equations and solution using recursive procedures, 
such as Kalman Filter (KF)-based procedures.

information could be error prone and problematic. 
The implementation potential can be improved 
significantly if a structure can be identified using only 
measured dynamic response information. Since two of 
the three components of the SI-based concept will be 
unknown, it will add a layer of challenges that needs 
to be overcome. The research team proposed several 
methods of SI without excitation information [1-8]. 
Thus, this challenge is not a game stopper.

The next challenge is to assess health of a large 
realistic structure where responses may not be 
available at all DDOFs. It may be impractical and 
economically prohibitive to instrument a large 
structure. A structure needs to be identified with 
a limited number of responses measured only at 
small parts of the structure. The Kalman filter-based 
concept is generally used when response information 
is limited. However, to implement the concept, the 
information on excitation and the initial state vector 
must be available. The first constraint will defeat the 
main purpose of SI with unknown input. The second 
constraint relates to the main purpose of the method; 
it will be unknown at the initiation of the inspection. 
The team addressed both issues by introducing a 
substructure concept. The concept will help to identify 
the unknown excitation information and the initial 
state vector [2, 5, 7-9].

The most significant challenge pointed by 
Maybeck [10] is that the SI-based concept cannot 
be used to identify structures using experimental 
measured information and deterministic formulations. 
He correctly pointed out the primary reasons for his 
conclusion. First, correctly specifying the system’s 
mathematical model can be challenging. Mathematical 
models to represent large existing structures are 
generally approximate and do not necessarily represent 
the true or physics-based behavior of the system. There 
are various parameters that are left unaccounted for 
because of the lack of knowledge. Second, dynamic 
structural systems cannot be perfectly driven by 
control inputs. They are also driven by disturbances 
that can neither be controlled nor modeled using 
deterministic formulations. Third, if experiments are 
conducted to measure altered responses caused by the 
defects, noises in the measurements corrupt the data 
and introduce some degree of uncertainty.

Thus, before developing the SI-based concept, 
Maybeck’s concerns must be addressed. The authors 
and their team successfully addressed all these issues 
and proposed several Kalman filter-based algorithms 
[2, 5, 7-9]. The steps they took to mitigated all the 

2. Challenges in the Development of SI-based 
SHAM Techniques

The above concept appears to be conceptually 
simple. As discussed earlier, one of the most 
desirable features of a potential SHAM procedure 
is that it should be easily implemented for the rapid 
assessment of structural health. When the information 
on excitation and responses is available, the SI-based 
concept appears to be straight forward. Outside 
the laboratory environment, measuring excitation 
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Figure 1: Concept of System Identification
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challenges need further consideration. They are 
emphasized in this paper.

3. Recent Development and State-of-Art 
Advancements in SI-based SHAM Techniques

This section will discuss the works done at the 
University of Arizona, contribution made by other 
researchers in the similar areas, and the improvements 
necessary for health assessment of large real structural 
systems. The least-squares (LS)-based estimation 
procedure mentioned above is appropriate when 
the input excitation is unknown. Wang and Haldar 
[1] proposed a procedure, popularly known as 
Iterative Least-Squares with Unknown Input (ILS-
UI), to implement the LS-based concept. They used 
viscous-type structural damping. The efficiency 
of the numerical algorithm was improved later by 
introducing Rayleigh-type proportional damping, 
known as Modified ILS-UI or MILS-UI [3]. Later, 
Katkhuda et al. [4] improved the concept further and 
called it Generalized ILS-UI or GILS-UI. Recently, 
Das and Haldar [8] extended the procedure for three 
dimensional (3D) large structural systems and denoted 
as 3D GILS-UI. 

For the SHAM of large structural systems, the LS-
based approaches may not be appropriate, since the 
responses are expected to be measured only at small 
parts of the structure. After an extended study, the 
research team at the University of Arizona concluded 
that the prediction-correction-based recursive 
procedures embedded in the extended Kalman filter 
(EKF) with Weighted Global Iteration (WGI) concept 
would be appropriate when measured responses 
were limited. However, to implement the EKF-WGI 
concept, two additional conditions must be satisfied. 
First, to satisfy the governing equation of motion of the 
structural dynamic system, the excitation information 
must be known, defeating the basic objective of SHA 
without using excitation information. Second, the 
initial value of the state vector must be known to start 
the local iteration. The research team concluded that 
these issues can be resolved by using a substructure 
approach. For overall SHA, they proposed a two-stage 
approach [5].  

Stage 1 – Using the available responses in the 
substructure(s) and applying the ILS-UI procedure, 
the information on the unknown input excitation and 
stiffness and damping parameters of all the elements 
in the substructure are generated. 

Stage 2 – Judicially using information on the 
state vector obtained in Stage 1 and the excitation 

information, the EKF-WGI concept can be implemented 
and then the whole structure can be identified. In this 
way, the health of the whole structure can be assessed 
using only limited number of noise-contaminated 
response information. 

The concept was initially denoted as ILS-EKF-
UI [2]. Later, it was improved further and denoted 
as Modified ILS-EKF-UI or MILS-EKF-UI [3] and 
Generalized EKF-UI or GILS-EKF-UI [5]. Most up-to-
date version of the concept is a three-stage procedure, 
known as ILS-EKF-UI-ADIT [11], developed for any 
general three dimensional structures.

Various other researchers have also attempted to 
develop such procedures. They are indicated here for 
the sake of completeness. Yang et al. [12] proposed 
a recursive least-squares estimation procedure with 
unknown inputs (RLSE-UI) for the identification of 
stiffness, damping, and other nonlinear parameters, 
and the unmeasured excitations. Yang and Lin [13] 
implemented an adaptive technique in RLSE-UI to 
track the variations of structural parameters due to 
damages. This procedure can appropriately provide 
damage time instant in continuous monitoring. Then, 
Yang et al. [14] proposed a new data analysis method, 
denoted as the sequential nonlinear least-square 
(SNLSE) approach, for the on-line identification of 
structural parameters. Later, Yang and Huang [15] 
extended the procedure for unknown excitations and 
reduced number of sensors (SNLSE-UI-UO). They 
verified the procedures for simple linear and nonlinear 
structures. Wang and Cui [16] proposed least-squares 
method with statistical averaging algorithm (LSM-
SAA). Several other methods based on least-squares 
approach can also be found in [17-24]. 

Other procedures using unknown input include 
iterative gradient-based model updating method 
based on dynamic response sensitivity [25] and genetic 
algorithm (GA)-based output only procedure [26].

Similarly, the Kalman filter-based procedures 
have been developed by various other researchers. 
Koh and See [27] proposed an adaptive EKF (AEKF) 
to estimate both the parameter values and associated 
uncertainties in the identification. Yang et al. [28] 
proposed an adaptive tracking technique based 
on EKF to identify structural parameters and their 
variation during damage events. Ghosh et al. [29] 
developed two novel forms of EKF-based parameter 
identification techniques; these are based on variants 
of the derivative-free locally transversal linearization 
(LTL) and multi-step transverse linearization (MTrL) 

Ajoy Kumar Das et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 01-12
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procedures. Liu et al. [30] proposed multiple model 
adaptive estimators (MMAE) that consists of bank 
of EKF designed in the modal domain (MOKF) 
and incorporated fuzzy logic-based block in EKF to 
estimate the variance of measurement noise Recently 
a significant research has been published on the 
application of empirical mode decomposition and 
Hilbert transform (EMD-HT) [31] for non-model based 
structural health assessment. 

This section documented the up-to-date progress 
in the SHA using SI-based approaches.  The research 
team at the University of Arizona attempted to 
overcome the theoretical and implementation 
challenges for the SHA of real structural systems 
covering over two decades. They had to overcome 
some of the major challenges that slowed the progress 
in the related areas in the past. Some of their major 
contributions are discussed below. 

4. Addressing Uncertainty in SI-based SHAM 
and Non-convergence Issues

Challenges in the development of SI-based SHAM 
have been discussed earlier. One of the major issues 
that cause non-convergence in the algorithm is the 
uncertainty in the measured response information. 
This is specifically addressed in this section.   

4.1 What is Measurement Uncertainty?
Measurement uncertainty relates to the accuracy 

of the measurements recorded by a sensor or 
equipment. Any measurement is subject to some level 
of uncertainty. Various unknown sources contribute 
to measurement uncertainty, such as uncertainties 
introduced by the measuring device, by the object 
being measured, by the environmental disturbance, 
by the operator and many other sources. Deterministic 
analyses cannot incorporate uncertain processes. 
Statistical procedures are necessary to incorporate the 
presence of uncertainty in the measurements. Two 
most important statistical parameters calculated in any 
uncertainty analysis are the mean and the standard 
deviation. 

Measurements are repeated several times to obtain 
more confidence in the measurement. An average 
gives an estimate of the unknown ‘true’ value. It is also 
of interest to know how widely the results are spread 
about this average or mean. Standard deviation is used 
to quantify the spread of the measurements and gives 
an idea about the uncertainty. The most recent methods 
proposed by the research team require information on 
the measured acceleration time-histories at a limited 
number of DDOFs. Thus, mitigation of uncertainties 

in acceleration time-histories, both translational and 
rotational, requires further discussion.  

4.2 Uncertainty in Measured Responses
Acceleration time-histories are generally preferred 

over velocity and displacement measurements 
due to several advantages. They are discussed 
elsewhere [7]. Measured time-history of responses, 
however, do not necessarily produce the true desired 
signals. Acceleration time-histories measured using 
accelerometers contain uncertainties from various 
unknown sources. The uncertainties can be grouped 
into two forms; (a) error introduced in accelerometer’s 
and autocollimator’s raw signal and (b) error 
introduced in the numerical integration process 
[32]. Uncertainties in a raw acceleration time history 
produced by a sinusoidal excitation are shown in 
Figure 2. They include the baseline errors (DC bias and 
slope), noise, and the high-frequency contamination. 

10 
 

 

Figure 2: Typical raw signal from accelerometer [33] 

 

They are difficult to remove from the time histories. Normalizing the raw data about its mean is 

expected to remove most of the DC bias. If there is presence of a linear slope in the time history, 

it can be removed with the linear regression fitting technique. If a slope is not removed, when the 

acceleration time history is integrated to obtain velocity and displacement time histories, it will 

introduce a parabolic shape and cubic polynomial, respectively. Thus, the cubic polynomial is an 

error due to integration of a sinusoidal acceleration time history with slope.  Most of the noise 

can also be removed from the measured time history. To remove noise, a low-pass filter is 

usually used. This process can be undertaken along with the process to remove high frequency 

responses as discussed next.  Sometimes unwanted high frequency response is misclassified for 

noise because they cannot be distinguished from the time domain data plot. To detect the 

presence of high frequency responses, the Fast Fourier Transformation (FFT) is often used. Once 

the presence of unwanted frequencies is identified, filtering techniques can be used to remove 

them. Low-pass filters are used to remove high frequencies and high-pass filters are used to 

The DC bias causes shift of the mean of the dynamic 
response from its zero mean. The slope introduces 
linear or nonlinear trend in the signal. Noise and high 
frequencies cause distortion of the regular wave form 
of the signal. 

They are difficult to remove from the time histories. 
Normalizing the raw data about its mean is expected 
to remove most of the DC bias. If there is presence of 
a linear slope in the time history, it can be removed 
with the linear regression fitting technique. If a slope 
is not removed, when the acceleration time history is 
integrated to obtain velocity and displacement time 
histories, it will introduce a parabolic shape and cubic 
polynomial, respectively. Thus, the cubic polynomial is 
an error due to integration of a sinusoidal acceleration 
time history with slope.  Most of the noise can also be 
removed from the measured time history. To remove 
noise, a low-pass filter is usually used. This process can 
be undertaken along with the process to remove high 
frequency responses as discussed next.  Sometimes 

Figure 2: Typical raw signal from accelerometer [33]
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unwanted high frequency response is misclassified for 
noise because they cannot be distinguished from the 
time domain data plot. To detect the presence of high 
frequency responses, the Fast Fourier Transformation 
(FFT) is often used. Once the presence of unwanted 
frequencies is identified, filtering techniques can be 
used to remove them. Low-pass filters are used to 
remove high frequencies and high-pass filters are 
used to remove low frequencies. If only a particular 
frequency is of interest, both low-pass and high-pass 
filters can be used together, or a band-pass filter can 
be used to remove all the frequencies outside of the 
frequency band of interest. 

4.3 Uncertainties Introduced during Numerical 
Integration

Filtered acceleration time-histories are integrated 
successively to obtain velocity and displacement 
time-histories required for the purpose of SHAM. 
Filtered acceleration time-histories when integrated 
successively using numerical integration procedures 
introduces errors of integration. For the sake of 
discussion, let’s assume that DC bias (offset) and 
slope can be removed from a signal appropriately 
using numerical procedures. Theoretically generated 
time-history of an acceleration signal contaminated 
with 5% RMS noise is shown in Figure 3. Time 
resolution of the response is 0.0001s. Using rectangular 
method of integration, the acceleration time-history is 
numerically integrated successively to obtain velocity 
and displacement time-histories. The velocity and 
displacement time-histories are shown in Figure 4 
and 5, respectively. The velocity and displacement 
time-histories obtained by integration are compared 
with the theoretical time-histories. It can be observed 
that the integrated velocity time history slightly 
differs (not visible in Figure 4) from the theoretical 
time history. However, large error in the integrated 
displacement time history can be seen in Figure 5, 
along with the visible errors of the offset and slope. 
Even if the acceleration is assumed to be noise-free, 
discrepancies can be observed while integrating the 
acceleration time history. Obviously these types of 
error can cause non-convergence for some cases of 
structural parameter identification.

Issues of non-convergence due to integration 
errors are well-known in the research community. Vo 
and Haldar [32] reported issues of non-convergence. 
They attempted to mitigate integration errors by 
using several integration techniques and performed 
a comparative study on the efficiency of the schemes. 
Two theoretical signals, one is a simple sinusoid 

Figure 5: Time-history of displacement obtained from the 
velocity shown in Figure 4 [11].

Figure 3: Time-history of a theoretical acceleration 
contaminated with 5% RMS noise [11].

Figure 4: Time-history of velocity obtained from the acceleration 
shown in Figure 3 [11].

with no damping and another with under-critical 
damping was taken as the integrand and numerical 
integration was performed between 0 and 1 sec. 
Closed form integrations were available for both the 
signals. Three methods, trapezoidal rule, Simpson’s 
rule and Boole’s rule, were considered as the methods 
of integration. Uniformly spaced intervals of 100, 200, 
500, 1000, 2000, 5000, and 10000 were considered. For 
the first example, the maximum integration error 
was 10-4 for Simpson’s rule with an interval of 100. 
For the second example, the maximum integration 
error was 10-5 for trapezoidal rule with an interval of 
100. For all other intervals the trapezoidal rule has 
been found to produce higher errors comparative 
to the other methods for both the signals. It has also 
been observed that with the decrease in the interval, 
the integration errors go down significantly. In any 
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case, when the integration errors are compared with 
actual accelerometer’s output error (typically 2 to 
5%), it does not matter which integration method is 
used. When the signal is sampled at less than 0.01 sec, 
the integration error would be at least two orders of 
magnitude less than that of the accelerometer’s error. It 
was commented that the trapezoidal rule is preferred 
to both Simpson’s rule and Boole’s rule because of its 
simplicity and efficiency in computing time. 

The above conclusion is valid for regular harmonics, 
such as sinusoids. If the acceleration time-history is 
irregular, for example an earthquake time-history or 
when the signal is not a steady-state time-history, the 
above conclusion may not be totally true. Mitigation 
of integration errors based on their underlying physics 
and development of advanced digital integration 
schemes is now under development by the research 
team at the University of Arizona.

4.4 Phase and Amplitude Errors

While conducting laboratory investigation for 
the identification of a one-dimensional beam and a 
two-dimensional frame using measured responses, 
the team at the University of Arizona observed that 
post-processed data failed to identify structures for 
the structural health assessment purpose [33-34]. 
The algorithm failed to converge providing negative 
stiffness for some of the elements. The team performed 
root cause analysis considering several possible 
sources of errors and identified that the amplitude 
error and phase-shift error, shown in Figure 6, are 
the main contributing factors to the non-convergence. 
Accelerometers are supplied with a calibration 
factor to convert accelerometer’s output voltage into 
acceleration unit. The provided scale factor always has 
calibration error embedded in it, causing amplitude 
error. Another source of error that directly contributes 
to the amplitude error is the misalignment of the 
sensing element mounted inside the accelerometer’s 
case. This error is often referred to as cross-coupling. 
For the accelerometers used by the research team, the 
combined root-sum-squared error for scale factor error 
and cross-coupling is ±2.8%. The algorithm has been 
observed to converge up to a convergence threshold 
of 0.5%. Thus, the post-processed acceleration time-
histories will fail to identify a structure if the error 
crosses the threshold.

The phase-shift error, as shown in Figure 6, is 
generally caused by data latency and the numerical 
integration of noisy signal. However, the primary 
source of the phase-shift error is the integration of 

Figure 6: Amplitude and phase errors in a signal.

the measured acceleration time-histories to obtain 
velocity and displacement time-histories. The worst 
case phase-shift for velocity was estimated to be 1.8 
degrees. Displacement response phase-shift was 
estimated to be a maximum of 6.5 degrees. The second 
source of phase-shift error is data latency caused by 
the sampling rate of the data-logger. This error occurs 
because there is a time delay in the sampling of two 
consecutive responses. The data-logger used in the 
test has a maximum latency of one micro-second. 
For 5 channels of data recording, a total latency of 
5 micro-seconds is expected. For the tests, the phase 
shift error of data latency is found to be 0.09 degrees 
and integration error of 6.5 degrees. The algorithm 
converges only up to 0.5 degrees [32]. In summary, the 
algorithms are found to be sensitive to both amplitude 
and phase-shift errors. 

4.5 Mitigation of Phase and Amplitude Errors

The research team observed that by using fewer 
nodal responses, the total amplitude error can be 
reduced. The phase-shift error can be mitigated by 
scaling responses of all nodes based on the responses 
of a single reference node. The reference node can 
be chosen arbitrarily; however, the team used the 
excitation node at the reference node. Vo and Haldar 
[34] discussed related issues in more details.

Figure 7: Experimental verification of a two-dimensional  
frame [35].
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In his doctoral thesis, Das [11] reported similar non-convergence issues while developing the 

structural health assessment procedure for three-dimensional large structural systems. A three-

stage procedure combining Advanced Digital Integration Technique (ADIT) and Iterative Least-

Squares Extended Kalman Filter with Unknown Input (ISL-EKF-UI) has been proposed. After 

performing integration using ADIT technique, the amplitude and phase shift errors are mitigated 

by using a scaling approach which is based on scaling angular responses (as many as possible) 

from the transverse responses. Then, as many responses as possible are scaled at other nodes 

from the reference node. The scaling procedure is discussed here for a one-story three 

dimensional frame, as shown Figure 8.  
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Martinez-Flores et al. [35] conducted experimental 
verification of a scaled three-story two-dimensional 
frame, as shown in Figure 7. In order to mitigate the 
two prime sources of errors, the authors measured 
horizontal translational acceleration time-histories at 
all six node points. Then, the angular response time-
histories were generated based on the proportionality of 
the transverse to angular responses. The proportionality 
constant of each rotational DDOF in the frame was 
estimated with respect to reference nodal response at 
node 2. They showed that theoretically generated and 
experimental measured angular responses using an 
autocollimator are very similar, indicating the validity 
of the response scaling approach.

In his doctoral thesis, Das [11] reported similar non-
convergence issues while developing the structural 
health assessment procedure for three-dimensional 
large structural systems. A three-stage procedure 
combining Advanced Digital Integration Technique 
(ADIT) and Iterative Least-Squares Extended Kalman 
Filter with Unknown Input (ISL-EKF-UI) has been 
proposed. After performing integration using ADIT 
technique, the amplitude and phase shift errors are 
mitigated by using a scaling approach which is based 
on scaling angular responses (as many as possible) 
from the transverse responses. Then, as many 
responses as possible are scaled at other nodes from 
the reference node. The scaling procedure is discussed 
here for a one-story three dimensional frame, as shown 
Figure 8. 

Case (a) - Rotational responses about X-axis at 
node 1 are scaled from translational responses along 
Z-axis at node 1. Rotational responses about X-axis at 
node 2 are scaled from translational responses along 
Y-axis at node 2. Rotational responses about X-axis at 
node 3 are scaled from translational responses along 
Z-axis at the node 3.

Case (b) - After angular responses at a node 
are scaled from the translational responses at the 

same node, responses at other nodes are scaled 
from reference responses at node 1. Translational 
response along X-axis at node 2 is scaled from 
the translational response along X-axis at node 1. 
Translational responses along Y-axis and Z-axis and 
rotational responses about X-axis are scaled from the 
corresponding responses at node 1.

Structural identification and health assessment 
of the three-dimensional frame using the responses 
corrected for amplitude and phase errors are 
discussed in detail in the doctoral dissertation by 
Das [11].

5. Nonlinearity in Structural Dynamic Response

Dynamic responses measured for structural 
assessment always contain some form of nonlinearity. 
The issues of nonlinearity need to be addressed based 
on their sources and types.

5.1 Sources of Nonlinearity

Nonlinearity in a system may come from several 
sources. The solution of the dynamic governing 
equation itself introduces nonlinear responses in terms 
of sine, cosine functions and exponential decay terms. 
For a linear structure, the estimation of the unknown 
parameters jointly with nonlinear dynamic responses 
in the state is a nonlinear estimation problem. In other 
words, the state vector of the system, which needs 
to be identified, includes system parameters and 
nonlinear responses and this makes the structural 
system identification is nonlinear. Wu and Smyth [36] 
made similar conclusions and commented “the system 
is linear; however, the estimation of the unknown 
parameters jointly with the state is a nonlinear 
estimation problem.”

If the level of excitation is severe, it may also cause 
nonlinearity due to inelastic stiffness and damping. 
In the context of SHAM, during an inspection, the 
structure is not expected to be excited severely. But 
the presence of defects in structure will introduce 
another unknown but major source of nonlinearity at 
the initiation of inspection. This source of nonlinearity 
cannot be mathematically expressed during the 
inspection process because it is unknown. But its 
presence will be very clear if EKF-based procedure 
failed to identify the structure. Since at the beginning 
of an inspection, the current defect-free or severity 
of defective state will be unknown, it is preferable 
and more conclusive if an Unscented Kalman filter 
(UKF)-based procedure is used for structural health 
assessment. Figure 8: A single-story three-dimensional frame [11].
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5.2 Effect of Nonlinearity

Measured structural dynamic responses are 
expected to be nonlinear. Responses obtained by 
solving the governing equation (Eq. 1) and the 
presence of material and geometric nonlinearity 
introduce nonlinear response behavior. The degree of 
nonlinearity depends on many parameters including 
the geometry, applied excitation, material property, 
presence of defects, boundary conditions, etc. A framed 
structure is considered to theoretically demonstrate 
how nonlinearity alters dynamic responses. In the 
context of structural health assessment, the nonlinear 
responses can be handled in several ways. The 
research team successfully used Extended Kalman 
filter (EKF) concept to identify structures with mildly 
nonlinearity. In the presence of severe nonlinearity, the 
team used the UKF concept. The discussion on UKF 
can be found in [9].

A five-story two-dimensional frame is considered. 
Configuration of the frame is described elsewhere [37]. 
The frame is constrained in the vertical direction, since 
the lateral deformation due to bending is expected to 
be much higher than the vertical deformation. The 
frame is exited in the horizontal direction by a time-
history of dynamic loading with large amplitude, 
such that geometric and material nonlinearities are 
introduced in the responses. Comparison of linear 
and nonlinear translational acceleration, velocity, and 
displacement of at the top story where the excitation 
has been applied are shown in Figures 9, 10, and 
11, respectively. As can be observed, the nonlinear 
responses differ from the linear responses in terms 
of both phase and amplitude. The Power Spectrum 
Density (PSD) plots obtained by performing FFT of 
the signals are shown in Figures 12, 13, and 14, for the 
acceleration, velocity and displacement, respectively. 
No visible difference is observed between the linear 
and nonlinear responses. Therefore, FFT-based 
approach is not suitable to assess if the responses are 

Figure 9: Time-history of linear and nonlinear acceleration.

Figure 10: Time-history of linear and nonlinear velocity.

Figure 11: Time-history of linear and nonlinear displacement.
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Figure 12: Power spectrum density plot for linear and nonlinear acceleration. 

 

 

Figure 13: Power spectrum density plot for linear and nonlinear velocity. 

Figure 12: Power spectrum density plot for linear and 
nonlinear acceleration.
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Figure 12: Power spectrum density plot for linear and nonlinear acceleration. 

 

 

Figure 13: Power spectrum density plot for linear and nonlinear velocity. Figure 13: Power spectrum density plot for linear and 
nonlinear velocity.
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Figure 14: Power spectrum density plot for linear and nonlinear displacement. 

 

Table 1: Statistical moments of linear and nonlinear responses 

Statistical   Moments 
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Linear Nonlinear Linear Nonlinear Linear Nonlinear 
Mean 1.301 1.228 0.004 0.000 -0.002 -0.002 
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Kurtosis -1.020 -1.263 -1.103 -1.240 -1.172 -1.320 
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that there is a threshold of nonlinearity, unknown in most cases, beyond which EKF may not 

identify a structure appropriately. To obtain the optimal solution to the nonlinear filtering 

problem, a complete description of the conditional probability density function is necessary. 

Unfortunately, a large number of parameters are required for its description. In the past decades, 

many techniques of suboptimal approximation have been developed for nonlinear structural SI 

[38]. The EKF concept has been widely used for nonlinear system identification through 

Figure 14: Power spectrum density plot for linear and 
nonlinear displacement.

Table 1: Statistical moments of linear and nonlinear acceleration (m/s2),  
velocity (m/s), displacement (m)

Statistical   Moments
Acceleration Velocity Displacement

Linear Nonlinear Linear Nonlinear Linear Nonlinear
Mean 1.301 1.228 0.004 0.000 -0.002 -0.002
Standard Deviation 54.375 51.286 2.627 2.490 0.128 0.122
Kurtosis -1.020 -1.263 -1.103 -1.240 -1.172 -1.320

coming from linear or nonlinear dynamic systems. 
Further investigation was conducted to see if the 
statistical moments (see Table 1) could provide any 
indication of nonlinearity. It can be observed that 
the mean is very close to zero, which is expected. 
The standard deviation and kurtosis are observed 
to decrease from linear to nonlinear. However, such 
decrease may not be significant for weak nonlinearity. 
Further investigation would be necessary on a case 
by case basis.

For the structural parameter identification, a 
procedure must be intelligent to assess if the responses 
are linear or nonlinear and use the appropriate 
mathematical model accordingly. If the model 
assumed for structural identification is linear whereas 
the actual measured responses are nonlinear, the 
identification will be erroneous. As discussed earlier, 
several researchers have developed linear system 
identification techniques using iterative least-squares, 
various forms of Kalman filters, genetic algorithm, 
etc. Some of them are applicable for nonlinear 
systems as well, such as Extended Kalman filter-
based procedure. In any case, the first step in such 
structural identification should be the identification of 
the type of the response. Fourier Transform (FT)-based 
procedures are not sufficient for this purpose since 
they are based on linearity. Hilbert-Huang Transform 
(HHT)-based procedures developed by Huang et 

al. [31] are popularly used for post-processing of 
nonlinear and nonstationary responses. Wavelet-
based procedures are also used.

5.3 SHAM of Nonlinear Structures - Unscented 
Kalman Filter (UKF) Concept

When the nonlinearity is mild, extended Kalman 
filter (EKF) can be used. The authors observed that 
there is a threshold of nonlinearity, unknown in most 
cases, beyond which EKF may not identify a structure 
appropriately. To obtain the optimal solution to the 
nonlinear filtering problem, a complete description 
of the conditional probability density function is 
necessary. Unfortunately, a large number of parameters 
are required for its description. In the past decades, 
many techniques of suboptimal approximation have 
been developed for nonlinear structural SI [38]. The 
EKF concept has been widely used for nonlinear 
system identification through linearizing nonlinear 
models. However, the derivation of the Jacobian 
matrices and the linearization approximations to the 
nonlinear functions can be nontrivial and can lead 
to implementation difficulties, particularly when the 
nonlinearities are severe. To address these limitations 
Julier et al. [39] developed the UKF concept. It is 
Table 2:  Comparison between true and predicted 

mean and variance of y = e2x

True UKF EKF
Mean of y 33.12 30.99 20.09
Variance of y 793.40 795.15 403.43

further enhanced by Wan and Van Der Merwe [40]. 
UKF was developed with the underlying assumption 
that approximating a Gaussian distribution is easier 
than approximating an arbitrary nonlinear function. 
Unlike EKF, UKF does not approximate nonlinear 
equations of the system. Instead, it approximates 
the posterior probability density by a Gaussian 
density function, which is represented by a set of 
deterministically selected sample points. Suppose, a 
nonlinear function y = e2x and x is a Gaussian random 
variable with a mean of 1.5 and a variance of 0.25. The 
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Figure 15: Propagation of uncertainties using UKF and EKF
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true mean and variance of y can be calculated as 33.12 
and 793.40, respectively, as shown in Table 2. The 
corresponding mean and variance of y according to 
UKF and EKF are also given in Table 2. The differences 
and the errors associated with the two procedures can 
be clearly observed from the results.

When sample points are propagated through 
a nonlinear transformation, they capture the true 
mean and covariance up to the second-order of any 
nonlinearity. If the priori random variable is Gaussian, 
the posterior mean and covariance are accurate to 
the third-order for any nonlinearity. The concept is 
described in Figure 15.

6. Additional Challenges

SHAM is an evolving area of research. Various 
unknown challenges often arise while verifying and 
validating the theoretical procedures for a practical 
structural inspection, specifically for large structural 
systems. Other than uncertainty and nonlinearity, the 

research team at the University of Arizona addressed 
several other challenges. Some of them are discussed 
here.

6.1 Generation of Additional Response without 
Repeating Inspection

As briefly discussed in Section 3, the research team 
introduced the substructure concept to implement the 
Kalman filter-based algorithms to identify structures 
with minimum response information. For economic 
reason, the size of the substructure, where dynamic 
responses are measured, is to be kept to an absolute 
minimum. However, the team observed that the errors 
in the identification using the absolute minimum 
substructure could be high and the health assessment 
can be inconclusive. The team also observed that the 
errors in the identification can be reduced significantly 
by using more response information. Obviously, 
collection of additional responses after the conclusion 
of the inspection may not be possible or can be highly 
expensive. The team successfully used the scale 
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factor concept discussed in Section 4.5 to mitigate the 
phase and amplitude errors and generate additional 
response information without conducting any 
additional testing. The concept can be used for both 
two and three dimensional structures.

6.2 Locations and Numbers of Substructures

Locations and numbers of substructures are very 
important in assessing structural health using the 
Kalman filter-based concepts. The predictive behavior 
of all the algorithms developed by the team improves 
significantly if the defects are in the or close to the 
substructure. To assess large structural systems, the 
use of multiple substructures at different locations 
becomes an attractive alternative. This will make 
defects close to a substructure. It is to be noted that 
the unknown excitation force must be applied to a 
node (primary node) in the substructure. For multiple 
substructures, multiple excitations are required. For 
seismic loading, all nodes are the primary node.  
Thus, no additional effort is necessary to identify 
large structural systems excited by the seismic 
loading.

7. Conclusions

Structural health assessment and monitoring 
(SHAM) has been an evolving area of research over 
several decades. Verification and validation of the 
most recent mathematical model-based SHAM 
concepts face significant challenges dealing with large 
structural systems. The authors and their research 
team have been involved in developing various 
concepts and strategies for economic and accurate 
SHAM of large realistic engineering structures. They 
showed that the system identification-based concept 
can be used to detect defects at the element level and 
their severity using the procedures they developed. 
Based on their experience, the commonly encountered 
challenges associated with measurement uncertainties 
and nonlinearities have been discussed in this paper. 
Emphasis has been given on the need of physics-based 
data processing and signal conditioning generally not 
discussed in the literature. Additional challenges also 
expected to be encountered during inspection of large 
structures are briefly discussed in this paper.
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Abstract
It is widely known that in civil structures, the modal properties of higher modes are difficult to obtain 
using ambient excitations. This is because under ambient conditions, sufficient energy is not available to 
reasonably excite the higher modes. This scarcity of data coupled with the problem associated with large 
dimensionality of the uncertain parameter space often make the damage quantification a challenging job. 
In this paper, damage quantification in a numerically simulated 16-storey and a 6-storey moment resisting 
frame is done under Bayesian framework with different approaches. In the first approach, a two-stage damage 
quantification approach is employed where the stages differ with the choice of starting value of Markov Chain. 
In the second approach, the issue of lack of appropriate data is resolved by modifying the structure with 
adding some known masses such that its natural frequencies and mode shapes get changed. Therefore, more 
data can be acquired from the same structure to improve the efficiency of the updation algorithm. Results 
show that both approaches seem to be promising in model updation/damage quantification based on only a 
few lower mode shape data.

Keywords: Bayesian statistics; Modal parameters; Damage; Mass modification;

1. Introduction

From past several decades, model updating has 
been widely used successfully in various engineering 
applications to develop better mathematical models. 
In recent years, model updating is becoming an 
integral part of damage detection and quantification of 
structures. This paper focuses on damage quantification 
in building structures using model updating. Both 
deterministic and statistical approaches have been 
used for model updation in the past. However, many 
factors such as noise associated with experimental 
measurements and incompleteness of experimental 
measurements may lead to a non-unique deterministic 
solution of the inverse problem. Therefore, it is hard 
to rely on the deterministic approach for model 
updation. Bayesian approach for model updation 
of civil structures has been satisfactorily used in 
past by many researchers. This approach can deal 
with ill-conditioning and non-uniqueness issues of 
deterministic approach. A significant work has been 
done to develop updated model using both modal 
parameters and time history data (e.g. acceleration) 
of a given structure [1, 3, 4, 5, 8, 10, and 11]. Particular 
emphasis was placed on localizing and quantifying the 
existing damage in structures along with focusing on 
the various issues of Bayesian model updating.

Sohn and Law [14] applied Bayesian probabilistic 
approach to localize and quantify the amount of damage 
in structures employing incomplete and noisy modal 
data. A novel approach for online health monitoring 
and damage assessment of structures using Bayesian 
probabilistic measures was presented by Vanik et al. 
[15]. In this approach, system identification was first 
performed in undamaged state and then continuous 
monitoring cycles were run to detect the damage in the 
structure. Beck and Yuena [2] emphasized the need of 
appropriate model class selection by examples of some 
linear and non-linear structural systems. Muto and 
Beck [9] employed Bayesian approach for updation 
and class selection for Masing hysteretic structural 
models. Using vibration measurements (modal data) 
on a steel cantilever beam a Bayesian inference based 
damage localization technique was presented by 
Huhtala and Bossuyt [6]. Simoen et al. [13] studied 
damage assessment of a slice of 7-story RC building 
using Bayesian uncertainty quantification technique. 
Damage detection in plate type structures was studied 
by Kurata et al. [7].

Employing Bayesian approach for a problem 
with large number of unknown parameters and 
limited number of data sets available for defining 
the likelihood function may not yield reasonable 
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estimation of unknown parameters. Therefore, instead 
of taking all structural parameters as unknown for 
damage quantification of the structure, in this work, 
first it is assumed that the damage locations are 
identifiable using a fundamental mode shape and its 
derivative based approach. Then the quantification of 
damage at only the identified locations is done using 
modal data of a few lower modes. 

Two different techniques are employed in this 
work for this purpose. In first technique, damage 
is quantified in two stages. The two stages differ in 
regard of the chosen initial value in Markov chain 
and relate with each other with the fact that the initial 
value for the second stage is chosen depending on 
the results of the first stage. If only the fundamental 
mode data is used for model updation or damage 
quantification, one may get substandard results due 
to the lack of data in updation algorithm. Therefore, in 
the second approach, a mass modification technique 
is employed and some known masses are added to 
the structure such that a different mode shape from 
the same structure can be obtained. Then these mode 
shapes along with the mode shape of the original 
structure are used to quantify damage in the structure. 
Metropolis-Hasting algorithm for sampling in Markov 
Chain Monte Carlo environment is employed for both 
the techniques proposed. 

2. Bayesian Model Updating

Bayesian model updating is a statistical tool to 
minimize the error in the outcomes of a physical 
process from its mathematical model. The following 
relation is employed for Bayesian model updating 
schemes:

   Posterior distribution Likelihood Prior distribution∝ ×     (1)

Prior distribution for any model parameter is 
determined based on the available knowledge about 
the parameter. The term likelihood is a probabilistic 
function which relates the plausibility of getting the 
observed outcome of the physical process for a given 
value of a parameter of the mathematical model. 
Finally, the term posterior distribution gives a more 
favorable distribution for the model parameters by 
operating the likelihood function on the prior and 
thus, refining the prior distribution to posterior.

Mathematically, if the outcome of the mathematical 
model is expresses as ( ; )x i a  for some model class 
with model parameter vector a  and system input 

iZ  for 1,2...i n=  time steps for each time step then 
the experimental/real time outcome of the physical 
process can be related to ( ; )x i a as:

( ) ( ; ) ( ; )y i x i a e i a= +
              

1,2,...i n=                   (2)

Equation 2 comprises of a deterministic part 
( ; )x i a  and a random part 
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Thus, with the information of the prior distribu-
tions and experimental outcome, one can obtain a 
more favorable posterior distribution of unknown 
parameters employing Bayesian approach. With 
the increased number of unknown parameters, the 
dimensionality of parameter space S α  increases. This 
makes the analytical evaluation of Equation 7 difficult. 
Therefore, in this work Markov Chain Monte Carlo 
(MCMC) simulation is employed to draw samples 
from a higher dimensional joint distribution. A brief 
discussion on Metropolis-Hasting sampling algorithm 
is presented in the next section, which is used in this 
work to draw samples under MCMC environment.

3. Metropolis-Hasting Algorithm

A Markov chain is said to be reached stationary 
distribution when it satisfies the following equation:

( ) ( , ) ( ) ( , )x q x y y q y xω ω=                                          (9)

In Equation (9), ω  is the target distribution and 
q  represents the transitional probability distribution 
function which gives the transition probability from 
one realization of random value to other realization. 
In case when the exact transition probability function 
is not known, the transition probability function (often 
known as proposal distribution) has to be assumed. 
In such case, Equation (9) becomes

( ) ( , ) ( ) ( , )x q x y y q y xω ω>                                        (10)                                                                                                                                            

Metropolis-Hasting sampling algorithm provides 
a way to reach the stationary distribution in Markov 
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So, the proposed sample from the proposal distribution is accepted with a probability ( , )x yη               

to achieve the target distributionω . 

PROPOSED APPROACHS 

The use of damage localization techniques prior to damage quantification in Bayesian model 

updation algorithms minimizes the problem of high dimensional variable space in Bayesian 

framework. Due to the space constraints, the fundamental mode shape and its derivative-based 

approach, which is employed in this work for damage localization, is not discussed here. A 

detailed study on this approach can be found in Roy and Ray-Chaudhuri [12]. 
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4. Proposed Approaches

The use of damage localization techniques 
prior to damage quantification in Bayesian model 
updation algorithms minimizes the problem of high 
dimensional variable space in Bayesian framework. 
Due to the space constraints, the fundamental mode 
shape and its derivative-based approach, which is 
employed in this work for damage localization, is not 
discussed here. A detailed study on this approach can 
be found in Roy and Ray-Chaudhuri [12]. 

As the initial value to start the Markov chain 
may influence the convergence of chain and results 
when proposal distribution is not chosen carefully. 
Therefore, in the first approach damage quantification 
is done in two stages and the two stages differ in 
the choice of initial value to start the Markov chain. 
In the first stage, any arbitrary values of unknown 
parameters are chosen to start the chain; but in the 
second stage the starting values are chosen as the 
resulting mean of the unknown parameters from the 
first stage. Results from the second stage showed an 
improvement over the results from the first stage. 
Figure 1 shows the complete algorithm.
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When only the fundamental mode shape data 
is used for damage quantification, results may 
deteriorate because of the lack of data in defining the 
likelihood function. The second approach proposed 
in this work deals with this problem by modifying 
the original structure through adding some known 
masses to it. The masses are added in such a way 
that they are effective in changing the mode shapes of 
the structure without altering its stiffness. Therefore, 
instead of having only a single mode shape data (as 
only fundamental mode shape is used), multiple mode 
shape data for fundamental mode, one with each mass 
modification can be obtained from the same structure. 
Then model updation is done employing all these data. 
The complete algorithm is shown in Figure 2.

5. Numerical Modeling and Results

5.1 Two-stage Approach

For the first approach, a 16-storey 3-bay moment 
resisting frame is modeled in OpenSees. This analytical 
model is chosen as the base model. Damage is then 
inserted at several places in this base structure by 
reducing the stiffness of the members to simulate a 
damaged structure. Figure  3 shows the schematic 
diagram of the frame with damage locations. Five 
different members at different places are damaged 
by reducing their stiffness with different reduction 
parameters (named as theta1, theta2 etc.) as given in 
Table 1. These reduction parameters are then taken 
as unknown parameters and tried to obtain through 
Bayesian approach. The unknown parameters are 
assumed as statically independent. Exponential 
distribution with mean = 1 is taken as the prior 
distribution and Gamma distribution is chosen for 
the proposal distribution. Markov chain is run for a 
total of 1000 simulation for each unknown parameter. 
Modal data (Frequencies and mode shapes of first 
three modes) from the known damaged structure 
is treated as experimental/real time outcome of the 
actual physical model. Likelihood is taken as the 
product of probability density of self normalized 
elements of the error vector (difference between the 
data from known damaged structure and data from 
each simulated structure). The probability density 
function for each element is assumed as Gaussian 
distribution with zero mean and variance of two. 
Metropolis-Hasting algorithm is adopted to simulate 
the posterior distribution. A burning period of 200 and 
a thinning parameter of 5 are used in Markov chain to 
get the final posterior distribution.



Figure 3: Schematic diagram of 16-storey model with damage locations  

 

Figure 4: Posterior distributions in two stage approach  
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
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Figure 3: Schematic diagram of 16-storey model  
with damage locations

Table 1: Actual value for different parameters

Parameter Actual value
theta1 0.713
theta2 0.84
theta3 0.732
theta4 0.624
theta5 0.806

Table 2: Comparison of both stages results in two 
stage approach

First stage Second stage
 Posterior 

mean
% Deviation 
with actual

Posterior 
mean

 % Deviation 
with actual

0.795 11.5 0.687 3.6
1.0 19.04 0.836 0.48

0.816 11.47 0.732 0.0
0.757 21.31 0.621 0.48
0.849 5.33 0.816 1.24

In this approach, damage quantification is done 
in two stages. As the starting value of Markov chain 
influences its convergence when proposal distribution 
is not chosen with care. The proposed two-stage 
approach proves to be beneficial in such scenario. At 
first stage, any arbitrary value of unknown parameters 
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are chosen to start the chain and posterior distributions 
for the unknown parameters are obtained. In second 
stage, instead of starting the chain with any arbitrary 
value the mean of posterior distributions from the 
first stage, are chosen as the starting value to run the 
Markov chain.

Figure 4 shows the joint posterior distribution 
of different parameters obtained after the second 
stage. It is clear from this figure that the obtained 
posterior is in a range which is very near to the actual 
value of the parameter instead of a broad range of 
chosen prior distribution. The mean of the posterior 
distribution is taken as the parameter value in each 
stage. Comparison of results from the first and second 
stage with the actual values of unknown parameters is 
shown in Table 2. It can be observed from Table 2 that 
the results improve significantly in second stage.   

5.2 Mass Modification Approach

To illustrate the mass modification approach a 
6-storey single bay frame is modeled in OpenSees. 

Damage is introduced by reducing the stiffness of 
all beams with a stiffness reduction parameter ( bk ) 
and all columns with another stiffness reduction 
parameter ( ck ). Therefore, the problem deals with 
the determination of two unknown parameters bk  
and ck  (taken equal as given in Table 3). Here also 
the unknown parameters are assumed as statically 
independent as in the two-stage approach. All other 
parameters in MCMC algorithm like prior distribution, 
likelihood function, burning period, thinning 
parameter etc. are also assumed to be same as in the 
two-stage approach. The difference with the two stage 
approach is that here the modal data from the known 
damaged structure which is taken as experimental/
real time outcome of the actual physical model 
comprises of frequency of first two modes and mode 
shape data of fundamental mode only. Therefore, 
additional fundamental mode shape data is acquired 
by adding known masses to the structure such that 
the mode shape of the structure gets changed. The 
structure is modifies two times with known masses. 
Then all this data (with or without mass modification) 

Table 3: Mass modification approach results for 6-storey single bay frame 

Parameter Actual 
value

Posterior mean
(without noise)

Posterior mean
(with noise)

% deviation with actual
(without noise)

% deviation with 
actual (with noise)

 kc 0.84 0.888 0.955 5.4 12.04
kb 0.84 0.873 0.849 3.78 1.07



Figure 3: Schematic diagram of 16-storey model with damage locations  
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is considered in making the likelihood function. For 
each simulation of unknown parameters modal data 
is obtained for each known mass modified structure 
and the original damaged structure to incorporate in 
the likelihood function in the same way as done in the 
two-stage approach. 

To study the effect of noise in experimental data 
a Gaussian white noise with signal-to-noise ratio 
(SNR) 50 is added to the simulated experimental 
data. Table 3 shows the results for with and without 
noise. This is clear from Table  3 that the proposed 
approach is promising in damage quantification when 
only fundamental mode shape data is available for 
updation. Also, the proposed approach is capable of 
dealing with data contaminated with noise. Results 
show that the percentage deviation from the actual 
parameter values is within acceptable limit for both 
with and without noise data.

To see the effectiveness of proposed approach 
with increased number of unknown parameters the 
16-storey 3-bay moment resisting frame of two stage 
approach is also considered here. The loactions of 
unknown parametrs are taken as known at priory 
in this approach also and same loactions are chosen 
for unknown parameters as in the case of two stage 
approach. The actual value of unknown parameters 
is taken as unity. The starting value for unknown 
parameters is chosen as 1.5. Other parametrs are 
taken as same as in the two stage approach. Simulated 
experimental data is obtained by modifying the 
structure three times with known masses such that 
different modal data can be acquired for each mass 
modifiction. Modal data of first three modes are 
considered as simulated experimental data. Table 4 
shows the results in terms of posterior mean of the 
unknown parameters with their percentage deviation 
from the actual value of the parameters. It can be 
observed from Table 4 that except for two or three 
parameters the percentage deviation from the actual 

Table 4: Mass modification approach results for 
16-storey 3-bay moment resisting frame

Parameter Actual 
value

Posterior 
mean

% deviation 
with actual

theta1 1.0 1.10 9.0
theta2 1.0 1.17 14.53
theta3 1.0 1.07 6.5
theta4 1.0 0.75 33.3
theta5 1.0 1.64 39.02

value is quite high. The approach does not perform 
efficiently when there is a large number of unknown 
parameters.  Instead of taking only mass modification 
approach a combine two stage and mass modification 
approach can be employed to get better results in 
future.

6. Conclusions

Two different approaches are proposed for 
damage quantification in civil structures. Localization 
of damage before quantification helps in improving 
the efficiency of MCMC algorithm by reducing the 
dimension of the unknown parameter space. The first 
approach is useful when not much information about 
the prior distribution and proposal distribution can 
be acquired. Results of second stage in first approach 
demonstrate a good improvement over the first 
stage. The second approach is promising when only 
fundamental mode shape or very few lower mode 
shapes data is available for updation. The mean of 
posterior distributions are found in good agreement 
with actual value of parameters. Also, the approach 
performed well in case of noisy data. The approaches 
proposed herein are however needed to be verified for 
actual noisy data from existing structures and with 
more number of unknown parameters.
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Abstract

The problem of estimating reduced complexity metamodels for the accurate representation of computationally 
costly numerical models with time-varying properties and uncertain input parameters is addressed in this 
work. The introduced metamodeling method is based on the discrete wavelet transform of the dynamic response 
signals. The coefficients of this transform are defined as random parameters, in this way accounting for the 
inherent system uncertainties. These random coefficients are expanded onto a polynomial chaos basis resulting 
into a representation that is fully described via a finite number of deterministic projection coefficients. The 
effectiveness of the proposed methodology is illustrated through its application on the metamodeling of a 
finite element model of a simply supported beam featuring a moving mass, simulating the vehicle crossing 
problem. The attained results demonstrate the efficiency of the proposed methodology for accurate simulation 
of the involved time-varying dynamics.

Keywords: Metamodeling; nonstationary; uncertainty; polynomial chaos basis; discrete wavelet 
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1 Introduction 

Due to reasons relating to manufacturing or 
construction, ageing processes, loading and boundary 
conditions, measurement errors, and even inability of 
the numerical model to account for the physics of the 
system, almost every structural system is characterized 
by uncertainty. The propagation of uncertainty 
through such a system gives rise to corresponding 
uncertainties of the structural dynamics and, in 
turn, to the overall behaviour of the structure. The 
problem becomes even more pronounced when 
the system at hand is described by time varying 
dynamics [1, 2, 3], thus furthering the complexity of 
the governing laws involved. In view of the above, the 
international research community has underlined, the 
necessity for developing dynamic structural models 
able to additionally encompass the aforementioned 
uncertainties [4]. 

In an effort to accurately model structural 
systems, engineers will most commonly resort to 
the use of Finite Element (FE) models. Indeed, the 
FE method is known to offer a strong tool for the 
computational modelling of large engineering systems 
with the method been extensively used in a number 
of civil, mechanical and aeronautical applications 
[5, 6]. Moreover, the recently introduced spectral 
stochastic FE method comprises the first important 
step for the extension of the classical FE method 

toward stochastic implementations, including that of 
uncertainty propagation via relevant FE models [7]. 
This approach has been adopted by several researchers 
and has undergone several important developments 
and improvements over the last decade [8, 9, 10]. The 
method relies upon the expansion of the uncertain 
input parameters onto a suitably defined Polynomial 
Chaos (PC) basis and the description of the model 
output as a random parameter spanned onto the same 
prescribed stochastic basis through a set of unknown 
deterministic coefficients of projection [11].

Although the PC expansion approach has been 
proved to constitute a computationally efficient 
methodology for describing uncertainty propagation 
using stationary models [7, 12], its extension to 
the nonstationary case is not straightforward. 
Nonstationary, or else time-varying systems, i.e., 
systems with properties that are changing with 
time, may be encountered in a plethora of structural 
applications, ranging from train-bridge systems to 
wind turbines and aerospace. Although oftentimes 
nonstationarity may be neglected or overlooked 
for the purposes of simplicity, this would not be 
pretend, or to the side of safety for the aforementioned 
examples as well as a number of other sys-tems where 
nonstationarity has to be taken into account in favour 
of refining modelling accuracy and obtaining a better 
insight into the involved dynamics.
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The main complexity in dealing with such 
systems is that due to their intrinsic time-variability, 
the corresponding numerical models used for their 
representation are described through differential 
equations with time-varying parameters, rendering 
PC expansion an intricate task. On the other hand, 
employing a Monte-Carlo method for uncertainty 
quantification is not always an efficient option, 
since it is frequently linked to slow convergence, 
often requiring thousands of simulations even 
for static problems [13]. Thus, when requiring a 
mutliplicity of forward simulations, such as in design 
optimization, or model updating procedures obtained 
via time history loading of nonstationary systems, 
a simpler representation of the FE model should be 
considered, able to accurately reproduce the behavior 
of the nonstationary structure. In the work presented 
herein, an inverse approach is adopted employing 
nonstationary system identification techniques leading 
to the formulation of a “model” of the system’s FE 
model, i.e., a metamodel.

Nonstationary identification methods so far 
met in the literature may be primarily classified 
into non-parametric and parametric [2]. In the first 
class, extensions of the classical frequency domain 
methods to the nonstationary case, such as the Short-
Time Fourier Transform (STFT), the Wigner-Ville 
distribution and others, which may be grouped 
under the umbrella of the Cohen class of distributions 
[14], the Empirical Mode Decomposition (EMD), 
the Hilbert-Huang Transform (HHT) and wavelet 
expansion have been proposed [15, 16]. On the other 
hand, parametric methods are normally based on 
transfer function or state space models with time-
varying parameters [17, 18] and, despite their ability 
to more efficiently account for nonstationarity, they 
come at the cost of considerable effort, user inference 
and expertise.

The main goal of the present study is the 
development of a metamodeling approach which 
is able to provide reduced representations of large 
numerical models for the accurate, yet computationally 
accelerated, prediction of their dynamic response. 
The metamodeling method introduced in this work 
is based on a sparse representation of the numerical 
model response signals via the Discrete Wavelet 
Transform (DWT) [19]. The coefficients of the wavelet 
decomposition are considered as random variables 
this way accounting for the uncertainty propagation 
through the numerical model. These random 
coefficients are expanded onto a suitably defined 

finite-dimensional PC basis resulting into a non-
parametric representation that is fully described by 
the deterministic projection coefficients. The sparsity 
of the representation may be achieved by means of 
thresholding, while the projection coefficients are 
estimated by linear least squares fit.

It should be added that in previous work, the 
PCE has been coupled with nonlinear Autoregressive 
models for the metamodeling of the response of 
hysteretic nonlinear systems [20]. However, in the 
present study an additional challenge arises, since 
the time varying dynamics owed to the inherently 
changing system properties enter the system 
equations.

The remainder of the paper is organized as 
follows: in Section 2 the metamodeling problem is 
formally defined, and the metamodeling method 
based on the DWT and PC expansion is described. 
In Section 3 the introduced method is illustrated via 
a numerical case study, simulating a popular case 
for monitoring consideration, i.e., that of a vehicle 
crossing a bridge along with the main metamodeling 
results. Finally, the conclusions of this study are 
summarized in Section 4.
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Consider a time-varying structural system 
represented by a numerical model 

variables this way accounting for the uncertainty propagation through the numerical model. These

random coefficients are expanded onto a suitably defined finite-dimensional PC basis resulting into

a non-parametric representation that is fully described by the deterministic projection coefficients.

The sparsity of the representation may be achieved by means of thresholding, while the projection

coefficients are estimated by linear least squares fit.

It should be added that in previous work, the PCE has been coupled with nonlinear Autoregressive

models for the metamodeling of the response of hysteretic nonlinear systems [20]. However, in the

present study an additional challenge arises, since the time varyifng dynamics owed to the inherently

changing system properties enter the system equations.

The remainder of the paper is organized as follows: in Section 2 the metamodeling problem is

formally defined, and the metamodeling method based on the DWT and PC expansion is described. In

Section 3 the introduced method is illustrated via a numerical case study, simulating a popular case for

monitoring consideration, i.e., that of a vehicle crossing a bridge along with the main metamodeling

results. Finally, the conclusions of this study are summarized in Section 4.

2 Discrete Wavelet Transform Metamodeling Method

Consider a time-varying structural system represented by a numerical model M that is characterized

by a number of input parameters relating to the properties of the modelled structure (mechanical

and/or geometric). It is assumed that M of these parameters are subject to uncertainty and that they

may be described by independent random variables gathered in a random vector ξ = [ξ1, ξ2, . . . , ξM ]T.

As a result, the dynamic response of the numerical model to a given input excitation will be a

random variable following a probability density function (pdf) with characteristics that depend on the

corresponding pdf of the input variables and the mechanism of uncertainty propagation, that is

y[t, ξ] = M(x[1], x[2], . . . , x[t], ξ) (1)

with t = 1, 2, . . . , T designating normalized by the sampling period discrete time, x[t] the excitation

input signal, y[t, ξ] the corresponding numerical model response signal, and ξ the M -dimensional

vector of input random variables with known joint probability density function (pdf) f(ξ) .

Metamodeling refers to the process of identifying a reduced order and computational complexity

4

 that is 
characterized by a number of input parameters related 
to the properties of the modelled structure (mechanical 
and/or geometric). It is assumed that M of these 
parameters are subject to uncertainty and that they 
may be described by independent random variables 
gathered in a random vector 

variables this way accounting for the uncertainty propagation through the numerical model. These

random coefficients are expanded onto a suitably defined finite-dimensional PC basis resulting into

a non-parametric representation that is fully described by the deterministic projection coefficients.

The sparsity of the representation may be achieved by means of thresholding, while the projection

coefficients are estimated by linear least squares fit.

It should be added that in previous work, the PCE has been coupled with nonlinear Autoregressive

models for the metamodeling of the response of hysteretic nonlinear systems [20]. However, in the

present study an additional challenge arises, since the time varyifng dynamics owed to the inherently

changing system properties enter the system equations.

The remainder of the paper is organized as follows: in Section 2 the metamodeling problem is

formally defined, and the metamodeling method based on the DWT and PC expansion is described. In

Section 3 the introduced method is illustrated via a numerical case study, simulating a popular case for

monitoring consideration, i.e., that of a vehicle crossing a bridge along with the main metamodeling

results. Finally, the conclusions of this study are summarized in Section 4.

2 Discrete Wavelet Transform Metamodeling Method

Consider a time-varying structural system represented by a numerical model M that is characterized

by a number of input parameters relating to the properties of the modelled structure (mechanical

and/or geometric). It is assumed that M of these parameters are subject to uncertainty and that they

may be described by independent random variables gathered in a random vector ξ = [ξ1, ξ2, . . . , ξM ]T.

As a result, the dynamic response of the numerical model to a given input excitation will be a

random variable following a probability density function (pdf) with characteristics that depend on the

corresponding pdf of the input variables and the mechanism of uncertainty propagation, that is

y[t, ξ] = M(x[1], x[2], . . . , x[t], ξ) (1)

with t = 1, 2, . . . , T designating normalized by the sampling period discrete time, x[t] the excitation

input signal, y[t, ξ] the corresponding numerical model response signal, and ξ the M -dimensional

vector of input random variables with known joint probability density function (pdf) f(ξ) .

Metamodeling refers to the process of identifying a reduced order and computational complexity

4

As a result, the dynamic response of the numerical 
model to a given input excitation will be a random 
variable following a probability density function (pdf) 
with characteristics that depend on the corresponding 
pdf of the input variables and the mechanism of 
uncertainty propagation, that is

 

variables this way accounting for the uncertainty propagation through the numerical model. These

random coefficients are expanded onto a suitably defined finite-dimensional PC basis resulting into

a non-parametric representation that is fully described by the deterministic projection coefficients.

The sparsity of the representation may be achieved by means of thresholding, while the projection

coefficients are estimated by linear least squares fit.

It should be added that in previous work, the PCE has been coupled with nonlinear Autoregressive

models for the metamodeling of the response of hysteretic nonlinear systems [20]. However, in the

present study an additional challenge arises, since the time varyifng dynamics owed to the inherently

changing system properties enter the system equations.

The remainder of the paper is organized as follows: in Section 2 the metamodeling problem is

formally defined, and the metamodeling method based on the DWT and PC expansion is described. In

Section 3 the introduced method is illustrated via a numerical case study, simulating a popular case for

monitoring consideration, i.e., that of a vehicle crossing a bridge along with the main metamodeling

results. Finally, the conclusions of this study are summarized in Section 4.

2 Discrete Wavelet Transform Metamodeling Method

Consider a time-varying structural system represented by a numerical model M that is characterized

by a number of input parameters relating to the properties of the modelled structure (mechanical

and/or geometric). It is assumed that M of these parameters are subject to uncertainty and that they

may be described by independent random variables gathered in a random vector ξ = [ξ1, ξ2, . . . , ξM ]T.

As a result, the dynamic response of the numerical model to a given input excitation will be a

random variable following a probability density function (pdf) with characteristics that depend on the

corresponding pdf of the input variables and the mechanism of uncertainty propagation, that is

y[t, ξ] = M(x[1], x[2], . . . , x[t], ξ) (1)

with t = 1, 2, . . . , T designating normalized by the sampling period discrete time, x[t] the excitation

input signal, y[t, ξ] the corresponding numerical model response signal, and ξ the M -dimensional

vector of input random variables with known joint probability density function (pdf) f(ξ) .

Metamodeling refers to the process of identifying a reduced order and computational complexity

4

                     
(1)

                  

with t = 1, 2, . . . , T designating normalized by the 
sampling period discrete time, x[t] the excitation input 
signal, 

variables this way accounting for the uncertainty propagation through the numerical model. These

random coefficients are expanded onto a suitably defined finite-dimensional PC basis resulting into

a non-parametric representation that is fully described by the deterministic projection coefficients.

The sparsity of the representation may be achieved by means of thresholding, while the projection

coefficients are estimated by linear least squares fit.

It should be added that in previous work, the PCE has been coupled with nonlinear Autoregressive

models for the metamodeling of the response of hysteretic nonlinear systems [20]. However, in the

present study an additional challenge arises, since the time varyifng dynamics owed to the inherently

changing system properties enter the system equations.

The remainder of the paper is organized as follows: in Section 2 the metamodeling problem is

formally defined, and the metamodeling method based on the DWT and PC expansion is described. In

Section 3 the introduced method is illustrated via a numerical case study, simulating a popular case for

monitoring consideration, i.e., that of a vehicle crossing a bridge along with the main metamodeling

results. Finally, the conclusions of this study are summarized in Section 4.

2 Discrete Wavelet Transform Metamodeling Method

Consider a time-varying structural system represented by a numerical model M that is characterized

by a number of input parameters relating to the properties of the modelled structure (mechanical

and/or geometric). It is assumed that M of these parameters are subject to uncertainty and that they

may be described by independent random variables gathered in a random vector ξ = [ξ1, ξ2, . . . , ξM ]T.

As a result, the dynamic response of the numerical model to a given input excitation will be a

random variable following a probability density function (pdf) with characteristics that depend on the

corresponding pdf of the input variables and the mechanism of uncertainty propagation, that is

y[t, ξ] = M(x[1], x[2], . . . , x[t], ξ) (1)

with t = 1, 2, . . . , T designating normalized by the sampling period discrete time, x[t] the excitation

input signal, y[t, ξ] the corresponding numerical model response signal, and ξ the M -dimensional

vector of input random variables with known joint probability density function (pdf) f(ξ) .

Metamodeling refers to the process of identifying a reduced order and computational complexity

4

 the corresponding numerical model 
response signal, and 

variables this way accounting for the uncertainty propagation through the numerical model. These

random coefficients are expanded onto a suitably defined finite-dimensional PC basis resulting into

a non-parametric representation that is fully described by the deterministic projection coefficients.

The sparsity of the representation may be achieved by means of thresholding, while the projection

coefficients are estimated by linear least squares fit.

It should be added that in previous work, the PCE has been coupled with nonlinear Autoregressive

models for the metamodeling of the response of hysteretic nonlinear systems [20]. However, in the

present study an additional challenge arises, since the time varyifng dynamics owed to the inherently

changing system properties enter the system equations.

The remainder of the paper is organized as follows: in Section 2 the metamodeling problem is

formally defined, and the metamodeling method based on the DWT and PC expansion is described. In

Section 3 the introduced method is illustrated via a numerical case study, simulating a popular case for

monitoring consideration, i.e., that of a vehicle crossing a bridge along with the main metamodeling

results. Finally, the conclusions of this study are summarized in Section 4.

2 Discrete Wavelet Transform Metamodeling Method

Consider a time-varying structural system represented by a numerical model M that is characterized

by a number of input parameters relating to the properties of the modelled structure (mechanical

and/or geometric). It is assumed that M of these parameters are subject to uncertainty and that they

may be described by independent random variables gathered in a random vector ξ = [ξ1, ξ2, . . . , ξM ]T.

As a result, the dynamic response of the numerical model to a given input excitation will be a

random variable following a probability density function (pdf) with characteristics that depend on the

corresponding pdf of the input variables and the mechanism of uncertainty propagation, that is

y[t, ξ] = M(x[1], x[2], . . . , x[t], ξ) (1)

with t = 1, 2, . . . , T designating normalized by the sampling period discrete time, x[t] the excitation

input signal, y[t, ξ] the corresponding numerical model response signal, and ξ the M -dimensional

vector of input random variables with known joint probability density function (pdf) f(ξ) .

Metamodeling refers to the process of identifying a reduced order and computational complexity

4

 the M-dimensional vector of 
input random variables with known joint probability 
density function (pdf) f (

variables this way accounting for the uncertainty propagation through the numerical model. These

random coefficients are expanded onto a suitably defined finite-dimensional PC basis resulting into

a non-parametric representation that is fully described by the deterministic projection coefficients.

The sparsity of the representation may be achieved by means of thresholding, while the projection

coefficients are estimated by linear least squares fit.

It should be added that in previous work, the PCE has been coupled with nonlinear Autoregressive

models for the metamodeling of the response of hysteretic nonlinear systems [20]. However, in the

present study an additional challenge arises, since the time varyifng dynamics owed to the inherently

changing system properties enter the system equations.

The remainder of the paper is organized as follows: in Section 2 the metamodeling problem is

formally defined, and the metamodeling method based on the DWT and PC expansion is described. In

Section 3 the introduced method is illustrated via a numerical case study, simulating a popular case for

monitoring consideration, i.e., that of a vehicle crossing a bridge along with the main metamodeling

results. Finally, the conclusions of this study are summarized in Section 4.

2 Discrete Wavelet Transform Metamodeling Method

Consider a time-varying structural system represented by a numerical model M that is characterized

by a number of input parameters relating to the properties of the modelled structure (mechanical

and/or geometric). It is assumed that M of these parameters are subject to uncertainty and that they

may be described by independent random variables gathered in a random vector ξ = [ξ1, ξ2, . . . , ξM ]T.

As a result, the dynamic response of the numerical model to a given input excitation will be a

random variable following a probability density function (pdf) with characteristics that depend on the

corresponding pdf of the input variables and the mechanism of uncertainty propagation, that is

y[t, ξ] = M(x[1], x[2], . . . , x[t], ξ) (1)

with t = 1, 2, . . . , T designating normalized by the sampling period discrete time, x[t] the excitation

input signal, y[t, ξ] the corresponding numerical model response signal, and ξ the M -dimensional

vector of input random variables with known joint probability density function (pdf) f(ξ) .

Metamodeling refers to the process of identifying a reduced order and computational complexity

4

) .

M.D. Spiridonakos et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 2 (2015) 20-27



22 © 2015 SRESA All rights reserved

Metamodeling refers to the process of identifying 
a reduced order and computational complexity 
representation representation M of the large-scale numerical model M. In the present work, a metamodel is sought

for the representation of the time-varying dynamics of M and the accurate simulation of its time

history loading response.

The classical PC expansion approach has been proved to be a computationally efficient way for

describing the uncertainty propagation of time invariant problems [7, 8]. However, the dynamic

response of a nonstationary numerical model is dependent upon both the pdf of the input parameters

and time. Thus, for the case of non-parametric metamodeling the dynamic response of the numerical

model at each distinct time instant t, should be treated as a separate output and a PC expansion should

be performed, leading to a huge number of coefficients of projection.

In order to circumvent this difficulty a metamodeling method based on the DWT is introduced.

Wavelets may be considered as particularly effective for representing highly transient phenomena

such as the dynamic response of structural models – especially when these models are characterized

by nonstationary properties and/or are subjected to nonstationary loading conditions like earthquakes

and strong winds – while they also achieve high compression rates since they are able to perform

signal decomposition at different resolutions and frequency bands.

It should be noted that parametric metamodels based on linear and non-linear autoregressive mod-

els with exogenous excitation with parameters expanded on PC basis (PC-ARX and PC-NARX mod-

els) have also been introduced recently in the metamodeling context by the authors of the present

study [21, 22] in treating the issue of hysteretic nonlinear behavior and stochastic excitation. The

challenge herein however lies in the fact that the nonstationarity is inherent to the system properties

and not due to nonstationary excitation resulting into the onset of nonlinearities.

2.1 Discrete Wavelet Transform

Within the DWT framework an arbitrary signal y[t] of finite energy may be casted into orthonormal

wavelet basis as [23]:

y[t] =




n

dnψ

n[t] (2)

with dn denoting the coefficients of expansion, while ψ
n[t] are the orthonormal wavelet basis functions

obtained from the mother wavelet function ψ[t] through the operations of dilation and translation:

ψ
n[t] = 2/2ψ[2t− n] (3)
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with with  and n designating the dilation and translation indices, respectively.

The DWT-based signal decomposition may be realized by means of a computationally efficient

method known as Multi-Resolution Analysis (MRA) [19]. The MRA algorithm relates the DWT with

the processes of multilevel low-pass and high-pass filtering followed by down sampling, which result

in a hierarchically organized decomposition of the signal into a series of approximations and details

(Figure 1) [23]. The approximation and detail coefficients may be calculated recursively as follows:

an =

m

h[m− 2n]a−1
m (4a)

dn =

m

g[m− 2n]d−1
m (4b)

where h[n] and g[n] are the lowpass and highpass filters, respectively, defined by the wavelet and its

scaling function. The DWT and the MRA algorithm are initialized with a0n = y[t] which defines the

first level of the DWT. Iterating Equations (4a) and (4b) L times, the transformed signal consists of L

sets of detail coefficients at  = 1, . . . , L(d1, . . . ,dL), and a set of approximation coefficients at level

L (aL). The number of levels L in the multi-resolution algorithm depends on the length of the signal.

The MRA algorithm is schematically represented in Figure 1.

Figure 1 should go here.

Normally the energy of the response signal y[t] is concentrated in particular frequency bands re-

lated with the dynamics of the modelled structure and thus may be approximated by a sparse wavelet

expansion. The sparse representation is achieved by applying a threshold policy on the detail coeffi-

cients, keeping only a limited number of them [19].

The selection of the wavelet transform coefficients is presently based on the hard thresholding

criterion, that is the wavelet coefficient is replaced by zero if its magnitude is less than a predifined

threshold thr:

d,hard
j =



0 if |dj| < thr

dj if |dj| ≥ thr
(5)

Hard thresholding is applied on a normalized, by the median of the finest detail wavelet coefficients

d1, version of the signal y[t] [19].
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representation M of the large-scale numerical model M. In the present work, a metamodel is sought

for the representation of the time-varying dynamics of M and the accurate simulation of its time

history loading response.
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It should be noted that parametric metamodels based on linear and non-linear autoregressive mod-

els with exogenous excitation with parameters expanded on PC basis (PC-ARX and PC-NARX mod-

els) have also been introduced recently in the metamodeling context by the authors of the present

study [21, 22] in treating the issue of hysteretic nonlinear behavior and stochastic excitation. The

challenge herein however lies in the fact that the nonstationarity is inherent to the system properties

and not due to nonstationary excitation resulting into the onset of nonlinearities.

2.1 Discrete Wavelet Transform

Within the DWT framework an arbitrary signal y[t] of finite energy may be casted into orthonormal

wavelet basis as [23]:

y[t] =




n

dnψ

n[t] (2)

with dn denoting the coefficients of expansion, while ψ
n[t] are the orthonormal wavelet basis functions

obtained from the mother wavelet function ψ[t] through the operations of dilation and translation:

ψ
n[t] = 2/2ψ[2t− n] (3)
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The retained coefficients of the DWT may be collected in a complete vector of coefficients θ:

θ = [aL, dL,hard, . . . , d1,hard ]T (6)

which is in turn used for the approximate reconstruction of the initial signal y[t] by means of the

inverse DWT.

In the case of an uncertain system, the response signal y[t] will also depend on the uncertain input

variables vector ξ, as already shown in Eq. (1)

2.2 Polynomial Chaos Expansion

In order to approximate the numerical model dynamic response y[t, ξ] for every realization of ξ in an

efficient way, the DWT coefficients θ should also be random variables depending on ξ, that is θ(ξ).

The latter may be represented by a deterministic mapping which describes their relation with the input

random variables. More specifically, assuming that the multilevel wavelet transform coefficients θi(ξ)

have finite variance, they admit the following PC representation [11]:

θi(ξ) =
∞
j=1

θi,j · φb(j)(ξ) (7)

where θi,j are unknown deterministic coefficients of projection, b(j) is the multi-indices of the multi-

variate polynomial basis, and φb(j) are multivariate basis functions that are orthonormal with respect

to the joint pdf of ξ, that is:

E[φα(ξ), φβ(ξ)] = δα,β =



1 for α = β

0 otherwise
(8)

Each probability density function may be associated with a well known family of orthogonal polyno-

mials. For instance, the normal distribution is associated with Hermite polynomials while the uniform

distribution with Legendre. A list of the most common probability density functions along with the

corresponding orthogonal polynomials and the corresponding formulations may be found in [11]. The

multivariate basis functions φb(j) are then constructed through tensor products of the corresponding

univariate functions.
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For purposes of practicality, the infinite series of expansion of Eq. (7) must be truncated through

selection of an appropriate functional subspace consisting of a finite number of terms p. The usual

approach followed is the selection of the multivariate polynomial basis with a total maximum degree

|bj| =
M

m=1 b(j,m) ≤ P ∀j. In this case the dimensionality of the functional subspace is equal to:

p =
(M + P )!

M !P !
(9)

where M is the number of random variables and P the maximum basis degree. In this way, Eq. (7)

should be rewritten as:

θi(ξ) =

p
j=1

θi,j · φb(j)(ξ) + ei (10)

with ei designating the residual error of the truncated PC expansion, with the resulting metamodel

being fully parametrized in terms of a finite number of deterministic coefficients of projection θi,j .

The estimation of θi,j (with i = 1, . . . , dim(θ) and j = 1, . . . , p) is a linear regression problem that

may be solved by means of ordinary least squares optimization, based on available time history data

for the excitation and dynamic response of the numerical model. This data may be acquired for a set

of simulations, conducted for different realizations of the input random vector, using the full scale

numerical model.

Toward this end, a series of K simulations conducted for a corresponding number of input random

vector realizations ξk = [ξk,1, ξk,2, . . . , ξk,M ]T (for k = 1, 2, . . . , K) is considered available. The

corresponding dynamic response signals of the full scale numerical model to a specific excitation

signal xT = {x[1], x[2], . . . , x[T ]} are indicated as yTk (ξk) = {yk[1, ξk], yk[2, ξk], . . . , yk[T, ξk]}. For

these simulations, the input vector ξk is generated from the input parameter space either randomly or

by using a structured sampling technique, such as the Latin Hypercube Sampling (LHS; [24]).

The complete procedure of the metamodel identification is illustrated in the flowchart of Figure 2.

Figure 2 should go here.
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3 Numerical Example

3.1 Simply Supported Beam with a Moving Mass

A FE model of a simply supported beam featuring a moving mass (Figure 3) and subjected to random

excitation is presently considered for the assessment of the introduced method. The considered test-

case simulates bridge under moving vehicle problem that is often met within a Structural Health

Monitoring (SHM) context.

The beam of length L = 1.5 m is comprises an orthogonal steel cross section with isotropic

material behavior and is discretized in N = 1000 elements. The geometric properties of the beam

are summarized in Table 1. It is considered that the steel’s Young modulus E is characterized by

uncertainty and may be modelled as a random variable following a normal (Gaussian) distribution

E ∼ N (200, 25) (GPa). The rest of the beam’s mechanical and geometric properties are considered

to be characterized by negligible uncertainty.

The moving mass is also assumed as uncertain, following a normal distribution mtotal ∼ N (1, 0.04)

(kg), while it is equally distributed over µ = 100 nodes of the beam, that is mi = mtotal/100 for

i = 1, . . . , 100. The velocity of the mass is v = 0.375 m/s moving from left to right.

Figure 3 should go here.

Table 1 should go here.

The identification of the beam’s metamodel is based on recordings of the vertical displacement of

the beam as calculated at node 200 located L/5 away from its left support (y[t, ξ] = uL/5y
[t, ξ]).

3.2 Simulation experiments

For all the simulation experiments, the beam model is simulated for 6.4 s (t ∈ [−2, 6.4]) and is

subjected to a 1600 sample long random excitation signal applied to all the nodes of the beam (y-

axis direction; sampling frequency fs = 250 Hz). A total number of K = 100 full scale numerical

simulations are conducted for a corresponding number of input variable vectors ξk(k = 1, 2, . . . , 100)

which are drawn by using the LHS method. The values of the input variables drawn are shown in Fig.

4.

Figure 4 should go here.
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1, . . . , 100) at various MRA levels ( = 1, . . . , 7). The results of this procedure indicate that a maxi-

mum level of the MRA equal to five (L = 5) should be adequate from the accurate reconstruction of

the dynamic response signals (Fig. 6).
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The MRA algorithm with L = 5 for every yTk (ξk) gives a set of (1171 × 100) wavelet coefficients.

The dimensionality of this set may be significantly reduced after applying hard thresholding with thr

= 10. This value is selected through a trial and error procedure for compromising the length of the

wavelet coefficients vector with the minimization of the normalized sum of squared errors (NSE)

criterion:

NSE =

T
t=1 (yk[t, ξk]− ỹk[t, ξk])

2

T
t=1(yk[t, ξk])

2
(11)

obtained from the reconstruction ỹTk (ξk) of yTk (ξk). The persistence of each of the 1171 wavelet

coefficients after the thresholding procedure is shown in Figure 7. All the 345 non-zero coefficients

are retained for the subsequent PC expansion.
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The PC maximum total degree is selected equal to 
four   = 4 resulting to 15 bases functions (see Eq. (9)). 
The final set of (345 ×15) PC projection coefficients may 
be used for the simulation of the dynamic response of 
the FE model 

The PC maximum total degree is selected equal to four P = 4 resulting to 15 bases functions

(see Eq. (9). The final set of (345 × 15) PC projection coefficients may be used for the simulation of

the dynamic response of the FE model yT (ξ) for any realization of ξ drawn from the predetermined

joint pdf. The NSE errors of the reconstructed 100 signals that were used for the identification of the

metamodel are shown in Figure 8 and are in all cases less that 3.2×10−6 %. The original FE dynamic

response signal yT1 (ξ1) is also contrasted to the metamodel-based reconstruction ỹT1 (ξ1) in Figure 9.

Furthermore, the original detail wavelet coefficients are also cross-compared to those obtained after

thresholding and expanding on the PC basis in the same figure.

Figure 8 should go here.

Figure 9 should go here.

The performance of the estimated metamodel is finally assessed through its application for the

simulation of the dynamic response of the numerical model of Figure 3 for random variable values

ξvalid
j that are different from those of the initial 100 experiments. More specifically, the following

values are used for these validation experiments: ξvalid
1 = [−4 − 2]T = [180GPa 0.6kg]T, ξvalid

2 =

[−2 0]T = [190GPa 1.0kg]T, and ξvalid
3 = [0 2]T = [200GPa 1.4kg]T with the corresponding values

of the FE model input variables being summarized in Table 2.

Table 2 should go here.

The simulated responses of the metamodel, along with the dynamic response of the FE model

for these validation experiments are illustrated in Figure 10. As it may be observed, the estimated

metamodel is capable of reproducing the dynamic response of the numerical model with excellent

accuracy for all these cases. It should be noted that in two of these cases, extreme values have been

selected for some of the uncertain parameters (for instance, the mass value for ξvalid
3 is much higher

than the values used for the initial simulations and the identification of the metamodel). Finally, it

should be added that the metamodel-based simulated response was calculated in negligible time, 105

times lower that the time required for the simulation experiment of the FE model. This translates into

an order of magnitude of milliseconds for the metamodel simulation versus roughly 10 minutes per

simulation for the FE model. These estimates are obtained as the mean value of 100 simulations on a

PC with quad-core Xeon 3.5 GHz CPU, 8 GB RAM.

Figure 10 should go here.
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The level of the MRA is first selected by decomposing the available response data yTk (ξk)(k =

1, . . . , 100) at various MRA levels ( = 1, . . . , 7). The results of this procedure indicate that a maxi-

mum level of the MRA equal to five (L = 5) should be adequate from the accurate reconstruction of

the dynamic response signals (Fig. 6).
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= 10. This value is selected through a trial and error procedure for compromising the length of the
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obtained from the reconstruction ỹTk (ξk) of yTk (ξk). The persistence of each of the 1171 wavelet

coefficients after the thresholding procedure is shown in Figure 7. All the 345 non-zero coefficients

are retained for the subsequent PC expansion.
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2

T
t=1(yk[t, ξk])

2
(11)

obtained from the reconstruction ỹTk (ξk) of yTk (ξk). The persistence of each of the 1171 wavelet

coefficients after the thresholding procedure is shown in Figure 7. All the 345 non-zero coefficients

are retained for the subsequent PC expansion.

Figure 7 should go here.

The input random variables are transformed into standard Gaussian variables and thus the wavelet

coefficients are expanded on Hermite polynomials of the standard Gaussian random variables ξ1 and

ξ2:

ξ1 =
E − 200

5
, ξ2 =

mtotal − 1

0.2
(12)

10

. 
The persistence of each of the 1171 wavelet coefficients 
after the thresholding procedure is shown in Figure 7. 
All the 345 non-zero coefficients are retained for the 
subsequent PC expansion.

100

Simulation Experiment



26 © 2015 SRESA All rights reserved

8 and are in all cases less that 3.2×10−6%. The original 
FE dynamic response signal 

The PC maximum total degree is selected equal to four P = 4 resulting to 15 bases functions

(see Eq. (9). The final set of (345 × 15) PC projection coefficients may be used for the simulation of

the dynamic response of the FE model yT (ξ) for any realization of ξ drawn from the predetermined

joint pdf. The NSE errors of the reconstructed 100 signals that were used for the identification of the

metamodel are shown in Figure 8 and are in all cases less that 3.2×10−6 %. The original FE dynamic

response signal yT1 (ξ1) is also contrasted to the metamodel-based reconstruction ỹT1 (ξ1) in Figure 9.

Furthermore, the original detail wavelet coefficients are also cross-compared to those obtained after

thresholding and expanding on the PC basis in the same figure.
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The performance of the estimated metamodel is finally assessed through its application for the

simulation of the dynamic response of the numerical model of Figure 3 for random variable values

ξvalid
j that are different from those of the initial 100 experiments. More specifically, the following

values are used for these validation experiments: ξvalid
1 = [−4 − 2]T = [180GPa 0.6kg]T, ξvalid

2 =

[−2 0]T = [190GPa 1.0kg]T, and ξvalid
3 = [0 2]T = [200GPa 1.4kg]T with the corresponding values

of the FE model input variables being summarized in Table 2.

Table 2 should go here.

The simulated responses of the metamodel, along with the dynamic response of the FE model

for these validation experiments are illustrated in Figure 10. As it may be observed, the estimated

metamodel is capable of reproducing the dynamic response of the numerical model with excellent

accuracy for all these cases. It should be noted that in two of these cases, extreme values have been

selected for some of the uncertain parameters (for instance, the mass value for ξvalid
3 is much higher

than the values used for the initial simulations and the identification of the metamodel). Finally, it

should be added that the metamodel-based simulated response was calculated in negligible time, 105

times lower that the time required for the simulation experiment of the FE model. This translates into

an order of magnitude of milliseconds for the metamodel simulation versus roughly 10 minutes per

simulation for the FE model. These estimates are obtained as the mean value of 100 simulations on a

PC with quad-core Xeon 3.5 GHz CPU, 8 GB RAM.
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selected for some of the uncertain parameters (for instance, the mass value for ξvalid
3 is much higher

than the values used for the initial simulations and the identification of the metamodel). Finally, it
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with quad-core Xeon 3.5 GHz CPU and 8 GB RAM.

4. Conclusions

This work introduces a reduced order metamodel 
for the modeling of nonstationary systems based on 
the DWT and PC basis expansion. The metamodel 
is identified through a multi-step procedure, which 
includes the computationally inexpensive MRA 
algorithm for the decomposition and compression 
of the dynamic response signals of a large scale FE 
model, and a least squares optimization procedure 
for the expansion of the wavelet coefficients onto 
properly selected PC basis. In order to illustrate the 

Experiment 1 2 3
E (GPa) 180 190 200
m {total} kg 0.6 1 1.4

Table 2: Values of the input variables for the 
validation experiments.

Figure 10: The dynamic response of the FE model and the 
corresponding metamodel-based simulation signal for the 

validation experiments.
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workings of the method, the whole procedure is 
implemented for the construction of a metamodel 
representation of a FE model of a beam under moving 
load, subject to random excitation. The meta-model 
was estimated from simulated data obtained by the 
original FE model, with the mechanical properties 
of the structure assumed to be uncertain parameters 
following probability distributions with predefined 
characteristics. Overall, the study demonstrated the 
effectiveness and applicability of the proposed method 
for the estimation of stochastic, computationally 
inexpensive metamodels that are capable of accurate 
approximation of nonstationary systems, while at the 
same time accounting for the inherent uncertainties 
involved. This comes to compliment previous work 
of the authors on the successful use of PCE for the 
metamodeling of hysteretic nonlinear systems.
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1.  Introduction

This research aims to make enhancements to the 
parameter estimation process for finite element model 
updating in presence of measurement errors in the 
following areas: (1) the design of non-destructive 
tests to ensure useful data are collected for estimation 
of a set of unknown parameters, (2) statistical 
normalization to make the final estimates less sensitive 
to measurement error, and (3) quantification of 
uncertainty in parameter estimates to aid in decision 
making. It is shown through numerical simulations 
that these effects have significant effect on the 
robustness, variance, and usefulness of the parameter 
estimation process in structural health monitoring. 
These methods are studied for specific error functions 
or residuals that were developed by the authors and 
previous graduate students as referred further in the 
text.

Recently, there has been interest in the use of 
Bayesian methods for structural health monitoring. 
Its application in development of sensor placement 
algorithms for structural identification for multi-type 
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sensory systems is researched by Yuen and Kuok [1]. 
Using a sequential sensor placement algorithm of 
Bayesian nature, they assess the overall performance 
of various types of sensors at different locations of a 
structure and demonstrate the effectiveness of their 
proposed method with examples of shear building and 
lattice towers with up to four different sensor types.

The use of multiple types of data or “data fusion” 
in parameter estimation is an area of active research. 
Perera et al. [2] present a damage identification 
methodology that allows combining static and 
dynamic measurements in a single stage model 
updating procedure formulated as a multi-objective 
framework. Bell et al. [3] simultaneously use dynamic 
mode shapes and frequencies as well as static data 
including displacements, tilts, and strains to update 
a finite element model of a scale bridge deck located 
at the University of Cincinnati Infrastructure Institute 
[4]. Because the different types of measurements vary 
over several orders of magnitude (strains are on the 
order of 10-6, tilts on the order of 10-3 radians, and 
displacements are on the order of 10-1 to 10+1 depending 
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on units) there is a need for normalization such that 
each measurement is appropriately weighed in the 
estimation process. They choose to normalize the error 
function with respect to its initial values. This solution 
produces reasonable parameter estimates, but the final 
estimates vary depending on the initial assumptions 
of the unknown parameters. This paper presents a 
different form of normalization. It is based on the level 
of uncertainty as quantified in a covariance matrix of 
the measurements and does not exhibit a dependence 
on initial values of unknown parameters. 

The current, deterministic methods of finite 
element model updating work very well when there 
is little or no error in the model and measurement 
data, but they start to exhibit large errors in parameter 
estimates when even modest levels of error are 
present. There are three types of errors that cause 
inaccuracies in the estimates. These errors can be 
classified as modeling errors, measurement errors, 
and estimation errors. Sanayei et al. [5] have studied 
the impact of modeling error on parameter estimation 
in finite element model updating and found that the 
derivative of the sensitivity matrix with respect to 
modeling errors reveal the potential effect of modeling 
errors on the parameter estimation process. Also, the 
sparse set of measurements may cause the modeling 
errors to propagate throughout the error function 
because of the matrix inversions required to condense 
out the DOFs with unmeasured responses. The effects 
of modeling errors are beyond the scope of this work. 
Furthermore, there are special setups, such as the 
laboratory settings, where modeling errors are better 
controlled. Measurement errors occur because the 
measurement systems (sensors and data acquisition 
system) are not capable of producing perfect 
measurements. In a laboratory setting, measurement 
errors can be significantly lower depending on the 
type of measurements and calibrations. However, 
measurement errors can be significant in the field 
based on instrumentation types, installation methods, 
field calibrations, and presence of larger ambient 
noise. Measurement errors also include errors that 
arise while processing raw sensor data into usable 
measurements. One such example is extraction of 
the mode shapes from time history acceleration data. 
Measurement errors are addressed in this paper. 
Minimizing the effect of measurement errors and 
their propagation and magnification in the parameter 
estimation process can greatly improve the accuracy 
of updated finite element models. 

2. Error Function and Scalar Objective Function

The static flexibility error function developed by 
Sanayei et. al [6] compares predicted and measured 
displacements. Based on the inverse of the force-
displacement relationship, it is defined as,

( ) ( ) 1-
 = - = - e p u u B K p f um m

predicted measured
	  (1)

In the above formulation, K(p) is the stiffness 
matrix which is dependent on the model parameters 
in the NUP x 1 vector p, where NUP is the number 
of unknown parameters. Examples of stiffness 
parameters include axial rigidity EA, bending rigidity 
EI, torsional rigidity GJ, and spring stiffness as used 
in finite element analysis. The matrix B is a Boolean 
matrix that extracts the measured degrees of freedom 
of the inverted stiffness matrix. The vectors mf of size 
NDOF x 1 and mu  of size NMDOF x 1 are measured 
forces and displacements respectively obtained from 
each non-destructive load case, where NDOF is the 
number of degrees of freedom of the system containing 
zero and nonzero forces and NMDOF is the number 
of measured degrees of freedom.

Ordinarily, several load cases are used in a 
nondestructive test. Also, at times a combination 
of global displacement and rotation measurements 
in Eq. (1) are used in conjunction with local strain 
measurements [7]. Multiple nondestructive test load 
cases and different error functions of various sizes are 
combined by vertically concatenating (denoted by ;) 
the individual error function vectors as follows:

{ } { }1 2 1; ; ; ;-=e e e e e n n .	                                (2)

The error vector, Eq. (1), is of size NM x 1 where 
NM is the total number of measurements and is equal 
to the number of load cases times the number of 
sensors per load case. For parameter estimation, the 
error vector, Eq. (2), is converted into a scalar objective 
function that can be minimized to arrive at the final 
estimates:

( ) TJ =p e e .	       		                                 (3)

Minimization of the scalar error function, Eq. 
(3), results in multi-response parameter estimation 
[8]. Similar to the static flexibility error function, 
error functions can be also be formulated in terms of 
static strains or modal displacement parameters as 
summarized in [9]. The methods developed in this 
research are applicable to those error functions as 
well.
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3. Maximum Likelihood Estimation

This research is based on the fact that all 
measurements in structural health monitoring are 
representative of the true behavior of the structure 
with the addition of some random measurement error. 
Assuming that the distribution characteristics of the 
measurement error are known, the “likelihood” of 
observing any set of measurements can be calculated 
for a given set of model parameters. The likelihood of 
a set of model parameters given a set of measurements 
is the probability of observing the measurements in a 
model with those parameters. Updating the unknown 
parameters of the model changes the model behavior 
and therefore changes the likelihood of observing the 
set of measurements. Finding the model parameters 
that maximize the likelihood of the measurements 
results in the maximum likelihood estimate for those 
parameters. The maximum likelihood estimate is 
the most plausible configuration for the unknown 
parameters given the collected data. 

In order to calculate a maximum likelihood 
estimate it is necessary to first define some preliminary 
assumptions and definitions. It is assumed that the data 
obtained from a non-destructive test is contaminated 
with unbiased normal error. These measurements can 
be described as follows,

to reduce complexity, if a 95% confidence interval 
is given, the following equation for the standard 
deviation, sigma, can be used.

( )
(2*1.96)
UB LBσ -

= 	  	                                (6)

In this case UB and LB are the upper bounds and 
lower bounds of the confidence interval respectively. 
The error in the measurements of the force and response 
are assumed to be independent, so the covariance 
matrices sf (NDOF x NDOF) and su(NMDOF x 
NMDOF) are only populated along the diagonals. 
The diagonals of sf and su contain the squares of the 
standard deviations (or variances) of the forces and 
measurements respectively.

When Eq. (4) and Eq. (5) are substituted into Eq. 
(1), the error function becomes a linear combination of 
uncorrelated normal random variables. Thus, the error 
function, e, is a normal random variable itself,
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respectively. Since the measurements are assumed 
unbiased, the mean values mf (NDOF x 1) and mu 
(NMDOF x 1) are vectors of the measured applied 
forces and measured responses of the structure. 

The following formulation requires additional 
data in comparison to non-statistical methods. In 
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deviation of the measured data is used. These data 
are typically available to experimentalist through 
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with 

1
e f u

−= − = BK   0 and (8) 

( ) ( )1 1 T

e f u
− −= + BK  BK  . (9) 

The size of e  is (NMDOF x 1). Since f  and u consist of true forces and displacements, the 

force-displacement model implies that the right side of Eq. (8) is equal to zero and therefore the 
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determinant of u . We will make use of these observations in deriving a simplified 

approximation to our cost function shortly. 

The error function e is a normally distributed random vector that is dependent on the set 
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mf and 

mu . If the measurements, 
mf and 
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The size of e  is (NMDOF x 1). Since mf and mu 
consist of true forces and displacements, the force-
displacement model implies that the right side of 
Eq.(8)  is equal to zero and therefore the error function 
is unbiased. The formulation for the covariance matrix 
of the error function se in Eq. (9) is a result of the fact 
that ( )e p  in Eq. (1) is a linear combination of normal 
random variables. Note that even though all errors in 
force and displacement measurements are assumed 
independent, the random terms of the error function 
are not independent. This is evident from the presence 
of the terms B and K-1 in Eq. (9) and results in se for 
a given load case to be fully populated (i.e., se is a 
dense matrix). 

One way to view the relationship between 
variance matrices in Eq. (9) is as follows. se = P + su, 
where P  is the symmetric positive definite matrix
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eigenvalues can only increase [10]. Therefore, the 
eigenvalues of se, which are positive and real, 
must be bounded below by the positive and real 
eigenvalues of su. Furthermore, since it is well-
known that the determinant of a matrix is the product 
of its eigenvalues, it follows that the determinant 
of se is bounded below by the determinant of su. 
We will make use of these observations in deriving 
a simplified approximation to our cost function 
shortly.

The error function e is a normally distributed 
random vector that is dependent on the set of 
structural parameters p and the measured data 

mf
and mu . If the measurements, mf and mu  are held 
constant, and the parameters p are allowed to vary, 
the likelihood function of the model parameters is 
obtained. This function is denoted here with L: 

					                   (10)

This expression gives the likelihood of observing 
the structural behavior of mf  and mu , given a set of 
model parameters p, where e is an implicit function 
of p through the dependency of K on e. In order to 
find the maximum likelihood estimator for p, Eq. (10)  
must be maximized over the estimated parameters. 
Since the natural log function is a strictly increasing 
function in the positive domain, maximizing Eq. (10)  
is equivalent to maximizing the natural log of it. This 
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objective function small as well. But the upper bound does not depend on e , which 

suggests that, as least locally, we may be able to think of e  as fixed, and minimize 1−e  eT
e . 

In our algorithm, we update e each outer iteration after a new value of e  becomes 

available. This is equivalent to solving a sequence of local minimization problems where 

e  is held fixed: 

1( ) T
eJ −=p e  e . (12) 

This is the scalar objective function J(p). After simplification of Eq. (11), we arrived 

at the scalar objective function, J(p) which is both weighted and normalized with respect to 

the inverse of variance in each measurement [11]. 



The frame example shown in Figure 1 is a simple two-story steel portal frame that could be 

part of the lateral stability system of a building. The height of each story is 250 cm and the width 

of the frame is 500 cm. The column supports are fixed at the ground and all joints are fully 

restrained against relative rotation. All members have geometric properties that are based on the 

standard W14x26 steel shape. The moment of inertia of each element is 10,198 cm4, and the 

cross-sectional area of each element is 49.6 cm2. 

Figure 1. Frame Example 

In this example, elements 4, 7 and 8 are damaged causing a reduction in moment of 

inertia. The moment of inertia of the damaged elements is 9,000 cm4. Using PARIS© 

(PARameter Identification System) [9], a non-destructive test will be simulated to estimate the 

bending rigidities, EI, of the three damaged elements as the unknown parameters. The non-

destructive test involves two load cases. In the first load case, a force of 50 kN is applied to node 

6 in the horizontal direction. In the second load case, a force of 50 kN is applied to node 7 in the 

vertical direction. There are five displacements measured in each load case. Vertical 

displacement of node 7 is measured. The horizontal displacement and rotation is measured at 

nodes 7 and 8. There are two load cases each with five measurements, accounting for a total of 

10 measurements. If coupling of axially connected degrees of freedom is assumed, then there are 

	                                            (12)
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NM and π  are constant so when maximizing Eq. (11) the first term can be ignored 

because it is not dependent on p. From Eq. (9), e  is dependent on the estimated parameters, 

because of the presence of K(p) in its formulation, but this makes the problem of optimizing 

Eq. (11) significantly more difficult. Therefore, simplifying assumptions might be used to 

replace Eq. (11) by a surrogate objective function.  

First, from the previous discussion, u  is positive definite, e cannot go to zero, 

which means that the expression ( )ln−  e will not blow up to infinity, and thus log-
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 Where the 

last inequality follows from the discussion relating the eigenvalues of e  to u .  

Figure 1. Frame Example
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all joints are fully restrained against relative rotation. 
All members have geometric properties that are based 
on the standard W14x26 steel shape. The moment of 
inertia of each element is 10,198 cm4, and the cross-
sectional area of each element is 49.6 cm2.

In this example, elements 4, 7 and 8 are damaged 
causing a reduction in moment of inertia. The moment 
of inertia of the damaged elements is 9,000 cm4. Using 
PARIS© (PARameter Identification System) [9], a 
non-destructive test will be simulated to estimate the 
bending rigidities, EI, of the three damaged elements 
as the unknown parameters. The non-destructive test 
involves two load cases. In the first load case, a force of 
50 kN is applied to node 6 in the horizontal direction. In 
the second load case, a force of 50 kN is applied to node 
7 in the vertical direction. There are five displacements 
measured in each load case. Vertical displacement of 
node 7 is measured. The horizontal displacement and 
rotation is measured at nodes 7 and 8. There are two 
load cases each with five measurements, accounting 
for a total of 10 measurements. If coupling of axially 
connected degrees of freedom is assumed, then 
there are 9 independent measurements when the 
redundancies due to the Maxwell-Betti reciprocity 
theorem are not counted. 

This non-destructive test was conducted with 
1,000 Monte Carlo (MC) simulations. In each 
simulation, proportional normally distributed error 
was added to the measured forces and displacements. 
In each MC observation, the stiffness of the damaged 
elements was estimated using the error contaminated 
measurements. This was repeated at several different 
levels of error. Figure 2 shows a comparison of the 
covariance for maximum likelihood estimates for a 
5% measurement error case with and without the 
proposed statistical treatment. For every unknown 

Figure 2. Comparison of COV for Maximum Likelihood 
Estimate and Un-normalized Estimate
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Figure 3. Frame Example 95% Bounds of Final Estimate Error

Figure 3a

Figure 3b

Figure 3c

parameter, the maximum likelihood estimate exhibits 
a significantly lower coefficient of variance than the 
estimate without normalization.
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Figure 3 shows the bounds of the middle 95% of 
the final estimates for elements 4, 7, and 8. This is a 
numerical version of the 95% confidence interval for 
the estimate. The dashed lines represent the bounds 
for the un-normalized error function and the solid 
lines represent the bounds for the maximum likelihood 
estimator. For all three elements the maximum 
likelihood estimator consistently produces estimates 
with significantly lower covariance for 1% to 10% 
measurement errors.

In this example there are two types of measurements, 
displacements and tilts. Displacements measured in 
centimeters are typically numerically larger than 
rotations measured in radians. Without normalization 
the error function can have mixed units where the 
larger magnitude measurements such as displacements 
have significantly larger impact on the estimation 
process than smaller magnitude measurements. The 
objective function for the pseudo-maximum likelihood 
estimator is normalized and is without units, and the 
measurements that are containing more information 
have more of an influence on the estimation. Using the 
pseudo-maximum likelihood estimator thus results in 
better parameter estimates.

5. Uncertainty of Estimates using Fisher 
Information Matrix

The estimates produced in this work are based 
on random variables and are therefore random 
themselves. Producing an estimate only solves part 
of the problem. In order for an engineer to use the 
results to make structural maintenance decisions, it is 
preferred to have some measure of confidence in the 
parameter estimates.

As it was presented above, Monte Carlo analyses 
can be used to give the user an idea of the variability 
of the estimate. In the examples presented here, it 
can produce estimates with lower covariance in a 
reasonable amount of time. However, with full-scale 
structures containing hundreds or thousands of 
degrees of freedom, the individual estimations are 
considerably slower. The matrix inverse operation 
at the heart of all the error functions is O(n3). Thus, 
using Cramer-Rao lower bound (CRLB) is far 
more computationally efficient than Monte Carlo 
simulations since it is based on only a single iteration 
compared to a large number of iterations for parameter 
estimations in MCs. This section develops an estimate 
of variability that is based on the Cramer-Rao lower 
bound variance. The Cramer-Rao lower bound is 

computed using the inverse of the Fisher Information 
Matrix. Ober [11] investigated the application of Fisher 
Information Matrix to non-stationary deterministic 
linear systems. It is not Monte Carlo based and is an 
efficient use of computer time because it only requires 
the result of single estimation.

This research uses the inverse of the Fisher 
information matrix as an estimate of the covariance 
matrix. It is important to note that this estimate is a 
lower bound of the true variance of the parameters. 
If sp is the covariance matrix of the estimates and 
ℑ  is the Fisher information matrix, then 
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Brackets  indicate expected value. In the case of this parameter estimation method, the 

size of the Fisher information matrix is (NUP x NUP). From Eq. (12) and the assumption 

that e  is independent of p, the first derivative of the log-likelihood function is the 

following:  
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where l is the log-likelihood function, e  is the error function, and e  is the covariance 

matrix of the error function. Taking the second derivative results in the equation 
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Using the fact that e  has zero mean, from Eq. (8), it is clear that when taking the 

expectation of Eq. (15) the second term will vanish. Using the notation for the sensitivity 

matrix, T

∂=
∂

eS
p

, the Fisher information matrix can be written as follows: 

1T
e
−= S  Sℑℑℑℑ . (16) 

The inverse of the Fisher information matrix is used as the estimator for the 

covariance matrix of the unknown parameters: 

( ) 11ˆ T
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the formula derived in Eq. (22). 

The CRLB covariance matrix was calculated using Eq. (17) The CRLB is an 

estimator for the covariance matrix of the parameter estimates. The diagonals of the CRLB 

represent bounds on the parameter variances. The estimate of the standard deviation is the 

square root of these values. In [13] the Cramer-Rao lower bound is compared to the results 

from the Monte Carlo simulations from the previous section for the frame example. This 

table shows that the Cramer-Rao lower bound gives reasonably accurate estimates of the 

parameter variance but is far less time consuming to calculate than the Monte Carlo 

estimate.  
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6. Verification Example with Monte Carlo 
Experiment

The parameter covariance estimate is demonstrated 
using the same frame example presented earlier. The 
formulas are programmed into PARIS© allowing the 
user to get a reasonable idea of parameter uncertainty 
without having to perform numerous Monte Carlo 
iterations. Previously, a Monte Carlo approach was 
used to calculate the parameter standard deviations. In 
this section, the Monte Carlo results will be compared 
to the estimates using the formula derived in Eq. 
(22).

The CRLB covariance matrix was calculated using 
Eq. (17). The CRLB is an estimator for the covariance 
matrix of the parameter estimates. The diagonals of the 
CRLB represent bounds on the parameter variances. 
The estimate of the standard deviation is the square 
root of these values. In [13] the Cramer-Rao lower 
bound is compared to the results from the Monte 
Carlo simulations from the previous section for the 
frame example. This table shows that the Cramer-Rao 
lower bound gives reasonably accurate estimates of 
the parameter variance, but is far less time consuming 
to calculate than the Monte Carlo estimate. 

Table 1. Comparison of Standard Deviations 
Estimates using CRLB and MC for Frame Example

Para-
meter

CRLB Var.
(cm8)

CRLB St. 
Dev.(cm4)

MC St. 
Dev.
(cm4)

St. Dev. 
% Error

I4 22,231.00 149.10 149.40 -0.20
I7 129,130.00 359.30 358.50 0.22
I8 13,327.00 115.40 121.10 -4.71

This approximate parameter standard deviation 
estimate is a powerful tool to aid in decision making. 
With previous methods, only a point estimate could 
be produced. Without any information about the 
confidence bounds on the estimate, it is difficult to use. 
Using this additional information, an interval and a 
level of confidence for that interval can be created using 
standard statistics. Using this additional information 
decisions about structural maintenance based on 
parameter estimates would be better informed 
resulting in a more efficient use of resources.

7. Sensor Placement

Successful finite element model updating is 
dependent on a well-designed non-destructive test 
that can easily observe the unknown parameters. Even 

when the error in the measurements is well controlled, 
a poor choice of excitation and measurement locations 
will doom the process from the outset. This section 
develops an algorithm that can be used to choose a set 
excitation and measurements locations that is tolerant 
of measurement errors and results in a final parameter 
estimates with lower covariance.

Choosing excitation and measurement locations 
on a structure is a difficult problem to solve because 
of its combinatorial nature. In order to solve this 
problem a different approach is necessary. The method 
presented in this section ranks the measurement and 
excitation locations based on their observability of all 
the unknown parameters, so the least productive ones 
can be removed. Using this approach, the number 
of iterations required is linear with respect to model 
size. And while it is not guaranteed to result in the 
best possible non-destructive test strategy, it usually 
results in a non-destructive testing strategy that is 
“good enough” to observe changes in all the targeted 
elements for parameter estimation.

The Fisher information matrix derived in the 
previous section can be useful in the design of non-
destructive tests. Two of the four sensor location 
methodologies employed by Castro-Triguero et al. 
[13] for modal analysis of a truss bridge are based 
on the Fisher Information Matrix for optimal sensor 
placement on a dynamic system. The resulting 
sensor configuration will maximize the information 
from the system such that the data acquired from 
those locations would yield best identification of 
the unknown parameters. The Fisher information 
matrix can be calculated before any data are collected 
and before estimations are performed. The Fisher 
information matrix and the parameter covariance 
matrix are inversely related. If a set of measurements 
can be found that maximizes the determinant of the 
Fisher information matrix, this will in turn result in an 
estimated parameter covariance matrix with minimum 
determinant. Low determinant of the parameter 
covariance matrix is indicative of low individual 
parameter variances. An experimental design that 
results in maximum determinant of the Fisher 
information matrix is called D-optimal. Assuming 
normality of estimates, a D-optimal experimental 
design results in a parameter confidence ellipsoid that 
has minimal volume for a given level of confidence 
[14]. A confidence ellipsoid is simply the vector analog 
of a confidence interval. The confidence ellipsoid is the 
set of parameter vectors p  that satisfies the following 
inequality,
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	                              (18)

where c  is a scalar constant dependent on level of 
confidence, sp   is the parameter covariance matrix 
and p̂  is the estimated set of parameters. This is 
another way to say that the final estimates will have 
the tightest possible confidence intervals.

The main idea is to start with a superset of all 
possible candidates for load cases and measurements. 
This set should only include the locations that 
can be feasibly measured or excited. These load 
cases and measurements are then ranked based 
on their effect on the determinant of the Fisher 
information matrix. The least effective load cases 
and measurements are then removed until a smaller 
and more experimentally feasible subset is achieved. 
Since the poorest measurements are removed in 
the course of the algorithm, only the most effective 
measurements remain, resulting in an efficient non-
destructive test design. This section builds on the 
work of Kammer [15] and Sanayei and Javdekar [16] 
using the enhancements that are presented in the 
following paragraphs.

A shortcoming of the research of Kammer [15] and 
Sanayei and Javdekar [16] is that they either assume 
variance is constant for each element of the error 
function or they ignore it entirely. Even when variance 
of all measurements is the same, it can be seen from 
Eq. (9) that se is not a uniform or diagonal matrix. 
The information about variations of measurements 
from se must be incorporated to the algorithm for a 
proper treatment of this problem. 

Since the covariance matrix of the error function se 
is positive definite, it is possible to perform a Cholesky 
decomposition to obtain a lower triangular matrix L
of the same size with the following property,

se= LLt.			                                (19)

Taking the inverse results in the following,

se= L-T L-1.			                                (20)

Combining Eq. (16) and Eq. (20) the Fisher 
information matrix can be written as follows,

( ) ( )1 1- -= L S L S
T

ℑ .	                                            (21)

Define the matrix 1-=S L S . In this case S  is of 
size (NM x NUP), where NM is the total number of 
measurements equal to the product of NMDOF, the 
number of measured DOF and NLC is the number 
of load cases applied. Using this notation, the Fisher 
information matrix can be rewritten using,

T= S S ℑ .			                                (22)

A measurement is constituted by a load case and 
one measured degree of freedom in that load case. 
Each row of S  corresponds to one measurement. 
Consider ℑ and i-ℑ which are Fisher information 
matrices with a full set of measurements, with the 
ith measurement removed respectively. i-ℑ  can be 
written as

T
i i i- = - r rℑ ℑ ,		                                            (23)

where ir  is the ith row of the S  matrix and is of size 
(1 x NUP). The determinant of the reduced Fisher 
information matrix can be expressed as (see [15]).

11 T
i i i

-
- = - r rℑ ℑ ℑ

.
	                                            (24)

Thus we have

( )- =i DiRℑ ℑ
,
		                               (25)

with 11 .-= - r r T
Di i iR ℑ Since the Fisher information 

matrix is positive definite, RDi  must be greater than 
or equal to zero. If a row of S  is zero, then 1 T

i i
-r rℑ  

will also be zero. Thus it is true that 0 1.≤ ≤DiR All 
values of 1 T

i i
-r rℑ  can be calculated by extracting the 

diagonals from the following matrix,

( ) 1T T-
=E S S S S    .		                                             (26)

A singular value decomposition can be performed 
on S  to make this calculation more stable,

T=S UDV ,			                                (27)

where U is (NM x NUP) and has the following 
properties T =U U I but T ≠UU I . D  is a diagonal 
matrix of size (NUP x NUP) with non-negative 
entries. V  is a matrix of size (NUP x NUP) with the 
following properties T =V V I and T =VV I . Using 
these properties, E  can be rewritten as follows:

( )( )1 1 T- -=E SVD SVD  .	                              (28)

From Eq. (27) and the properties of V and D 
mentioned above, the following is true.

1-=U SVD 			                                (29)

Thus E can be rewritten as, 
T=E UU ,	  		                               (30)

which is also known as an orthogonal projector onto 
the range of S . Since only the diagonals of E are 
of interest, it is more efficient to calculate them by 
taking the square of U  in a term by term fashion and 
summing across the rows. The final formulation for 

DiR  is shown below. 
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8. Algorithm for Sensor Placement

Eq. (31) can be used to rank a set of measurements 
for sensor placement. Measurements with low 
corresponding DR values are measurements that are 
valuable in the parameter estimation. However, it is 
not often desirable to rank individual measurements. 
Recall that a measurement is constituted by a load case 
and a measured degree of freedom in that load case. 
When reducing a large set of load cases and measured 
degrees of freedom to a more experimentally feasible 
set, removing a load case results in taking away 
measurements from all active measured degrees of 
freedom. Similarly, removing a measured degree of 
freedom removes that measurement from all active 
load cases. Taking this into account, it is necessary to 
have a way to rank the measured degrees of freedom 
and load cases not just individual measurements.

{ }
1

NSF

i ij
j

DOFRank Rank
=

= ∏
	  	              

 (32)

{ }
1

NMDOF

j ij
i

LCRank Rank
=

= ∏ 	  	         
      (33)

where П indicates multiplication. Multiplication is 
used to keep the range of DOF and LC ranks between 
0 and 1. DOF Rank is a ranking of each sensor, and LC 
Rank is a ranking of each load case. Since 0 1≤ ≤DiR
, the elements of DOF Rank and LC Rank must also be 
bounded by zero and one. Values close to zero indicate 
that taking away that measured degree of freedom 
or load case will result in a Fisher information matrix 
with very low determinant. It is desirable to keep 
these measurements. Values close to one indicate that 
the determinant of the Fisher information will remain 
nearly unchanged. These are the measured degrees 
of freedom or load cases that should be removed 
first, because they add little information to the non-
destructive test. The load case or measured degree 
of freedom corresponding to the highest value in 
DOF Rank or LC Rank is removed from the active 
list and the process of calculating DiE ’s and Rank is 
repeated. This continues until the desired number 
of load cases and measured degrees of freedom is 
obtained. The resulting experimental design is a set 
of measurements that will result in stable parameter 
estimation. 

It is important to note that this is not the optimal 
non-destructive test design. There are many ways to 
measure optimality of design on an experiment for 
a given set of unknown parameters. This method is 
based on the determinant measure of optimality but it 
does not guarantee a D-optimal non-destructive test. 
For an algebraically nonlinear system of equations 
only the computationally intractable exhaustive 
approach, using all possible combinations of load cases 
and measured degrees of freedom, can guarantee this. 
The result of this method is intended to be a “good” 
solution to the problem. In this work, non-destructive 
tests that were designed using this method will be 
referred to as “near optimal.”

9. Verification Example for Sensor Placement

The algorithm presented in the previous section 
will be demonstrated using the same frame example 
presented earlier for estimation of bending rigidities 
of elements 4, 7, and 8. To start, all feasible load cases 
and measured degrees of freedom were made active. 

Figure 4. Sensor and Load Case Ranking Procedure Flowchart

In order to achieve this ranking, the rank vector 
DR  of length (NM) must be “unstacked” to form 

a matrix of size (NMDOF x NLC). This is done by 
extracting vectors of length (NMDOF) from the DR  
vector and concatenating them horizontally to form 
a matrix. This matrix will be referred to as the Rank 
matrix. In the Rank matrix each row corresponds 
to a measured degree of freedom, and each column 
corresponds to a load case. Combining the matrix 
across rows will result in a ranking for the measured 
degrees of freedom and combining down columns 
will result in a ranking of the load cases. Figure 4 
summarizes this process.

In order to mimic the form of Eq. (25) the following 
formulations are used to combine the Rank matrix 
across rows for DOF Rank and down columns for LC 
Rank, 
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rotations and translations in both the vertical and 
horizontal directions. A summary of all available force 
and measured degrees of freedom in the X-Y plane is 
presented below in Figure 5 with eight possible load 
application points and 18 potential displacement and 
tilt measurement locations.

Using the measurement selection algorithm, the 
original set of 18 measured degrees of freedom was 
reduced to five and the original set of eight load cases 
was reduced to two. These measurements and load 
cases are shown in Figure 6 and Table 2 and Table 3.

The Rank matrix from the final iteration of the 
measurement selection algorithm along with the 
DOF Rank and LC Rank values for the selected 
measurements and load cases is presented in Table 
4. The near-optimal non-destructive test produced 
significantly better results than the initial NDT design 
presented in Figure 1.

Table 2. Near-Optimal Loading Summary  
for Frame NDT

LC # Node Dir. Force (kN)
1 3 Y -50
2 7 Y -50

Table 3. Near-Optimal MDOF summary  
for Frame NDT

Meas. # Node Dir.
1 3 X
2 3 Y
3 7 Y
4 7 Rz
5 8 X

Table 4. Final Rank Matrix from Measurement 
Selection Algorithm

Meas.  # LC-1 LC-2 DOF Rank
1 0.484 0.250 0.121
2 1.000 1.000 0.999
3 0.999 0.999 0.999
4 0.763 0.212 0.162
5 0.674 0.618 0.416

LC Rank 0.249 0.033
Recall from the previous discussion that Rank 

numbers near 1 indicate less useful measurements 
because removing them will have little effect on the 
determinant of the Fisher information matrix. These 
measurements contribute little to the estimation 
process. From Table 4, it is evident that measurements 
2 and 3, the vertical measurements at nodes 3 and 7, 
could be removed with little effect on the determinant 
of the Fisher information matrix. This would be a 

Figure 5. Available Force and Measured DOFs for Frame NDT

The superset of load cases and measured degrees of 
freedom was then reduced to the same size as that of 
the previous examples. The results from these near-
optimal non-destructive tests are compared to the 
previous results to demonstrate the effectiveness of 
the non-destructive test design method.

Figure 6. Near-Optimal Load Cases and Measured Degrees of 
Freedom for Frame Example

Load cases involving applied moments were not 
considered in this example because applying a pure 
moment to a structure in the field is very difficult. 
Loads were also not applied vertically over the 
columns because these load cases would not cause 
easily measurable deflections due to the high axial 
stiffness of the columns. All kinematic degrees of 
freedom were available for measurement including 
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Figure 8. Near-optimal Frame Example 95% Bounds of Final Estimate Error

reasonable decision if this test were carried out on a 
physical structure where each measurement increases 
the cost of the test. However, in order to make an 
even comparison with the previous test setup using 
the same number of measurements it was decided 
to keep these measurements so that the number of 
load cases and measured degrees of freedom would 
be the same. The near-optimal non-destructive test 
was simulated using 1000 Monte Carlo iterations at 
varying levels of error. This is compared to the results 
from the initial test setup with 5% measurement error 
in Figure 7.

Figure 8 shows the spread of the middle 95% of the 
final results for varying levels of error using both the 
initial and near-optimal testing strategies. The stability 
of the near-optimal NDT is shown by its narrow band 
in comparison to the initial test setup. Comparing the 
scales of Figure 3 and Figure 8, it can be seen that two 
levels of improvement are presented in this work. The 
wide bands presented in Figure 8 are the same data 
as the narrow bands presented in Figure 3. When an 
effective non-destructive test and the method of the 
maximum likelihood estimator are employed together 
the results have far less covariance.

10. Conclusions

The research presents three layers of enhancements 
to the parameter estimation for finite element model 
updating to reduce the influence of measurement 
errors in parameter estimation. The Fisher information 
matrix is developed to choose an efficient set of 
measurement locations for parameter estimation. 
The normalization scheme is developed to estimate 
parameters that are very close to the maximum 
likelihood estimator of the unknown parameters. 
The Cramer-Rao lower bound is used to quantify the 
uncertainty in the parameter estimates. The results 
obtained in the frame example structure point to the 
robustness of the approach and support the plan 
to move forward adapting it to more complex and 
realistic problems. The development of an efficient 
method for sensor placement in non-destructive 
testing can ensure useful data collection for robust 
parameter estimation. Any parameter estimation 
using these data will be tolerant to measurement 
errors. The effectiveness of the proposed method 
for design of nondestructive tests and parameter 
estimations with low variability is successfully 
shown using numerical examples.
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1. Introduction

Structural displacement or deformation 
information is particularly important when permanent 
deformation occurs and is often more accurate than 
acceleration measurements in lower-frequency 
ranges. However, current SHM technologies rarely 
support displacement monitoring, primarily due to 
the difficulty in measuring absolute displacement; 
which mostly require fixed reference points. Though 
the reference-free nature of GPS-based methods 
conveniently measures absolute displacements, 
relatively low sampling rates are only available and 
the associate cost for survey-level dual-frequency 
GPSs that support sub-centimeter accuracy is still 
too high for routine use [1~3]. Single-frequency, low-
cost GPSs, generally used for navigation purposes, 
have shown the feasibility for dynamic displacement 
monitoring [4], however, the technologies of single-
frequency GPSs have not been sufficiently advanced 
yet for practical use in SHM applications. 

Computer vision-based methods have received 
broad interests in measuring static and dynamic 
displacements of structures due to various merits of 
the methods. The capability of non-contact, distant 
measurement of absolute displacements significantly 
reduces the difficulties in providing stationary 
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reference points; ensuring such reference points is 
a critical challenge for contact-type displacement 
sensors [5~8]. Moreover, these vision-based measuring 
systems are available at relatively low cost, combining 
a video camera, an optical zoom lens, lighting lamps 
and a precision target attached to the location of 
interest on the structures [9]. 

In most civil engineering applications, computer 
vision-based measuring systems have been considered 
particularly interesting for low-frequency vibration 
measurements. One of the reasons is that amplitudes 
of the high-frequency displacements are generally 
smaller than those of low-frequency displacements, 
causing difficulty in identifying the vibration with the 
limited resolution of conventional cameras. Another 
important reason is that the maximum frame rates 
(fps: frames per second) of the most of conventional 
video cameras are limited to 30 ~ 60fps at the best 
resolutions [10, 11]. Though such low frame rates 
would be sufficient for measuring low-frequency and 
high-amplitude vibrations of long-period structures, 
such as high-rise buildings and long-span cable-
supported bridges, ensuring higher frame rate is still 
essential for appropriate monitoring the dynamic 
behavior of many of small-to-mid scale common 
civil structures. 

		  Life Cycle Reliability and Safety Engineering 
Vol.4 Issue 2 (2015) 40-51



41 © 2015 SRESA All rights reserved

One of the issues in these types of dynamic 
measurements is that anti-aliasing filters are not 
available for vision-based measuring systems. The 
only way to minimize such aliasing problem is to 
increase the frame rate. A high-speed camera allowing 
up to 2000fps has been investigated for dynamic 
displacement monitoring [12]. However the practical 
use of such expensive cameras for civil engineering 
applications is still in question, because the level of cost 
and the difficulty of achieving real-time processing can 
be the main restraint for the success of the technique 
itself.

Recent advances in smartphone technologies 
provide various onboard sensing capabilities, 
including, but not limited to, accelerometer, 
temperature sensor, GPS, altimeter, gyroscope, and etc. 
Particularly, embedded cameras show great advances 
in providing higher-resolution and higher-speed 
video features, often better than many conventional 
camcorders. Moreover, their powerful processors and 
memories allow for onboard processing capabilities, 
eliminating the need for additional computers to 
perform extensive image processing. However, such 
advanced vision and embedded processing capabilities 
of smartphones have not been effectively utilized for 
dynamic displacement monitoring applications yet. 

This study investigates the feasibilities of such 
smartphones for dynamic displacement monitoring 
of civil structures. A new smartphone application is 
developed for real-time measurement and processing 
of dynamic displacements using the rear camera of the 
iPhone 6 Plus and OpenGL (Open Graphic Library) 

in the iOS environment, which enables easy and low-
cost monitoring of absolute dynamic displacements. 
For real-time applications, a user-selectable crop 
filter is implemented to optimize the image size and 
minimize associated processing time, considering the 
size and distance of target, which allow up to 120fps. 
To clearly discriminate from the background, carefully 
designed targets with unique color patterns are used. 
To make this smartphone application be more widely 
embraced for practical uses, several useful features, 
such as autonomous detection of target centroid, 
email transmission of measured data, user-adjustable 
color hue range, high-precision time stamps, and 
automated onboard calibration of measured data 
are implemented. Following a description of the 
software developed herein, the performances of the 
smartphone application are experimentally validated 
with shake table tests under both indoor and outdoor 
conditions. 

2. State-of-the-art Smartphone Technologies

Recent advances in smartphones technologies 
provide many attractive features in addition to its 
original function for mobile telecommunication 
(see Table 1). Various types of sensors embedded 
in the smartphones allow the devices to be used for 
various purposes; for example, motion sensing for 
game software, proximity sensing for screen power 
saving, GPS for navigation, fingerprint sensor for 
device security, and so on. Most of all, what makes the 
smartphone actually be smart is its onboard computing 
capability. The speed and size of their microprocessors 

Table 1. Hardware specifications of example smartphones

iPhone 5 [13] iPhone 5S [14] iPhone 6/Plus [15] Galaxy S5 [16] LG G3 [17]
Release 

Date
9/12/2012 9/20/2013 9/19/2014 4/11/2014 5/28/2014

CPU Apple A6:32-bit 
1.3 GHz dual core

Apple A7:64-bit 
1.3 GHz dual-core

Apple A8:64-bit 1.4 
GHz dual-core

1.9 GHz quad-core 
Cortex-A15 
1.3 GHz quad-core 
Cortex-A7 

2.5 GHz 
quad-core 
Krait 400

Memory 1 GB LPDDR2-
1066 RAM

1 GB LPDDR3 
RAM

1 GB LPDDR3 RAM 2 GB LPDDR3 RAM 3 GB (for 32 
GB model)

Other 
Sensors

- Gyroscope 
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light 
sensor

- Gyroscope 
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light 
sensor

- Gyroscope 
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light sensor 
- Barometer

- Gyroscope
- Accelerometer
- Digital compass
- Proximity sensor
- Ambient light sensor
- Barometer
- Infrared (IR) LED sensor
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Table 2. Camera performances of example smartphones

iPhone 5 [13] iPhone 5S [14] iPhone 6/Plus [15] Galaxy S5 [16] LG G3 [17]

Rear 
Camera

- 8 MP iSight 
camera with 1.5µ 
pixels
- Autofocus
- ƒ/2.4 Aperture
- True tone flash
- Hybrid IR filter

- 8 MP iSight camera 
with 1.5µ pixels
- Autofocus
- ƒ/2.4 Aperture
- True tone flash
- Hybrid IR filter

- 8 MP iSight camera 
with 1.5µ pixels
- Autofocus with focus 
pixels
- ƒ/2.2 Aperture
- True tone flash
- Hybrid IR filter

- 16 MP
- Autofucos
- ƒ/2.2 Aperture
- LED flash

- 13 MP
- Hybrid 
Infrared 
Autofocus
- ƒ/2.4 Faper-
ture
- Dual tone 
LED flash

HD Rear 
Camera 
Capture

- 720p@30/60fps
- 1080p@30fps

- 720p@30/60/120 
fps
- 1080p@30fps

- 720p@30/60/120/ 
240fps
- 1080p@30/60fps

- 
1080p@30/60fps
- 4K@30fps

- 720p@60fps
- 1080p@30fps
- 4K@30fps

GPU - PowerVR 
SGX543MP3

- PowerVR G6430 
(four cluster @ 450 
MHz)

- PowerVR Series 6 
GX6450 (4 clusters)

- ARM Mali 
T628MP6

- Adreno 330

and memories are sufficiently comparable with decent 
laptop computers. 

The particular focus of this study, related with 
smartphones’ performance, is in the cameras (see 
Table 2). For example, the latest version of Apple’s 
iPhone (i.e. iPhone 6/Plus) supports up to 240 fps at 
720p resolution and 120 fps at 1080p (HD) resolution. 
Samsung’s Galaxy S5 and LG’s G3 support up to 4K 
(UHD) resolution, but with slower frame rate (30 
fps). Moreover, the integrated graphics processing 
unit (GPU) can rapidly manipulate and alter memory 
to accelerate the creation of images in a frame buffer 
intended for output to a display. 

For this study, Apple’s iPhone is selected as its 
higher frame rate (up to 240 fps) is a more reasonable 
option for reducing the aliasing issues in dynamic 
displacement measurements. Moreover, Apple iOS 
mobile operating system is more appropriate for the 
development of this application because within a 
year of its release about 91% of Apple iOS users were 
running iOS 7, Apple’s latest release. Compare this 
with Android where five of the latest releases each hold 
about a 10% share of installations [18]. This operating 
system fragmentation often leads to developers having 
to support a variety of new and deprecated APIs to 
accomplish the same tasks. Although Google has 
taken steps to minimize the effects of operating system 
fragmentation [19], avoiding compatibility issues was  
avoidable.

The issues of fragmentation for Android devices 
are prevalent not only in software but also in the 
devices’ hardware. For example, when comparing 

the pictures taken with 4 different Android devices 
under the same conditions, the differences in color 
and brightness are immediately clear [20]. The core 
functionality of the application depends on computer 
vision analysis and introducing variability into this 
process would make the initial development of the 
application more difficult. 

Developing the app with consistent performance 
was established as a goal early on in the development 
process. By eliminating variables in the devices on 
which the application ran, the first version of the 
application could be more easily be developed. 
Developing the app so that it would perform 
consistently on devices was necessary for the first 
version. Developing for Android is a goal for future 
iterations.

3. Object Tracking using Computer Vision

To track the objects using computer vision, i) the 
objects of interest should be detected in video sequence 
first, then ii) classify the detected objects, and iii) track 
the movements of identified targets. Though this is 
a straightforward process, practical implementation 
of this object tracking is not that simple, because of 
possible variability of color, shape, and texture of 
the objects for each video frame [21]. Many different 
methods for object tracking using computer vision 
have been developed for past few decades, which can 
generally be divided into three categories; i) region-
based methods, ii) contour/edge-based methods, and 
iii) point-based methods. 
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Region-based methods basically utilize the color 
features of the objects, as all objects can be represented 
by their specific color distribution. This method may 
not be efficient when several objects move at the same 
time in a video frame, because of the possible occlusion 
among the moving objects. However, this approach is 
well known to be computationally much faster than 
other algorithms and effective for tracking fast moving 
objects.Despite the shape information possibly being 
distorted by fast movement, the objects can be traced 
due to their color [22, 23]. 

Shape of an object can be characterized by its 
contour/edge/outline. Edge-based tracking can be 
represented in active contour model [24] and is known 
to be efficient in tracking moving objects, because a 
number of points distributed along the edge of the 
object can provide higher probability of accurate 
tracking. However, the performance of this edge-based 
approach is very sensitive to the initial shape of the 
object and not so good for 3D movement tracking. 

Specific points can also be the characteristic feature 
of the object. This feature points should be sufficiently 
different from its neighbor. Usually, such feature 
points are extracted and detailed by descriptors that 
can recognize the object [25, 26]. Then the extracted 
feature points are matched from sequential frames 
to track the object. The success of this approach is 
dependent on how well the feature points of the object 
are extracted and matched, because many other similar 
points can be regarded as the feature points in the next 
frame, causing uncertainty.

If desktop or laptop computers are used for 
processing the images, real-time operation of the 
vision-based measuring systems may not be an issue. 
For example, a simple test shows total processing time 
per each frame to measure the dynamic movement 
of a target is just about 1~3 millisecond (ms) using a 
region-based object tracking method with a desktop 
computer that has Intel’s i7-4770 CPU (quad core 64bit 
3.40Hz), Nvidia GeForce GTX 650 Ti graphic card 
(GDDR5 128-bit, OpenGL 4.3, Memory Bandwidth 
86.4 GB/sec), and 16GB RAM. Though the hardware 
capabilities of recent smartphones are comparable to 
some laptop computers, the performance is less than 
conventional PCs. Considering the minimization of the 
processing time as the key factor in realizing higher 
frame rate for dynamic displacement monitoring using 
smartphones, an appropriate object tracking method 
should be selected. 

4. OpenCV vs. OpenGL (GPUImage)

The OpenCV library [27] is a popular open-
source library for computer vision applications 
with thousands of optimized algorithms. The iOS-
compatible release is written in C++, which can 
be compiled alongside Objective-C (the language 
used to write iOS apps), and contains many classes 
for easily integrating the device’s camera with the 
OpenCV library. Despite OpenCV being a powerful 
computer vision library, its main drawback for usage 
in developing a real-time computer vision application 
is its lack of usage of the iPhone’s GPU. Instead, all 
image processing is performed on the iPhone’s CPU. 
Simple image processing can be accomplished on the 
CPU in real-time such as adjusting the RGB values or 
inverting an image. But more complex algorithms like 
corner detection are more expensive and cannot be 
performed in real-time in the CPU side of iPhone.

In order to utilize the GPU to perform complex 
computer vision analysis, the GPUImage library 
[28] was used in this study. The GPUImage applies 
GPU-accelerated filters and other effects to images. 
Filters used with GPUImage are written using the 
OpenGL Shading Language, using OpenGL ES 2.0 
(iPhone 5 and iPhone 5S) or 3.0 (iPhone 5S and later), 
and are compiled at runtime. The combination of 
using these filters and processing them on the GPU 
allows complex image analysis algorithms to run at 
much higher speeds. Table 3 shows a comparison of 
rendering speeds on the CPU and GPU.

Figure 1. Example image rendering process using GPUImage
Source: http://nshipster.com/gpuimage/

Table 3. Rendering speed comparisonGPU vs. 
CPU (larger fps is better)

Calculation GPU (fps) CPU (fps)
Thresholding x 1 60.00 4.21
Thresholding x 2 33.63 2.36
Thresholding x 3 1.45 0.05

Source: http://nshipster.com/gpuimage/

By specifically targeting the hardware of the 
iPhone in this study, GPUImage allows for faster 
image processing compared to that of the CPU. To 
accomplish image rendering on the GPU, GPUImage 
is built upon an OpenGL rendering pipeline that takes 
a source image, passes it through a series of filters (or 
OpenGL shaders), and produces an output (see Figure 
1). The simple integration of custom OpenGL shaders 
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in a full-sized, 720×1280p, image in real-time. Because 
of the large amount of pixels that had to be processed 
in each frame, a crop filter was introduced into the 
rendering pipeline that could crop an image from 
720×1280p to 720×100p. The result was a significant 
drop in processing time per frame for the image 
processing filters.	

5.3 Target design

The color adjustment filters could successfully 
identify a target (e.g. red-colored targets) in an image 
by filtering the colors in the incoming image and 
produce a binary image.  The binary image indicated 
all areas that passed the filter by highlighting the 
valid areas as white and all ignored areas were 
black. Despite the ability to identify a target with a 
certain color, much of the resulting output from color 
adjustment filters contained false positives of features 
in the image that were not apart of the intended target 
but whose RGB values could pass the filter. Similarly, 
many of the image processing filters like the Harris 
Corner Detection filter could identify a square target 
by its corners but its resulting output would often 
include highlighted areas that met the threshold for 
detecting a corner but were not apart of the target. 

The best target to identify had to be both unique 
in its appearance and easy and fast to identify by an 
OpenGL Shader. While researching for good targets 
to use for identification, the yellow and black color 
pattern used in crash test simulations by automobile 
manufacturers became the best choice (see Figure 2). 
The pattern could be both easily identified by its color 
pattern and by the corners and edges of the target.

Identifying 
the target was 
best found by 
examining the 
hue values of 
each pixel in the 
image .  Whi le 
the hue values 
of a color slightly 
c h a n g e  w i t h 
minor variations, 
the RGB values of 
colors can change 
d r a m a t i c a l l y 
even with minute 
changes in their 
a p p e a r a n c e . 
By filtering an 

Figure 2. Yellow-black color pattern target 
on a dummy for car crash test

Source: http://www.carkoon.com/blog/
nhtsa-introduces-new-crash-test-dummy-

child-safety-seat-evaluation

that GPUImage creates allows for easy access to the 
often complicated OpenGL rendering pipeline.

5. Samrtphone App Development for Real-time 
Dynamic Displacement Monitoring 

5.1 GPUImage library

The iOS platform and the GPUImage library were 
established as the starting point for the development 
of the application. Integrating the GPUImage library 
was accomplished using the Cocoapods dependency 
manager. After the base application was configured, 
all future modifications to the application were 
managed using a private GitHub repository. 

Various object tracking methods have been 
explored under the iOS environment to effectively 
detect the target of interest and track its centroid 
movements of each frame front the camera. This 
started with examining the filters included in the 
GPUImage library. 

Each filter in GPUImage uses OpenGL shaders 
to process the incoming image and produces a 
resulting image that can be extracted from the GPU 
and presented to the user. Color adjustment filters, 
such like RGB Levels, Hue, and Luminance Threshold 
filters, were studied to learn how OpenGL can 
manipulate the colors of an incoming frame from the 
camera. The color adjustment filters were able to run 
very quickly because of their heavy reliance on the 
GPU for manipulating the image. Additionally, image 
processing filters such as the Harris Corner Detection, 
Sobel Edge Detection, and Hough Transform Line Detection 
filters showed how computer vision algorithms could 
be implemented with OpenGL. The main difference 
between the color adjustment and image processing 
filters was the reliance of the image processing filters 
on the CPU to get access to the raw pixel data from 
the GPU and the rasterization across each pixel in 
the image per frame processed. This bottleneck was 
necessary so that data like the number of corners and 
the locations of these corners in the image could be 
determined. By simply running the image processing 
filters with just their OpenGL shaders and not doing 
any processing on the CPU, the filters were able to 
run very quickly. However, introducing the reading 
of raw pixel data from the GPU onto the CPU led to 
significant drops in the filters’ performance.

5.2 Crop filter

None of the filters included with the GPUImage 
library could accurately and efficiently identify targets 
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image by using a hue range rather than an RGB 
range, changing the colors that were to be filtered 
became much easier to change on the fly. The hue 
scale ranges from 0 to 360 (see Figure 3) and by 
passing upper and lower hue values to an OpenGL 
shader, the image could filter out all hues outside of 
a range. In the OpenGL shader, the value of a pixel’s 
color had to be converted from RGB to hue using a 
simple algorithm. This was necessary because of the 
way OpenGL handles colors. For each pixel being 
processed, OpenGL stores its colors value in RGB. 
As a result, in order to filter out hue values outside 
of a given range, the shader must calculate the pixel’s 
hue value. 

To identify the center of the color patterned 
target, a combination of using two hue ranges and 
the GPUImage3x3ConvolutionFilter were required. 
Two hue ranges were required so that both of the 
colors in the target could be identified. So a new 
custom filter was developed by modifying the 
GPUImage3x3ConvolutionFilter, so that the hue values 
of neighboring pixels in trial-directions could be 
accessed as shown in the Figure 4. The neighboring 
pixels of a given pixel were used for identifying the 
center of the target. For example, as shown in the 
Figure 5, near the center of the left target, the blue 

Figure 4.Modified GPUImage3x3 Convolution Filter

and yellow colors border each other. This pattern of 
alternating colors (e.g. hue value difference between 
blue and yellow: 180) can be used to effectively 
identify the center of the target. 

5.4 Target centroid calculation

Then, pixels near the center of the target that could be 
identified using this color pattern were highlighted 
in the OpenGL shader. Pixels that were not identified 
by the shader as being pixels near the center of the 
target were not highlighted. After the shader had 
processed a frame, the CPU would load the processed 
image into memory and find all of the pixels that were 
highlighted. The 2D coordinates of each highlighted 
pixel were averaged to find the center of the target. 
The coordinate of the center of the target would be 
recorded by the application for the use of calculating 
the displacement of the target at any given frame.

5.5 Real-time displacement calculation and 
onboard calibration 

To calculate real displacement values, two of these 
targets were required. The second target used the same 
pattern but with different colors as shown in the Figure 
5 (right). The colors used in the second target had 
similar characteristics to those in the first target in that 
the level of contrast between the two colors (i.e. green 
& purple) was very high. By using high contrast colors, 
the two colors in each target could easily be identified 
and the risk of the two colors blending together was 
reduced. By knowing the distance between the two 
targets in the frame and keeping the distance fixed, the 
real displace ment of the two targets can be calculated. 
With GPUImage, the custom OpenGL shader for 
finding the center of the two targets, and the ability to 
calculate real displacement of the target in the camera 
frame, the core functionality of the application was 
complete.

5.6 Real-time display of processed displacement

Displaying the calculated information on the 
screen to the user required Apple’s Core Animation 
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green &purple (right)

Figure 3. Hue chart of color
(Source: http://www.fmwconcepts.com/imagemagick/huemap/)
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Figure 6.Screen shot of the developed iOS app: before running the app 
(top), real-time display of measured displacement (bottom)

library and the open source Core Plot library. Core 
Animation was used to display three dots on the 
screen that would show where the centers of the 
targets were. The first two dots were located at the 
center of each colored target and a third dot was placed 
in between the two targets to indicate the center of the 
entire pattern (see the top of Figure 6). 

Once the application is started, a forth dot is 
appeared where the third dot was initially located, 
which is fixed. Then actual displacement is calculated 
with respect to the fourth dot (i.e. distance between the 
third and fourth dots), and is displayed at the bottom 
of the application screen in real time as shown in the 
bottom of Figure 6. 

5.7 User configurable setting parameters

With each of these components added to the 
application, many parameters were introduced to 
control the functionality of each component. A settings 
feature was introduced into the application that 
managed how each component should perform. The 
settings were separated into three sections: Camera, 
Filter, and Graph. The options under each section are 
listed in the Table 4.

5.8 Setting parameter optimization

While the application could identify the target in 
the camera frame and calculate its displacement at 
each frame, its performance was slightly above the 

Table 4. Setting parameters

Camera Settings

Frame Rate Manually adjust the camera’s frame 
rate 30, 60, 120 and 240 fps.

Crop Size 
(width & 
height)

Change the size of the crop filter 
Width (px):100/200/400/720/1280
Height (px):100/200/400/720

Auto-Focus 
Range

Change the autofocus range of the 
camera between near, far and none.

Show 
Camera 

View

Whether or not the feed from the 
camera should be shown on the 
screen.

Show 
Benchmark

Whether or not the current and 
average processing time from cap-
turing to filtering, to displaying the 
image should be calculated and 
shown on the screen.

Filter Settings

Show 
Filtered 

View

Whether the resulting output from 
the OpenGL shader should be shown 
in place of the raw camera view.

Pixel 
Search 

Distance

The distance between neighboring 
pixels used in the OpenGL shader.

Set Filter 
Colors

Select the hue ranges of the two 
colors used in each target.

Graph Settings
Show Graph 
View

Whether the graph should be 
updated with displacement 
calcultions from each frame.

Target 
Distance (cm)

The distance (in centimeters) of the 
two colored targets in the camera 
frame.

Show X & Y 
Displacement

Whether the X, Y, or both 
displacement lines should be 
calculated and shown on the graph.

target of being below 10 milliseconds on the iPhone 
6 Plus. The slowest portions of the application were 
identified through profiling the application using the 
Instruments software included with Apple’s Xcode. By 
identifying potential areas of slow performance and 
memory leaks the application’s processing time from 
capture to display was drastically increased. 
•	 The biggest improvement in processing time was 

achieved simply by not displaying the camera 
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feed on the screen. This resulted in about a 2 to 3 
millisecond drop in processing time. 

•	 Another improvement in processing time 
was achieved by running all camera related 
operations on a separate thread and running 
all UI (user interface) operations on the main 
thread. 

However, much of the slowest portions of the 
application could not be resolved so easily. Portions 
of the application could not be removed as they were 
integral to the application. Reducing the processing 
time in components like reading the raw pixel data 
to the CPU from the GPU, calculating the center of 
each target on the CPU by averaging the coordinates 
of all found pixels, and performing displacement 
calculations were difficult due to their lack of 
complexity and necessity to the functionality of the 
application.

After resolving performance issues in the 
application, the application’s processing time was 
reduced to below 7 milliseconds on the iPhone 6 Plus. 
Due to the constraints of the hardware on the iPhone 
5, such results could not be achieved. The Table 5 
shows a breakdown of the processing time (average 
from several tests) for the application.

5.9 Email transmission of measured data  

Additional features were developed to allow the 
user to view the graph full screen after a recording 
session had ended and to export the collected data to 
a CSV file that can be emailed to a personal account for 
further analysis. These changes made the application 
suitable for testing and practical use.

Figure 7 shows the simplified block diagram of the 
developed iOS application in this study. 

Figure 7. Software block diagram of developed iOS app

6. Experimental Validations 

In order to evaluate the performances of the 
developed iOS app, including sampling time accuracy 
and the ability to track the dynamic movements of 
targets, a series of laboratory-scale tests have been 
carried out using a shaking table with single-frequency 
and multi-frequency sinusoidal motions.  

Figure 8. Shaking table test setup
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Table 5. Processing time breakdown 
(with 720×100p @ 120 fps)

Step iPhone 5 iPhone 6 
Plus

GPUImage (no display) 1.10 ms 1.10 ms
GPUImage + Crop Filter 
(no display)

1.34 ms 1.42 ms

GPUImage + Crop Filter + 
Custom Filter (no display)

35.2 ms 6.30 ms

Total w/ Displaying 37.1 ms 11.25 ms
Total w/o Displaying 35.2 ms 6.30 ms
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6.1 Experiment setup

An APS Dynamics’ APS 400 Electro-Seis shaker 
was used for the evaluation tests (see Figure 8). The 
input excitation of the shaker was amplified by the 
APS 145 amplifier. To compare the performance of 
the developed iOS App with that of a conventional 
displacement sensor, a laser displacement sensor 
(KEYENCE, IL-100, 4-μm resolution) was used as a 
reference. The analog voltage outputs from the laser 

Figure 9.12× (left) and 50× (right) optical zoom lens designed 
for smartphones

sensor were measured by the National Instruments’ 
NI-9234 ADC module (24-bit Delta-sigma ADC) with 
CompactDAQ chassis (cDAQ-9178 model). At the 
same time, NI-9269 voltage output module, which 
was housed in the same CompactDAQ, was used to 
generate the excitation signals for the shaker. 

To overcome the limited resolution of the 
iPhone camera for long-distance and small-target 
measurements, optical zoom lenses were used in 
conjunction with the iPhone (see Figure 9). With 
commercially available low-cost zoom lenses, 
precisely designed smartphone cover cases that allow 
easy connection of the lens to the phone come with 
the package. 12× and 50× zoom lens were considered 
initially, but the 50× lens only was used for this 
tests. 

6.2 Sampling Time Accuracy

Consistency of the sampling rate or sampling time 
is important to ensure the quality of dynamic vibration 
measurements. Even when conventional analog-
to-digital converters are used, the time intervals 
between adjacent samples are not always consistent 
[29]. Particularly, because this kind of computer 
vision-based measuring systems handle extensive 
image processing, making sure the consistency of the 
sampling time is important. 

Figure 10.Sampling time accuracy  
(bottom: zoomed around sample # 350) 

Figure 10 shows the example record of the sampling 
time for 60fps and 120fps cases (720×100p crop filter 
used for both). The case with 60fps (dotted line) shows 
very consistent sampling time of 16.67 milliseconds 
over entire measurements. However, when 120fps 
(solid line) was used, little inconsistencies are observed 
in the beginning of the measurements for couples of 
samples, of which phenomenon is attributed by the 
dropped samples (see the bottom of Figure 10). To 
achieve 120fps, all the image processing required to get 
the displacement information should be done within 
8.33ms for each frame. If the processing takes more 
than 8.33ms, then the software automatically drops 
the corresponding sample out, to not cause any delay 
or interference to following samples. Because the case 
of 60fps ensures sufficient time for processing, such 
dropped samples were not observed in this test.

6.3 Shake Table Tests

For the initial shake table tests indoors, the iPhone 
with the zoom lens was placed 3.0m away from the 
target attached on the shake table. The target size was 
1.0×2.5cm, which was composed of two rectangular 
alternating color patterns having 1.5cm center distance 
between them. 720×100p crop filter was used to track 
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the target in a horizontal direction in an optimized 
way. The distance between the two color patterns 
(i.e. 1.5cm) was occupied by about 300~400 pixels, 
corresponding resolution for this particular set up 
could be estimated about 0.0375~0.05mm; actual size 
of each pixel was autonomously calibrated in the 
software and used for displacement calculation. 

Figure 11 shows the shake table test results for the 
1Hz, 10Hz, 20Hz sinusoidal excitations, and multi-
tone excitation composed of 1~20Hz (0.2Hz step) 
sinusoidal signals. Vibration levels were kept below 
2 mm amplitude (peak to peak), and 120 fps was used 
in this test. As shown in the Figure 11, the dynamic 
displacements measured by the iPhone 6 Plus with 
the developed iOS app (solid line in the Figure) agree 
very well with those by the laser displacement sensor 
(dotted line in the Figure). 

Then, the shake table set ups were moved out for 
outdoor testing with longer target distance. The shake 
table set ups were placed in the outdoor hallway of the 
civil engineering building at the University of Arizona, 
of which hallway can ensure up to 50m clear line-of-
sight (see Figure 12). Target distance from the iPhone 
camera was 33m and the same zoom lens was used, 
but with little bigger target (4×10cm target size and 
6cm center distance between two color patterns). 

Figure 13 shows some example results from 
the outdoor shaking table tests. The performances 
of the iPhone with the developed app were not so 
impressive, compared with indoor tests. Particularly 
when 120fps was used, substantial high-frequency 
noises were observed in the measurements by iPhone 

Figure 11.Indoor shake-table test results (3m from target): (a) 1Hz sine
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Figure 11.Indoor shake-table test results (3m from target): 
(a) 1Hz sine at 120fps, (b) 10Hz sine at 120fps, (c) 20Hz sine at 

120fps, and (d) multi-tone sine signal at 120fps.  
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(solid line in the Figure) as shown in the Figure 13 a) 
and c), while the results from 60fps were acceptable, 
successfully resolving millimeter-level displacements. 
Possible reasons for these high-frequency noises in 
outdoor tests may be attributed to, but not limited to, 
possibilities that i) the captured image at 120fps might 
be exposed to less amount of light as the higher frame 
rate allows the shorter exposure time, which could 
change the color properties in the image, ii) the phone 
might be subjected to unexpected high-frequency 
vibrations due to wind and/or building vibrations, 
resulting in such noisy measurements; though it is a 
very little vibration, its effects on the captured images 
would be substantial, as the target is located further 
and further away. 

No matter what the reasons for causing such high-
frequency noises, possible vibrations of the phone itself 
should be compensated for the practical use of this 
approach for dynamic displacement measurements in 
the field. Other sensors (e.g. accelerometer, gyroscope) 
embedded in the smartphone (see Table 1) may be 
utilized for the phone vibration compensation. To 
ensure sufficient amount of light for outdoor tests, 
a self-light emitting target (e.g. LED) may be used 
for future tests. In addition, a low-pass filtering can 
be implemented in the iOS app to reduce such high-
frequency noises.  

7. Conclusions 

The feasibility of smartphone technologies for 
real-time dynamic displacement monitoring has 
been investigated in this study. A new smartphone 
application was developed under iOS environment 
for the iPhone. Various methods for moving object 
tracking have been explored, then, a region/
color-based tracking method was adapted in this 
study because of its computational efficiency in 
image processing and robustness in tracking fast 
moving objects. In order to fully utilize the GPU 
capabilities of smartphones, the GPUImage library 
was used in developing the iOS app. A crop filter 
was implemented for users to compromise between 
the image size and frame rate without sacrificing 
accuracy. Onboard calibration of the image pixel size 
to a given-dimension target was implemented in the 
developed iOS app. And other various features for 
controlling camera, filter, and graph settings and email 
transmission of measured data were also incorporated 
in this iOS app development. All the functions 
required for measuring the dynamic movements of 
the target could successfully be operated in real time, 

Figure 13.Outdoor shake-table test results (3
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allowing up to 120fps with iPhone 6 Plus. And the 
performances of the iPhone hardware and the iOS 
app developed herein were experimentally validated. 
Although some high-frequency noises were observed 
from outdoor shake-table tests, the performances 
of the developed app were comparable to those of 
a conventional laser displacement sensor, allowing 
down to sub-millimeter resolutions at 33m distance 
from the target. The possibilities and limitations of 
the smartphone (iPhone) and its camera for real-time 
dynamic displacement monitoring applications have 
been explored in this study, pointing in the direction 
of the following research. 
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