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Guest Editorial
Prognostics and structuring health management has become an active interdisciplinary research area all over 

the world. Infrastructures are deteriorating, some of them are over their design life, or they are being exposed 
to natural extreme events like strong earthquakes or high winds, or man-made like blasts or explosions. Due 
to severe shortage of resources to replace them, it is now necessary to extend their design life without exposing 
public to unnecessary risk. One approach has attracted a considerable amount of attention is inspecting the 
infrastructures as thoroughly as practicable in a timely manner to identify the defect spots,quantify their severity 
and then take appropriate remedial actions so that they can be used for which they were initially designed. 
Researchers from many different disciplines are now concentrating on developing new mathematical techniques, 
inspection methods, necessary instruments or sensors, sources of energy require to operate the sensors in field 
conditions, etc. The first two issues of 2015 of this journal Life Cycle Reliability and Safety Engineering are 
dedicated to these special topics. 

The first paper presents a novel method to identify nonlinear large dynamic systems using a system 
identification-based technique in the presence of uncertainty using the Kalman filter concept.  The potential 
benefits of particle filtering in revealing accurate statistical information on the imprecisely known model 
parameters or modeling errors of dynamical systems, based on limited time series data, have not been quite 
realized. A major numerical bottleneck precipitating this under-performance, especially for higher dimensional 
systems, is the progressive particle impoverishment owing to weight collapse.In this paper this problem is 
addressed by replacing weight-based updates through additive ones. Thus, in the context of nonlinear filtering 
problems, a novel additive, gain-like particle update scheme, in its non-iterative and iterative forms, is proposed 
based on manipulations of the innovation integral in the governing Kushner-Stratonovich equation. It is superior 
to the non-iterative version of the Ensemble Kalman Filter (EnKS) vis-à-vis most existing filters. Prominent 
in the reported numerical comparisons are variants of EnKF that also use additive updates, albeit with many 
inherent limitations of a Kalman filter.

The second paper proposes a variance reduction strategy for updating reliability models of dynamical 
systems driven by random excitations. The basic framework consists of a system identification step followed 
by a reliability model updating step. Both these problems are tackled within the framework of Bayesian model 
updating. Maximum likelihood estimation method is used as a tool for system identification, whereas, the 
Girsanov transformation based method is used in obtaining as estimate for the posterior probability of failure 
with reduced variance. Illustrative example includes shake table studies on an asymmetric, bending-torsion 
coupled frame.

A novel structural health assessment procedure for nonlinear structural systems is presented in the third 
paper. It is developed by integrating the unscented Kalman filter concept with the weighted global iteration 
procedure with an objective function. It is denoted as unscented Kalman filter with weighted global iteration 
(UKF-WGI). It is a finite elements-based time-domain system-identification technique. It can be used to assess 
structural health at the element level using only a limited number of noise-contaminated responses. Defect(s) 
with different level of severity is simulated in single and multiple member(s) and then the capabilities of the 
procedure are examined. The proposed method is compared with the extended Kalman filter with weighted 
global iteration (EKF-WGI) procedure. The proposed UKF-WGI is superior to EKF-WGI in all aspects, 
particularly when the level of nonlinearity is severe. Since the level of nonlinearity is expected to be unknown 
at the initiation of the inspection, to be on the safe side, the proposed UKF-based procedure should be used to 
assess structural health in the future.

In the fourth paper Wavelet Transforms have been used to enhance damage sensitive features for structural 
health monitoring. Although, the Continuous Wavelet Transforms have been employed, the Discrete Wavelet 
Transform (DWT) becomes a natural choice in view of its capability to optimally localize the space/time and 
frequency/scale resolution. Although, a number of alternative DWT families exist; the choice of a particular 
basis for enhancement of damage features is somehow arbitrary. The feature enhancement capability of 
several most commonly employed wavelet families are compared in order to assess their relative efficacy in 
this paper. The superior performance of Cohen-Daubechies-Feauveau family is observed and appears to be 
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the sole choice where the damage onset is at immediate vicinity of the boundary. The relative efficiencies of 
enhancements are demonstrated considering the possible variations of the damage locations, extents, as well 
as alternate features.

A major cost and management issue related to wind turbine structures is condition assessment, which, 
when conducted according to state-of-the-art protocols, produces very subjective and highly variable results. 
The related topics are discussed in this paper. This paper reports on the development of a new onsite structural 
condition assessment for a wind turbine tower structural system based on a wireless sensor system that is remote, 
compact, and quick to install. This condition assessment tool offers a cost-effective monitoring system that can 
be effective in increasing the safety of wind turbine tower structures and hence, enhancing their reliability of 
performance.
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abstract: 

Despite the cheap availability of computing resources enabling faster Monte Carlo simulations, 
the potential benefits of particle filtering in revealing accurate statistical information on the 
imprecisely known model parameters or modeling errors of dynamical systems, based on limited 
time series data, have not been quite realized. A major numerical bottleneck precipitating 
this under-performance, especially for higher dimensional systems, is the progressive particle 
impoverishment owing to weight collapse and the aim of the current work is to address this problem 
by replacing weight-based updates through additive ones. Thus, in the context of nonlinear filtering 
problems, a novel additive, gain-like particle update scheme, in its non-iterative and iterative 
forms, is proposed based on manipulations of the innovation integral in the governing Kushner-
Stratonovich equation. Numerical evidence for the identification of nonlinear and large dimensional 
dynamical systems indicates a substantively superior performance of the non-iterative version 
of the EnKS vis-à-vis most existing filters. The costlier iterative version, though conceptually 
elegant, mostly appears to effect a marginal improvement in the reconstruction accuracy over 
its non-iterative counterpart. Prominent in the reported numerical comparisons are variants of 
the Ensemble Kalman Filter (EnKF) that also use additive updates, albeit with many inherent 
limitations of a Kalman filter.

Keywords: Kushner-Stratonovich equation; Euler approximation; inner iterations; Monte Carlo filters; 
error estimates; nonlinear system identification

1. introduction

In recent years, stochastic filters based on Monte 
Carlo (MC) simulations have gained prominence owing 
to their potential in solving a large class of nonlinear 
estimation problems, ranging from dynamical state/
parameter estimation to complex target tracking, 
atmospheric data assimilation etc., by combining 
partially observed noisy time series data acquired 
through experiments with the simulation tools for the 
dynamical system model. The original filter by Kalman 
and Bucy [1] may be traced back as a progenitor of 
most modern stochastic filters, even though the former 
was developed as a closed-form analytical (and not as 
an MC) scheme for solving strictly linear estimation 
problems with Gaussian noises. In stochastic filtering, 
the estimation problem is posed as determining the 
distributions of (measurable functions of) the system 
states, also called processes, conditioned on the 
filtration generated by the measurements up to the 
current time t. When the drift terms in the stochastic 
differential equations (SDE-s) representing the process 

and measurement dynamics are linear and the noises 
or diffusion terms Gaussian, the evolving conditional 
distribution for the estimation problem, also called the 
filtering distribution, is Gaussian which is determined 
by the evolution equations for mean and covariance, 
the first two moments, as prescribed by the Kalman 
filter [2]. Even though the idea behind this filter 
is simple and elegant, its sub-optimal extensions 
based on drift linearization, the extended Kalman 
filters (EKF-s) to wit [3], are often found inadequate 
in treating estimation problems with strong drift 
nonlinearity and/or noise non-Gaussianity in the 
process/measurement dynamics. The last class of 
problems typically involve non-Gaussian, possibly 
multi-modal conditional distributions as solutions 
to the estimation problems. Here a MC simulation 
approach, adopted by many recent filters such as the 
particle filters (PF-s), is preferred as evolutions of 
such distributions cannot generally be described by a 
finite hierarchical set of moments [4] except for a few 
special cases. For nonlinear, non-Gaussian estimation 
problems, the governing filtering equations describing 
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the evolution of the conditional distribution in the 
space of probability measures may be derived starting 
with an appropriate change of measures, which 
immediately yields the Kallianpur-Striebel formula [5]. 
Manipulations of this formula based on the principles 
of stochastic calculus leads to the Zakai equation [6] for 
the un-normalized conditional density and onwards 
to the Kushner-Stratonovich (KS) equation [7] for 
the normalized density. Unfortunately, analytical 
or even acceptably accurate numerical solutions to 
these equations are not available [8].  During the early 
stages of development of MC filters approximating the 
nonlinear filtering equations during the last quarter 
of the last century, success was limited partly owing 
to a rather restricted availability of the computational 
power. This probably led to a somewhat popular 
adoption of the analytical EKF for nonlinear filtering 
applications [9], even though the method was known 
to be potentially inaccurate and often unstable thereby 
requiring an elaborate tuning of the process noise 
covariance. 

The vastly improved computational power over 
the last couple of decades has imparted a great fillip 
to the devising of innovative numerical schemes 
that solve the non-linear and non-Gaussian filtering 
problem. Amongst these, prominence may be 
accorded to sequential Monte Carlo (SMC) techniques, 
i.e. the PF-s [10-14], which are basically recursive 
Bayesian approaches empirically representing 
the posterior (or filtering) distribution through an 
ensemble of MC realizations of the system states, 
also called particles. Extensive convergence studies 
have been carried out for many of these numerical 
schemes which show that these schemes, through 
multiplicative weight-based updates, empirically 
represent the desired filtering distribution at a given 
time with the error decreasing (in law) proportional 
to only 1

N , where N denotes the number of particles 
or the ensemble size [15, 16]. Unfortunately, most 
SMC techniques are scourged with the problem of 
‘particle impoverishment’, especially when applied 
to higher dimensional filtering problems wherein the 
weights tend to collapse sequentially to a point mass. 
Once this happens, the process upon conditioning 
on the measurement till the current time receives no 
non-trivial updates. Numerical evidence suggests that 
the typical ensemble size preventing ‘weight collapse’ 
increases exponentially with increasing system 
dimension [16]. Among the numerous research articles 
aiming at improving these SMC techniques, implicit 
sampling [17], improved re-sampling [18] and Markov 

chain Monte Carlo (MCMC) sampling based particle 
filters [19] have, amongst others, drawn attention. 
Since methods like implicit sampling, improved re-
sampling etc. still rely on the multiplicative weight 
based update strategy, they are not essentially free 
from the problem of ‘particle impoverishment’. On 
the other hand, MCMC schemes typically take a 
very large number of iterations for most problems of 
practical interest and may thus be computationally 
unwieldy. Within the MC setup, the numerical 
infeasibility of requiring impractically large N is, to 
an extent, bypassed by an MC based filter called the 
ensemble Kalman filter (EnKF) [20] and its variants, 
several of which have been successfully applied to 
large dimensional atmospheric data assimilation 
problems. Here a resolution to the problem of particle 
impoverishment is realized through an additive 
update, which is basically an MC implementation of 
the gain-based update term of the Kalman filter. But 
a major criticism of this class of approximate schemes 
is that they are derived heuristically and even though 
drift non-linearity is accounted for in some way, they 
are hardly equipped to treat noise non-Gaussianity 
[20]. There are attempts in the literature to directly 
solve the Zakai equation by approximating the un-
normalized filtering distribution via time and space 
discretizations or through functional series [21-23]. 
For example, the conditional density is approximated 
using multiple Wiener and Stratonovich integrals 
in [21,24]. In [22,23], numerical approximations to 
the Zakai equation have been validated through 
low-dimensional problems. Even though the Zakai 
equation is linear and widely studied, in numerical 
computations it suffers from serious deficiencies [8], 
e.g. fast dissipation of the solution with increased time 
step and intermittency leading to rare but large peaks. 
A way of circumventing these numerical limitations 
would be to take recourse to the KS equation [8]. 

The KS equation, the parent filtering equation 
derivable through Ito’s expansion of the Kallianpur-
Striebel formula, gives the evolution of the normalized 
conditional distribution (or a measure-valued 
conditional process) via a stochastic integral 
expression. But, except for a few very special cases 
of linearity and Gaussianity, the KS equation cannot, 
in general, be reduced to a closed set of stochastic 
partial differential equations (SPDEs), which can 
be numerically integrated to arrive at the desired 
filtering distribution at a given time. Indeed a direct 
approximation of the KS equation, say using an 
Euler-type discretization, does not generally yield an 

Saikat Sarkar et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 1 (2015) 01-13



3 © 2015 SRESA All rights reserved

accurate and robust scheme. Many SMC methods, 
which attempt MC simulations based on averaging 
over the characteristics (i.e. the sample paths provided 
by the process and measurement dynamics) following 
a conditional Feynman-Kac formula [25] and typically 
leading to a weighted particle system [26], have been 
tried to approximate the KS equation. However, as 
noted before, most of these methods are not free from 
the curse of weight collapse, even for moderately large 
filter dimensions. The primary aim of this article is a 
resolution of this long standing problem through an 
efficient, yet accurate, additive particle update scheme 
derived through the KS equation. 

Building upon our recent idea of an MC-based 
iterative approximation to the additive update term 
in the KS equation [27], we propose an entirely new 
version of the filter that, whilst closely following the 
evolutions of the estimates based on the KS equation, 
efficiently implements the nonlinear and strictly 
additive particle updates without an imperative 
necessity for inner iterations. This development is 
based on a sequence of manipulations of the update 
term so as to introduce an additional layer of numerical 
dispersion in the gain-like coefficient of the innovation. 
While inner iterations, as in the previous version of the 
filter, may still be utilized with some improvement in 
the estimate, the non-iterative form of the filter does 
yield solutions that are quite accurate even for large 
dimensional nonlinear filtering problems. Proofs of 
convergence of the modified filter, in both its non-
iterative and iterative forms, are also provided. 

The rest of the paper is organized as follows. 
Section 2 introduces the filtering problem in a generic 
form. In Section 3, discretization of the KS equation 
is discussed. The two versions of the proposed filter, 
non-iterative and iterative, are detailed (along with 
pseudo-codes) in Sections 4 and 5 respectively. 
Numerical illustrations are provided in Section 6 and, 
finally, the concluding remarks given in Section 7. 

2. Statement of the Problem

Within a complete probability space ( ), , PΩ F , 
supplied with an increasing filtration { }max,0t t T≤ ≤F
consisting of σ -subalgebras of F , the system 
process model, typically represented as Ito stochastic 
differential equations (SDE-s), has the generic form 

( , ) ( , )t t t tdX b X t dt f X t dB= +                                        (1)

for ( , ]1t t ti i∈ − , i=1,2,3,… with 

dimensional problems. Even though the Zakai 
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of linearity and Gaussianity, the KS equation cannot, 
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following a conditional Feynman-Kac formula [25] 
and typically leading to a weighted particle system 
[26], have been tried to approximate the KS equation. 
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not free from the curse of weight collapse, even for 
moderately large filter dimensions. The primary aim 
of this article is a resolution of this long standing 
problem through an efficient, yet accurate, additive 
particle update scheme derived through the KS 
equation.  

Building upon our recent idea of an MC-based 
iterative approximation to the additive update term in 
the KS equation [27], we propose an entirely new 
version of the filter that, whilst closely following the 
evolutions of the estimates based on the KS equation, 
efficiently implements the nonlinear and strictly 
additive particle updates without an imperative 
necessity for inner iterations. This development is 
based on a sequence of manipulations of the update 
term so as to introduce an additional layer of 
numerical dispersion in the gain-like coefficient of 
the innovation. While inner iterations, as in the 
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with some improvement in the estimate, the non-
iterative form of the filter does yield solutions that 
are quite accurate even for large dimensional 
nonlinear filtering problems. Proofs of convergence 
of the modified filter, in both its non-iterative and 
iterative forms, are also provided.  
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0 1 max0 ... ...i Nt t t t T      denotes an ordering 
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incremental form of the noise term t  is used in 
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the nonlinear filtering (KS) equation demands SDE 
structures for both the system process and 
measurement models, we define a fictitious process 

: ( )tY Y t (with 0 : 0Y  ) so that the measurement 
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given by  
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Assuming the time step : 1t t ti i i     to be small, 
the above equation may be approximated as 
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drift term ( , ) ~ ( )th X t t t O . The above 
representation of the noise term is in keeping with the 
general scenario of the measurement noise being 
smaller than the measurement drift term by an order 
of magnitude in the mean square sense. The relative 
‘smallness’ of the noise term is justifiable through the 
fact that most modern sensing devices used for data 
acquisition are very accurate with high signal-to-
noise ratio. We now write d t in terms of a standard 

P-Brownian increment qdWt R  as d dWt t t 
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representing the measurement noise intensity. 
Defining t t it  (the scaled measurement noise 
intensity), the measurement SDE is of the final form: 
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It is emphasized that, in implementing the new EnKS 
filter, | |t  need not actually be ‘small’ and that the 

noise term need not be Gaussian. Thus the 
measurement diffusion matrix could be of the form

 ,t tX t , a function of tX . While the 

presentation to follow could also be adapted to non-
Brownian (e.g. Poisson’s) right continuous noise 
processes, we presently stick to the measurement 
SDE (3) so that we have a strictly continuous form of 
measurement filtration Y Y

t t F F . Standard existence 
criteria [28] for weak solutions to the above SDEs are 
assumed. The purpose of stochastic filtering is then to 
arrive at the conditional (filtered) distribution of, say, 
a scalar-valued function 2( ),t bX C    (bounded and 
twice continuously differentiable), given the 
measurement history  : | (0, ]Y

t sY s t F . Thus the 

conditional estimate  t  is defined as the measure-

valued process   | Y
P t tE X F  measurable with 

respect to Y
tF .
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The filtered estimate ( )t  of ( )tX , for 
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: Ta ff  with a  denoting the  th,  element of 

the matrix a. Similarly, b is the th  element of the 
vector b. Moreover, we have 

         M : M ,t t t tx x h x t x      , where 

h , tY   are the th elements of the vectors h and tY
respectively. Indeed, Eqn. (4) may be interpreted as a 
weak form to determine the conditional measure 

( )t   with   being a test function. The aim of a 
typical filtering method is to design a numerical 
scheme so that the innovation process is driven to a 
zero-mean martingale (corresponding to the diffusion 
term of the measurement SDE 3) through recursion 
over time t. This goal is often accomplished in two 
major stages, viz. prediction and update. In most MC 
filters, the prediction stage involves integrating the 
system process SDE (1) over 1( , ]i it t  starting with 
the realizations (particles) of the filtered solution at 

1it  as the initial conditions and hence this stage is 
often executed independent of (i.e. as a precursor to) 
the update stage. A similar strategy is adopted in 
developing the current filtering scheme as well. A 
first step in this direction would be to approximate 
the second term on the right hand side (RHS) of the 
KS Eqn. (4) as 

    1
1 1

L L
t t

s s i st ti i
ds ds   

 
            (5) 

Recall that Eqn. (4) is arrived at after averaging over 
the diffusion paths corresponding to the process noise

tB . Moreover, if the second term on the RHS of the 
KS Eqn. (4) is replaced by the approximation in Eqn. 
(5), then the first two terms (referred to as ‘the 
prediction component’) on the RHS of the KS 
equation, so approximated, recover Dynkin’s formula 
for the predicted mean 1 1( ( ) | ( ) : )P t i iE X X t X  

according to the process dynamics of Eqn. (1.1). By 

way of motivating the EnKS filter, a particle based 
representation (the unmasked form) of Eqn. (4) may 
be conceived of by putting back, in the prediction 
component, the diffusion term for the process 
dynamics. As a first step in deriving the unmasked 
additive update, as the current measurement tY

(typically at it t ) is available, an MC setting for 
solving Eqn. (4) may be set up as 
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h , tY   are the th elements of the vectors h and tY
respectively. Indeed, Eqn. (4) may be interpreted as a 
weak form to determine the conditional measure 

( )t   with   being a test function. The aim of a 
typical filtering method is to design a numerical 
scheme so that the innovation process is driven to a 
zero-mean martingale (corresponding to the diffusion 
term of the measurement SDE 3) through recursion 
over time t. This goal is often accomplished in two 
major stages, viz. prediction and update. In most MC 
filters, the prediction stage involves integrating the 
system process SDE (1) over 1( , ]i it t  starting with 
the realizations (particles) of the filtered solution at 

1it  as the initial conditions and hence this stage is 
often executed independent of (i.e. as a precursor to) 
the update stage. A similar strategy is adopted in 
developing the current filtering scheme as well. A 
first step in this direction would be to approximate 
the second term on the right hand side (RHS) of the 
KS Eqn. (4) as 
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be conceived of by putting back, in the prediction 
component, the diffusion term for the process 
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(typically at it t ) is available, an MC setting for 
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being a test function. The aim of a typical 
filtering method is to design a numerical scheme 
so that the innovation process is driven to a zero-
mean martingale (corresponding to the diffusion 
term of the measurement SDE 3) through recursion 
over time t. This goal is often accomplished in two 
major stages, viz. prediction and update. In most MC 
filters, the prediction stage involves integrating the 
system process SDE (1) over 1( , ]i it t−  starting with 
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A major hindrance in using Eqn. (8), an MC based 
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t needs information on that of T
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an algorithm is devised in the next section to 
circumvent this problem.  

4. The EnKS Methodology: A Non-iterative Form 

Within the MC-setting used to address the problem of 
moment closure in Eqn. (8), a two-stage strategy is 
adopted in the proposed EnKS filter. First, for a given 

1( , ]i it t t  in the current time interval, the process 
SDE (corresponding to the first three terms on the 
RHS of Eqn. (8)) is weakly solved using a numerical 
integration technique (e.g. Euler Maruyama (EM) 
[30], Milstein’s scheme, local linearization [31, 32, 
33] or stochastic Newmark [34] schemes etc.). In the 
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Although an explicit EM scheme is considered here 
for numerical integration of the process SDEs, a more 
accurate/stable stochastic integration scheme could 
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Presently, using the explicit EM-based integration, 
the recursive prediction-update filtering strategy that 
aims at arriving at an empirical filtered distribution at 
time 1( , ]i it t t is depicted below. In all the 
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prediction  t   . In the initial stages of time 

evolution, when the innovation process could have a 
significant drift component owing to the 
measurement-prediction mismatch (i.e. a significant 
departure from a zero-mean martingale), the gain-
type coefficient matrix should be such (e.g. having a 
large norm) that the sample space is better explored. 
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, for the 

system state vector. For each discrete time 
instant , 1,..., 1it i M  , execute the 
following steps.  

3. Prediction

Using  ( )
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i j 

, the update available at the 

last time instant 1it  , propagate each particle 

to the current time instant it using any 
appropriate integration scheme for SDEs, 
e.g. an explicit Euler-Maruyama (EM) 
approximation to Eqn. (1) given by: 
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4. Additive update 

 Choose (0,1)  ; a typical prescribed 
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method also performs well for other values 
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Update each particle as 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
measurement models. While the additive nature of 
particle updates in the EnKS eliminates the curse of 
‘particle collapse’, an iterative form could 
additionally help precipitate a faster convergence of 
the measurement-prediction mismatch to a zero-mean 
martingale. In other words, using an inner layer of 
iterations, one could attempt a ‘maximal’ utilization 
of the current measurement within the particle update 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
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particle updates in the EnKS eliminates the curse of 
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additionally help precipitate a faster convergence of 
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martingale. In other words, using an inner layer of 
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of the current measurement within the particle update 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
measurement models. While the additive nature of 
particle updates in the EnKS eliminates the curse of 
‘particle collapse’, an iterative form could 
additionally help precipitate a faster convergence of 
the measurement-prediction mismatch to a zero-mean 
martingale. In other words, using an inner layer of 
iterations, one could attempt a ‘maximal’ utilization 
of the current measurement within the particle update 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
measurement models. While the additive nature of 
particle updates in the EnKS eliminates the curse of 
‘particle collapse’, an iterative form could 
additionally help precipitate a faster convergence of 
the measurement-prediction mismatch to a zero-mean 
martingale. In other words, using an inner layer of 
iterations, one could attempt a ‘maximal’ utilization 
of the current measurement within the particle update 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
measurement models. While the additive nature of 
particle updates in the EnKS eliminates the curse of 
‘particle collapse’, an iterative form could 
additionally help precipitate a faster convergence of 
the measurement-prediction mismatch to a zero-mean 
martingale. In other words, using an inner layer of 
iterations, one could attempt a ‘maximal’ utilization 
of the current measurement within the particle update 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
measurement models. While the additive nature of 
particle updates in the EnKS eliminates the curse of 
‘particle collapse’, an iterative form could 
additionally help precipitate a faster convergence of 
the measurement-prediction mismatch to a zero-mean 
martingale. In other words, using an inner layer of 
iterations, one could attempt a ‘maximal’ utilization 
of the current measurement within the particle update 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
measurement models. While the additive nature of 
particle updates in the EnKS eliminates the curse of 
‘particle collapse’, an iterative form could 
additionally help precipitate a faster convergence of 
the measurement-prediction mismatch to a zero-mean 
martingale. In other words, using an inner layer of 
iterations, one could attempt a ‘maximal’ utilization 
of the current measurement within the particle update 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
measurement models. While the additive nature of 
particle updates in the EnKS eliminates the curse of 
‘particle collapse’, an iterative form could 
additionally help precipitate a faster convergence of 
the measurement-prediction mismatch to a zero-mean 
martingale. In other words, using an inner layer of 
iterations, one could attempt a ‘maximal’ utilization 
of the current measurement within the particle update 
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else terminate the algorithm. 

Using a filtered martingale problem setup, the 
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under very general conditions on the drift and 
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measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
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satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.
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existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
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adopt Ito’s theory in interpreting the weak solutions 
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e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.
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5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.
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those present in the system process and/or 
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the measurement-prediction mismatch to a zero-mean 
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of the current measurement within the particle update 

where

Pseudo-code 1: for the non-iterative EnKS 

1. Discretize the time interval of interest, say 
 0,T , using a partition  0 1, ,..., Mt t t  such 

that 0 10 ... Mt t t T     and

1
1(i i it t t
M    if the step size is chosen

uniformly for 0,..., 1i M  ). Choose an 
ensemble size N.

2. Generate the ensemble of initial conditions 

 ( )
0 1

Nj
j

, or equivalently  ( )
0 1

Nj
j

X


, for the 

system state vector. For each discrete time 
instant , 1,..., 1it i M  , execute the 
following steps.  

3. Prediction

Using  ( )
1 1

Nj
i j 

, the update available at the 

last time instant 1it  , propagate each particle 

to the current time instant it using any 
appropriate integration scheme for SDEs, 
e.g. an explicit Euler-Maruyama (EM) 
approximation to Eqn. (1) given by: 

 ( ) ( ) ( ) ( ) ( )( ) ( )
1 1 1 1 1L( )

, 1,...,

j j j j jj N
i i ii i i i it f B B

j N
        





Using  ( )
1

Nj
i j
 compute  ( )

1

Nj
i j

X


 . This 

step is trivial if  is the identity function 

 X X .

Using  ( )
1

Nj
i j

X


 , compute 

    ( ) ( )
1 1

NNj j
i ij j

h h X
 
  .

Construct (1) ( ): [ ,... ]N
i i i   ,

   [ ,..., ]i i i  

   ,

(1) ( ): [ ,..., ]N
i i ih hH   ,    [ ,..., ]i i ih h  H


 

.
4. Additive update 

 Choose (0,1)  ; a typical prescribed 
value would be 0.8  , even though the 
method also performs well for other values 
in the interval indicated. 

Update each particle as 

 ( ) ( ) ( ) , 1,...,j j j
i i i i ih j N   G  Y ,

where 

  
  

  
 

1 1

1 1

1

1:

1
1

1

T T T
i i i i i i i i

i
T T

i i i i i i

T T
i i i i

T
i i

t t t

N t t

N




 

 



        
   
  

    
   

H H H
G

H H

H H H H

  
    

   
   

 
   

5.  If  i M , go to step 3 with 1i i  ,
else terminate the algorithm. 

Using a filtered martingale problem setup, the 
existence and uniqueness of a posterior distribution 
satisfying the KS equation has been proved in [29] 
under very general conditions on the drift and 
diffusion fields of the system process and 
measurement SDEs. However, since we presently 
adopt Ito’s theory in interpreting the weak solutions 
of the SDEs, somewhat more restrictive conditions, 
e.g. Lipschitz continuity and linear growth bound, are 
applied to the drift and diffusion terms.

5. An Iterative Version of the EnKS 

A motivation in developing an iterative version of the 
EnKS is derived from the fact that iterations provide 
an attractive, and sometimes indispensable, tool for 
an update procedure involving nonlinearities, e.g. 
those present in the system process and/or 
measurement models. While the additive nature of 
particle updates in the EnKS eliminates the curse of 
‘particle collapse’, an iterative form could 
additionally help precipitate a faster convergence of 
the measurement-prediction mismatch to a zero-mean 
martingale. In other words, using an inner layer of 
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before moving over to the next time step. In order to 
provide an additional boost to the mixing property of 
the update kernel, an annealing-type non-decreasing 
sequence of scalar multipliers 0 1 1, ,...,      is 

artificially applied to the iterated sequence of gain-
weighted innovation terms. Here  denotes the 
number of inner iterations at the current time t. The 
sequence  0 1 1, ,...,      is so chosen that 1 

as     (to approach the original update term) and 

1k k    for [0, 1)k   . Effect of the annealing 
type term is similar to the temperature (herein 
proportional to 1/ k ) in a standard simulated 
annealing (SA) scheme [35]. The added advantage 
we have over SA based schemes, is that, unlike SA 
where a single Markov chain is evolved and 1/ k is 
slowly reduced to unity, in the present setting, an 
ensemble of pseudo-chains is propagated 
simultaneously, for a given t, allowing us to have a 
much faster and flexible reduction. Presently an 
exponential increment,

 exp 1 , 0,..., 1k k k        which is a more 

non-conservative schedule, is adopted. At a given 
time t, to initiate the inner iteration, an initial 
annealing term is required, for which, typically a 
‘large’ value of 1 / k  is taken. Although the filtered 
estimate asymptotically improves with increasing 
number of  , at a given t, keeping in mind the 
computational feasibility, only a few iterations (say, 
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3. Set 1k k  . If k  , set 
 exp 1k k    and go to step 2; 

else if  i M , go to step 3 in pseudo-code 1
with 1i i  ;

else terminate the algorithm. 

Based on the notion of stochastic Picard's iterations 
often used to prove the existence and uniqueness of 
solutions to SDEs, the existence and uniqueness of 
solution (i.e. the conditional posterior distribution) 
via the proposed iterative scheme may be proved (out 
of the scope of the current work). 

6. Numerical Illustrations 

6.1 Example 1: Dynamical system identification 
via a 200-dimensional nonlinear filtering problem  

For the state-parameter estimation of a 50 degrees-of-
freedom (DOFs) mechanical oscillator, the system 
model (herein correspondent to a 50-storied shear 
frame with uncertain damping and stiffness 
parameters) is considered to be of the form: 

   ( ) C ( ) K ( ) ( ) tU t U t U t R t fB                      (6.1)  

U , 50U  R respectively denote the displacement 
and velocity vectors and scalar components define 
the corresponding quantities for different floors of the 
frame. The stiffness matrix is given as 

 

1 2 2

2 2 3 3

3 3 4

50

50 50

K K K 0 ... 0
K K K K ... 0

K 0 K K K ... 0
... ... ... ... -K
0 0 0 -K K

  
    
   
 
 
  

The viscous damping matrix  C is similarly obtained 

by replacing Ki  by Ci  in the above matrix, where 

Ki  and Ci are respectively the stiffness and damping 

parameters corresponding to the thi floor of the 

frame.   50
1( ) : ( ) n

i iR t r t 


 is a random forcing vector 

with the transverse forcing at the ith floor given as 
( ) 500exp(- ) | | cos(5 )ir t t t where (0,1) N .

The aim is to estimate the stiffness and damping 
coefficients as well as the velocity and displacement 
states, conditioned only on all the measured velocity 
components. Note that the present filtering problem 
is strictly nonlinear as the unknown parameters are 
taken as augmented states, i.e. the augmented state 
vector is given by [36; 27]: 

     200
1 50 1 50: ; ; ,..., ; ,...,T TT TX U U K K C C  R

Indeed the system process model would have been 
linear if the parameters were known. PFs are likely to 
diverge or collapse to a single particle for such a 
large dimensional state-parameter estimation problem 
with sparse data. Moreover, even for low dimensional 
problems, PFs may perform poorly with very low-
intensity measurement noises, currently employed to 
reduce random fluctuations in the estimates due to 
large variance in the measurement noise. To 
demonstrate the performance of the proposed filter 
with low measurement noise levels (possible with 
sophisticated measuring devices), very low 
measurement noise intensity (less than 1%) is 
considered here for all the 50 components of the 
measured velocity vector. Since the EnKF (the 
ensemble Kalman filter as developed and 
implemented in [20]), is known to work for large 
dimensional filtering problems, it is used to report the 
numerical comparisons. An ensemble size 800N 
and time step 0.01t   are taken for both the filters. 
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components. Note that the present filtering problem 
is strictly nonlinear as the unknown parameters are 
taken as augmented states, i.e. the augmented state 
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with sparse data. Moreover, even for low dimensional 
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reduce random fluctuations in the estimates due to 
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with low measurement noise levels (possible with 
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measurement noise intensity (less than 1%) is 
considered here for all the 50 components of the 
measured velocity vector. Since the EnKF (the 
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else if  i M , go to step 3 in pseudo-code 1
with 1i i  ;
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Based on the notion of stochastic Picard's iterations 
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taken as augmented states, i.e. the augmented state 
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Indeed the system process model would have been 
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diverge or collapse to a single particle for such a 
large dimensional state-parameter estimation problem 
with sparse data. Moreover, even for low dimensional 
problems, PFs may perform poorly with very low-
intensity measurement noises, currently employed to 
reduce random fluctuations in the estimates due to 
large variance in the measurement noise. To 
demonstrate the performance of the proposed filter 
with low measurement noise levels (possible with 
sophisticated measuring devices), very low 
measurement noise intensity (less than 1%) is 
considered here for all the 50 components of the 
measured velocity vector. Since the EnKF (the 
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implemented in [20]), is known to work for large 
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coefficients as well as the velocity and displacement 
states, conditioned only on all the measured velocity 
components. Note that the present filtering problem 
is strictly nonlinear as the unknown parameters are 
taken as augmented states, i.e. the augmented state 
vector is given by [36; 27]: 
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1 50 1 50: ; ; ,..., ; ,...,T TT TX U U K K C C  R

Indeed the system process model would have been 
linear if the parameters were known. PFs are likely to 
diverge or collapse to a single particle for such a 
large dimensional state-parameter estimation problem 
with sparse data. Moreover, even for low dimensional 
problems, PFs may perform poorly with very low-
intensity measurement noises, currently employed to 
reduce random fluctuations in the estimates due to 
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with low measurement noise levels (possible with 
sophisticated measuring devices), very low 
measurement noise intensity (less than 1%) is 
considered here for all the 50 components of the 
measured velocity vector. Since the EnKF (the 
ensemble Kalman filter as developed and 
implemented in [20]), is known to work for large 
dimensional filtering problems, it is used to report the 
numerical comparisons. An ensemble size 800N 
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else terminate the algorithm. 

Based on the notion of stochastic Picard's iterations 
often used to prove the existence and uniqueness of 
solutions to SDEs, the existence and uniqueness of 
solution (i.e. the conditional posterior distribution) 
via the proposed iterative scheme may be proved (out 
of the scope of the current work). 

6. Numerical Illustrations 

6.1 Example 1: Dynamical system identification 
via a 200-dimensional nonlinear filtering problem  

For the state-parameter estimation of a 50 degrees-of-
freedom (DOFs) mechanical oscillator, the system 
model (herein correspondent to a 50-storied shear 
frame with uncertain damping and stiffness 
parameters) is considered to be of the form: 
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The viscous damping matrix  C is similarly obtained 

by replacing Ki  by Ci  in the above matrix, where 

Ki  and Ci are respectively the stiffness and damping 

parameters corresponding to the thi floor of the 

frame.   50
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 is a random forcing vector 

with the transverse forcing at the ith floor given as 
( ) 500exp(- ) | | cos(5 )ir t t t where (0,1) N .

The aim is to estimate the stiffness and damping 
coefficients as well as the velocity and displacement 
states, conditioned only on all the measured velocity 
components. Note that the present filtering problem 
is strictly nonlinear as the unknown parameters are 
taken as augmented states, i.e. the augmented state 
vector is given by [36; 27]: 
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Indeed the system process model would have been 
linear if the parameters were known. PFs are likely to 
diverge or collapse to a single particle for such a 
large dimensional state-parameter estimation problem 
with sparse data. Moreover, even for low dimensional 
problems, PFs may perform poorly with very low-
intensity measurement noises, currently employed to 
reduce random fluctuations in the estimates due to 
large variance in the measurement noise. To 
demonstrate the performance of the proposed filter 
with low measurement noise levels (possible with 
sophisticated measuring devices), very low 
measurement noise intensity (less than 1%) is 
considered here for all the 50 components of the 
measured velocity vector. Since the EnKF (the 
ensemble Kalman filter as developed and 
implemented in [20]), is known to work for large 
dimensional filtering problems, it is used to report the 
numerical comparisons. An ensemble size 800N 
and time step 0.01t   are taken for both the filters. 
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The aim is to estimate the stiffness and damping 
coefficients as well as the velocity and displacement 
states, conditioned only on all the measured velocity 
components. Note that the present filtering problem 
is strictly nonlinear as the unknown parameters are 
taken as augmented states, i.e. the augmented state 
vector is given by [36; 27]: 
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1 50 1 50: ; ; ,..., ; ,...,T TT TX U U K K C C  R

Indeed the system process model would have been 
linear if the parameters were known. PFs are likely to 
diverge or collapse to a single particle for such a 
large dimensional state-parameter estimation problem 
with sparse data. Moreover, even for low dimensional 
problems, PFs may perform poorly with very low-
intensity measurement noises, currently employed to 
reduce random fluctuations in the estimates due to 
large variance in the measurement noise. To 
demonstrate the performance of the proposed filter 
with low measurement noise levels (possible with 
sophisticated measuring devices), very low 
measurement noise intensity (less than 1%) is 
considered here for all the 50 components of the 
measured velocity vector. Since the EnKF (the 
ensemble Kalman filter as developed and 
implemented in [20]), is known to work for large 
dimensional filtering problems, it is used to report the 
numerical comparisons. An ensemble size 800N 
and time step 0.01t   are taken for both the filters. 

Indeed the system process model would have been 
linear if the parameters were known. PFs are likely 
to diverge or collapse to a single particle for such a 
large dimensional state-parameter estimation problem 
with sparse data. Moreover, even for low dimensional 
problems, PFs may perform poorly with very low-
intensity measurement noises, currently employed to 
reduce random fluctuations in the estimates due to large 
variance in the measurement noise. To demonstrate 
the performance of the proposed filter with low 
measurement noise levels (possible with sophisticated 
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measuring devices), very low measurement noise 
intensity (less than 1%) is considered here for all the 
50 components of the measured velocity vector. Since 
the EnKF (the ensemble Kalman filter as developed 
and implemented in [20]), is known to work for 
large dimensional filtering problems, it is used to 
report the numerical comparisons. An ensemble size 

800N =  and time step 0.01t∆ =  are taken for both 
the filters.

The reference stiffness parameters (used to 
integrate the system process en route to the generation 
of synthetic data by perturbing the computed solutions 
with appropriate noise) at each degree of freedom 
is taken as k = 100. Similarly the reference damping 
parameter at each floor is chosen as c = 5. It may be 
observed from Figure 6.1 that the EnKF underperforms 
in comparison to the EnKS and the iterative EnKS (the 
results via the iterative EnKS are found to be very much 
similar to those via its non-iterative variant and hence 
are not reported). Note that the simultaneous adoption 
of a large system dimension and low measurement 
noise ensures that the current identification problem 
is a difficult one. 

6.2 Example 2: damage detection for a 20-dof 
mechanical oscillator 

Consider once more the oscillator model for a shear 
frame, albeit of a lower dimension corresponding to 
20 DOFs, so that the system model is formally given 
by:
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Thus the stiffness matrix is given as 
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and the viscous damping matrix [ ]C is obtained by 
replacing Ki  by Ci  in the above matrix. As before, 
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(0,1)ξ � N , denotes the transverse loading at the 
i-th storey. While the aim remains to estimate the 
stiffness and damping coefficients along with the 
velocity/displacement states (conditioned on only 
the measured velocities of the floors), the reference 
stiffness parameter 10K  is kept at a slightly lower 
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Specifically, we take 10 98K   even as the rest of the 
stiffness parameters are maintained at 100. Damping 
parameter at each floor is chosen as 5. Here the 
augmented state vector is 80-dimensional and, as in 
the last example, a low noise intensity (< 1%) is 
applied in generating the data. An ensemble size of 

300N   and time step 0.01t   are taken for both 
the EnKF and EnKS filter runs. 
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7. Conclusions 
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proposed EnKS, derived through consistent ensemble 
and time discretizations of the Kushner-Stratonovich 
SPDE, is essentially aimed at alleviating some of the 
prominent numerical bottlenecks characteristic of 
weight-based updates in particle filters. An efficient 
implementation of the update is made possible 
through several manipulations on the discretized 
innovation integral designed to efficiently drive the 
measurement-prediction misfit to a zero-mean 
martingale, herein characterized by an Ito integral. 
Arguably, the most notable development of this work 
is the non-iterative version of the EnKS that is shown 
to work quite accurately for nonlinear filtering 
problems of large dimension and involving sparse 

Reaction

ck

r(t)

Figure 6.3 (a): A nonlinear oscillator; reaction transferred  
at the base is measured

filtering problem were smaller. This point is currently 
emphasized through a problem of estimating state and 
parameters of a 1-DOF nonlinear oscillator model, 
wherein a transducer supplied at the base measures 
the reaction transferred there (Figure 6.3a).

 The system process and measurement models are 
respectively given as:

                                                            (18) 

Figure 6.3 (a): A nonlinear oscillator; reaction 
transferred at the base is measured 

 The system process and measurement models are 
respectively given as: 

c sin( ) ( )t t t tX X k X r t fB              (18) 

sin( )t t t ty cX k X              (19) 

Displacement ( tX ), velocity ( tX ), damping (c) and 
stiffness (k) are estimated using an ensemble size 

600N  and time step 0.01t  . A random force
( ) : 5exp(-0.01 ) | | cos(5 )r t t t , (0,1) N , is 

applied at the free end of the oscillator. An 
assessment of the estimates, reproduced in Figures 
6.3b-d, readily reveals a degraded EnKF performance 
(broken blue), especially in estimating the viscous 
damping parameter.  

Figure 6.3 (b): Estimate of displacement 

       Figure 6.3 (c): Estimate of k                        

 Figure 6.3 (d): Estimate of c             

7. Conclusions 

The nonlinear and additive particle update in the 
proposed EnKS, derived through consistent ensemble 
and time discretizations of the Kushner-Stratonovich 
SPDE, is essentially aimed at alleviating some of the 
prominent numerical bottlenecks characteristic of 
weight-based updates in particle filters. An efficient 
implementation of the update is made possible 
through several manipulations on the discretized 
innovation integral designed to efficiently drive the 
measurement-prediction misfit to a zero-mean 
martingale, herein characterized by an Ito integral. 
Arguably, the most notable development of this work 
is the non-iterative version of the EnKS that is shown 
to work quite accurately for nonlinear filtering 
problems of large dimension and involving sparse 

Reaction

ck

r(t)

                                                                                (19)

Displacement ( tX ), velocity ( tX ), damping (c) 
and stiffness (k) are estimated using an ensemble 
size 600N = and time step 0.01t∆ = . A random force 

Figure 6.3 (a): A nonlinear oscillator; reaction 
transferred at the base is measured 

 The system process and measurement models are 
respectively given as: 

c sin( ) ( )t t t tX X k X r t fB              (18) 

sin( )t t t ty cX k X              (19) 

Displacement ( tX ), velocity ( tX ), damping (c) and 
stiffness (k) are estimated using an ensemble size 

600N  and time step 0.01t  . A random force
( ) : 5exp(-0.01 ) | | cos(5 )r t t t , (0,1) N , is 

applied at the free end of the oscillator. An 
assessment of the estimates, reproduced in Figures 
6.3b-d, readily reveals a degraded EnKF performance 
(broken blue), especially in estimating the viscous 
damping parameter.  

Figure 6.3 (b): Estimate of displacement 

       Figure 6.3 (c): Estimate of k                        

 Figure 6.3 (d): Estimate of c             

7. Conclusions 

The nonlinear and additive particle update in the 
proposed EnKS, derived through consistent ensemble 
and time discretizations of the Kushner-Stratonovich 
SPDE, is essentially aimed at alleviating some of the 
prominent numerical bottlenecks characteristic of 
weight-based updates in particle filters. An efficient 
implementation of the update is made possible 
through several manipulations on the discretized 
innovation integral designed to efficiently drive the 
measurement-prediction misfit to a zero-mean 
martingale, herein characterized by an Ito integral. 
Arguably, the most notable development of this work 
is the non-iterative version of the EnKS that is shown 
to work quite accurately for nonlinear filtering 
problems of large dimension and involving sparse 

Reaction

ck

r(t)

, is applied 
at the free end of the oscillator. An assessment of 
the estimates, reproduced in Figures 6.3b-d, readily 
reveals a degraded EnKF performance (broken 
blue), especially in estimating the viscous damping 
parameter. 

Figure 6.3 (a): A nonlinear oscillator; reaction 
transferred at the base is measured 

 The system process and measurement models are 
respectively given as: 

c sin( ) ( )t t t tX X k X r t fB              (18) 

sin( )t t t ty cX k X              (19) 

Displacement ( tX ), velocity ( tX ), damping (c) and 
stiffness (k) are estimated using an ensemble size 

600N  and time step 0.01t  . A random force
( ) : 5exp(-0.01 ) | | cos(5 )r t t t , (0,1) N , is 

applied at the free end of the oscillator. An 
assessment of the estimates, reproduced in Figures 
6.3b-d, readily reveals a degraded EnKF performance 
(broken blue), especially in estimating the viscous 
damping parameter.  

Figure 6.3 (b): Estimate of displacement 

       Figure 6.3 (c): Estimate of k                        

 Figure 6.3 (d): Estimate of c             

7. Conclusions 

The nonlinear and additive particle update in the 
proposed EnKS, derived through consistent ensemble 
and time discretizations of the Kushner-Stratonovich 
SPDE, is essentially aimed at alleviating some of the 
prominent numerical bottlenecks characteristic of 
weight-based updates in particle filters. An efficient 
implementation of the update is made possible 
through several manipulations on the discretized 
innovation integral designed to efficiently drive the 
measurement-prediction misfit to a zero-mean 
martingale, herein characterized by an Ito integral. 
Arguably, the most notable development of this work 
is the non-iterative version of the EnKS that is shown 
to work quite accurately for nonlinear filtering 
problems of large dimension and involving sparse 

Reaction

ck

r(t)

Figure 6.3 (b): Estimate of displacement

Saikat Sarkar et al. / Life Cycle Reliability and Safety Engineering Vol.4 Issue 1 (2015) 01-13



12 © 2015 SRESA All rights reserved

7. Conclusions

The nonlinear and additive particle update in the 
proposed EnKS, derived through consistent ensemble 
and time discretizations of the Kushner-Stratonovich 
SPDE, is essentially aimed at alleviating some of the 
prominent numerical bottlenecks characteristic of 
weight-based updates in particle filters. An efficient 
implementation of the update is made possible 
through several manipulations on the discretized 
innovation integral designed to efficiently drive 
the measurement-prediction misfit to a zero-mean 
martingale, herein characterized by an Ito integral. 
Arguably, the most notable development of this work 
is the non-iterative version of the EnKS that is shown to 
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perform. Motivated by the stochastic Picard iteration 
and implemented using annealing-type inner iterates, 
an iterative version of the EnKS is also synthesized 
which, though computationally more intensive, is 
able to achieve still higher accuracy in the computed 
estimates. A reflection of the nonlinear nature of the 
update is in the demonstrably superior performance 
of both variants of the EnKS over the well known 
ensemble Kalman filter. 

The structure of the EnKS, which shares the 
familiar gain-based update features of the popular 
Kalman filter, makes it ideal for nonlinear filtering 
applications with feedback control. Finally, consistent 
with the operator-theoretic martingale problem setting 
as originated by Stroock and Varadhan [37], the 
EnKS admits a far more general class of non-smooth 
drift and diffusion fields in the system process and 
measurement models than is permissible with filters 
requiring linearizations of these terms.
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  Life Cycle Reliability and Safety Engineering 
Vol.4 Issue 1 (2015) 14-24

1 introduction

During the design phase of a structural system, 
all the uncertainties associated with the system 
parameters and external loading are typically 
characterized by a set of random variables or more 
generally through random process models. The safety 
of the structure is quantified through the notion of 
probability of failure or reliability index [1]. Once the 
structural system comes into existence, it becomes 
possible to obtain responses of the structure to ambient 
and (or) proof loads. Questions on the current state 
of the structure i.e.,damage characterization, system 
identification, repair and maintenance of the structure 
becomes relevant.Overviews of issues relevant to 
this class of problems can be found in the references 
[1-9]. The monograph by Yao [2] considers the role 
of structural system identification and its application 
to structural dynamics, reliability modeling, and 
damage assessment. Mori and Ellingwood[3] have 
proposed probabilistic methods to determine the 
time-dependent reliability of concrete structures. 
Here the authors also considered the importance of 
periodic inspection and maintenance of the structural 
systems.The books by Ditlevsen and Madsen [4] and 
Melchers [1] contain dedicated chapters on reliability 
modeling of existing structures. The paper by Melchers 
[5] outlines the research needs originating from 
increasing demand for estimation of remaining life of 
existing structures in the context of widespread desire 
to extend the life of ageing infrastructure.Frangopol 
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et al., [6], and Ellingwood[7] have reviewed the 
approaches for modeling deterioration in an existing 
structure. The models reviewed by these authors are 
probabilistic in nature, where the deterioration of an 
existing structure is modeled with the aid of time 
invariant and (or) time variant reliability methods. 
The recent monograph by Yuen [8],and the review 
paper by Yuen and Kouk[9]provide contemporary 
perspectives on the application of Bayesian methods 
to problems of structural dynamics in civil engineering 
applications. The state-of-art report edited by Catbas 
et al., [10] provides comprehensive account of problem 
of structural system identification in the context of 
constructed civil engineering facilities.

Methods of system identification can be broadly 
classified as being either online or offline. In online 
methods, the parameters are identified in real time and 
the measurements are processed sequentially as and 
when they arrive [11-19]. On the other hand, in offline 
methods, system identification follows the completion 
of measurement process, and the measured data are 
processed in a batch mode[20-24]. The online methods 
can of course also be used for problems in which there 
exists no compulsions to identify system parameters 
in real time.

The work by Beck and Au [25] introduces the 
application of Markov chain Monte Carlo (MCMC) 
based methods in the context of structural system 
identification. Here the authors apply MCMC based 
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method for model selection and updating the reliability 
models for existing structures. A comprehensive 
review of non-linear structural system identification 
is given in the review paper by Kerschen et al.,[26]. 
Studies on combining MCMC based methods with 
filtering techniques have been carried out by Khalil 
et al., [27]. The study by Rosic et al.,[28] deals with 
comparing a few system identification methods 
(MCMC based, ensemble Kalman filter, polynomial 
chaos based) in the context of parameter identification 
of an elasto-plastic system.

In the present study, attention is focused on 
Bayesian framework to tackle problems associated with 
existing structures. The template for this framework 
consists of the following components: (a) mathematical 
model for the structure, typically based on FE 
analysis, (b) a set of noisy measurements on structural 
displacements, strains, applied loads, and (or) reaction 
transferred to the supports under operating and (or) 
diagnostic loads, and (c) a mathematical model which 
relates measured quantities to the system states in the 
governing mathematical model for structure. Both the 
models for structural behavior and the measurements 
are taken to be imperfect, and this is accounted for 
by including appropriate random noise terms in the 
models.

Similar studies have been carried out by Soyoz 
et al.,[29]. Here the authors considered parameter 
identification, and updating the probability of failure 
of a three span reinforced cement concrete bridge 
structure subjected to earthquake type excitation 
on a shake table setup. The authors have identified 
the stiffness parameters online using the extended 
Kalman filter. Their study stresses the importance 
of (a) updating reliability models in the context of 
post-earthquake damage assessment, and (b) residual 
reliability estimation.

The aim of the paper is to develop a methodology 
that efficiently embeds the information contained in 
the measurement into the mathematical model of the 
structure and to update the reliability of the structural 
system. The method broadly consists of a system 
identification step followed by a reliability model 
updating step. The maximum likelihood estimation 
method in conjunction with Genetic algorithms is 
used to solve the system identification problem, and 
a variance reduction strategy based on the Girsanov’s 
transformation is employed to tackle the step involving 
reliability prediction. The contribution of the paper 
however lies in applying the method developed earlier 
by the authors [30] to problems with experimental 

measurement data. Illustrative example consists of 
shake table studies on an asymmetric bending-torsion 
coupled frame subjected to non-stationary random 
excitations and, linear performance function metrics. 
The predictions from the proposed approximate 
method are compared with results from appropriate 
brute force Monte Carlo simulations and a satisfactory 
mutual agreement is demonstrated.

2. Problem Statement

Consider non-linear dynamical systems governed 
by the equation of the form
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random process representing the errors in arriving at mathematical model for the dynamical 

system, and is modelled as a zero mean Gaussian white noise vector; 0Y and 0
Y are, the 1n

initial displacement and velocity vectors respectively. This model is assumed to a represent 

the behavior of an existing instrumented structure on which measurements have been made 

under operating conditions. These measurements typically include displacements, 

accelerations, strains, reactions transferred to the supports, and (or) applied forces  tF . The 

performance of the structure is recorded through a set of s sensors. These quantities are 

related to the system states through the measurement model given by  
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Here  , tZ  is a 1s vector of sensor records,    , ,t t t  
H ,Y Y is a 1s vector of 

functions which relate the measurements with system states, and,  t is a 1s vector of 

random processes representing the noise in measurements and also the imperfections in 

relating measured quantities to the system states.  t istaken to be a zero mean stationary 

Gaussian vector white noise process with known covariance, and, independent of  t . The 

explicit dependence of the measurement on the system parameter vector   mandates for a 

system identification step prior to updating reliability models. The sample time history of the 

applied force is taken to arise from the prior model assumed for  tF , if not measured. Prior 

to the structure coming into existence, the time variant reliability analysis consists of 

obtaining the probability 
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noise is considered and the method is reproduced for completeness. 
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Here 1t gK PH R is the n s Kalman gain matrix. Expressing the covariance matrix as

     1t t tP   , it can be shown that the functions  t and  t arise as solutions of 
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The control force, ( )tu is selected so that variance 
of the estimator given in Eq. (17) is lower than that 
given in Eq. (14). An optimal control force exists that 
yields an estimator with zero variance [33]. This being 
infeasible, we resort to determining a sub-optimal 
control. The method proposed by Macke and Bucher 
[33] as applied to system of equations mentioned in 
Eq. (15) is briefly explained below. 
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The control force is selected by solving the 
following optimization problem   

 

10 

      *
| 00

1

1 max 0
gN

l
F t T

lg

tP T I h t
N


 



       
Z X                 (17) 

The control force,  tu is selected so that variance of the estimator given in Eq. (17) is lower 

than that given in Eq. (14). An optimal control force exists that yields an estimator with zero 

variance [33]. This being infeasible, we resort to determining a sub-optimal control. The 

method proposed by Macke and Bucher [33] as applied to system of equations mentioned in 

Eq. (15) is briefly explained below.  

Consider the associated dynamical system 

             
  0

;  0

0

d t t dt t t t dt t t dt t T       


gA K HV V Z V u

V X


             (18) 

The control force is selected by solving the following optimization problem

     2 *

1 0

minimize  subjected to 0,  0
m

m
m m m

j
j

tu t dt h T


    


      V             (19) 

It is observed that selecting m in the vicinity where the measurement peaks yields better 

results. This is in contrast to the problem of forward reliability analysis, where, typically one 

takes m T  . Eq. (15) is discretized using the order 1.5 strong Taylor’s scheme [37]. The 

time step of discretization need not coincide with the sampling interval used in acquiring 

measurements.  

The method outlined here would be inapplicable to problems with non-linear process and 

measurement models, and non-linear performance metrics. This is because, though it is 

possible to set up the equations for conditional moments [similar to those in Eq. (11) and 

(12)], there would be a fundamental problem, since, these equations would constitute an 

infinite hierarchy of moment equations which at no stage yield sufficient number of equations 

to solve the problem [20]. This, infact, is similar to moment closure problem encountered in 

10 

      *
| 00

1

1 max 0
gN

l
F t T

lg

tP T I h t
N


 



       
Z X                 (17) 

The control force,  tu is selected so that variance of the estimator given in Eq. (17) is lower 

than that given in Eq. (14). An optimal control force exists that yields an estimator with zero 

variance [33]. This being infeasible, we resort to determining a sub-optimal control. The 

method proposed by Macke and Bucher [33] as applied to system of equations mentioned in 

Eq. (15) is briefly explained below.  

Consider the associated dynamical system 

             
  0

;  0

0

d t t dt t t t dt t t dt t T       


gA K HV V Z V u

V X


             (18) 

The control force is selected by solving the following optimization problem

     2 *

1 0

minimize  subjected to 0,  0
m

m
m m m

j
j

tu t dt h T


    


      V             (19) 

It is observed that selecting m in the vicinity where the measurement peaks yields better 

results. This is in contrast to the problem of forward reliability analysis, where, typically one 

takes m T  . Eq. (15) is discretized using the order 1.5 strong Taylor’s scheme [37]. The 

time step of discretization need not coincide with the sampling interval used in acquiring 

measurements.  

The method outlined here would be inapplicable to problems with non-linear process and 

measurement models, and non-linear performance metrics. This is because, though it is 

possible to set up the equations for conditional moments [similar to those in Eq. (11) and 

(12)], there would be a fundamental problem, since, these equations would constitute an 

infinite hierarchy of moment equations which at no stage yield sufficient number of equations 

to solve the problem [20]. This, infact, is similar to moment closure problem encountered in 

                                                  (19)

It is observed that selecting mτ in the vicinity 
where the measurement peaks yields better results. 
This is in contrast to the problem of forward reliability 
analysis, where, typically one takes 

Page 41, column 1, line 3 after Eq. 10 
Correction expression: 

Page 41, column 1, line 4 after Eq. 10 
Correct expression:  and 

Page 41, column 1, line 1 after Eq. 12 
Correct expression:  and 

Page 41, column 1, line 4 after Eq. 12 
Punctuation “,” repeated 
Correct expression: where 

Page 41, column 1, line 3 after Eq. 13; and Eq. 14 
  should be represented as .

Page 41, column 1, last line 
Ns not aligned properly. 

Page 41, column 2, Eq. 16 and Eq. 17 
  should be represented as .

Page 42, column 1, line 1 after Eq. 19 
 m  not aligned properly 

Page 42, column 1, line 4 after Eq. 19 
Correct expression:  m T

Page 44, column1, line 4 
X not aligned properly. 

Page 44, column 1, line 5
Correct expression: 

Page 44, column 1, bullet point 1, line 1 
Correct expression: kx  ky 12EI / L3

Page 44, column 2, line 3
Full stop should be placed after the expression. 

Page 46, column 1, line 3 

 . Eq. (15) 
is discretized using the order 1.5 strong Taylor’s 
scheme [37]. The time step of discretization need not 
coincide with the sampling interval used in acquiring 
measurements. 

The method outlined here would be inapplicable 
to problems with non-linear process and measurement 
models, and non-linear performance metrics. This is 
because, though it is possible to set up the equations 
for conditional moments [similar to those in Eq. (11) 
and (12)], there would be a fundamental problem, 
since, these equations would constitute an infinite 
hierarchy of moment equations which at no stage yield 
sufficient number of equations to solve the problem 
[20]. This, infact, is similar to moment closure problem 
encountered in non-linear random vibration problems 
[38]. Extension of the proposed method to handle such 
problems, based on the application of bootstrap filter, 
has been outlined in [30].

4. five Storey bending-torsion Coupled frame

In this section, a building frame model which 
is tested on a earthquake shake table is considered, 
and the combined problem of system identification 
and reliability model updating is pursued. The 
building frame studied is the five storey bending-
torsion coupled frame (see Fig. 1). Attention here 
is limited to the case where the system is taken to 
behave linearly and the base excitation is applied 
only in one direction. The structure is mounted on a 
servo-hydraulic controlled, multi-axes, shake table 
which operates in a displacement controlled mode. 
The base excitation is modeled as the output of a 
coupled Kanai-Tajimi-Clough-Penzien filter driven by 
a non-stationary white noise excitation. The structure 
is taken to be instrumented with strain gauges, 
linear variable differential transformers (LVDT-s), 
and accelerometers which enable the evaluation of 
performance metric used in reliability calculation, 
and for the purpose of system identification. Thus the 
LVDT shown in Fig. 1 measures the inter-storey drift 

between fourth and fifth floors along y -direction and 
the strain gauge (marked as SG) measures the bending 
strain in the aluminum column. The frame as shown 
in Fig. 1 consists of five steel slabs with eccentric 
mass, and twenty columns (fifteen steel columns and 
five aluminum columns). The bending and torsional 
degrees of freedom from the frame are coupled and 
the study is based on a fifteen dof model as shown 
in Fig. 2. The mass lumped at each floor level, in the 
fifteen dof model, are as follows:
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where slabm =  mass of slab, em =  mass of the 
additional eccentric slab, sm =  mass of steel column, 

am =  mass of aluminum column, woodm =  mass of 
LVDT support wooden stand (0.719 kg), accm =  mass 
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                   (a)                                                                             (b) 

(c)

Figure 1. Experimental setup; (a) test structure mounted on a shake table; (b) schematic 

showing the location of sensors, along with the coordinates of the strain gauge; all 

dimensions are in mm; (c) details of instrumentation. 

   Figure 1. Experimental setup; (a) test structure mounted on a 
shake table; (b) schematic showing the location of sensors, along 
with the coordinates of the strain gauge; all dimensions are in 

mm; (c) details of instrumentation.
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of the torsional accelerometer (0.350 kg), magnetm =  
mass of the magnetic base support for the LVDT (1.315 
kg), and LVDTm =  mass of the LVDT (0.233 kg). The 
masses lumped in both the x  and y -directions, at 
each floor, are assumed to be the same. The governing 
equations are obtained as
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separate steps. It is assumed that two sets of measurements are available so that one set could 
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experimental work, the measurements have been made on the inter-storey drift between 

fourth and fifth floors and these measurements for two loading cases are shown in Figs. 3 and 

4. The base accelerations for these two measurements are shown in Figs. 5 and 6 respectively. 
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unknown parameters. A non-dimensional independent uniform random variable X  is 

introduced such that ,  1,2, ,32i i iX i    , where   is a 32 1  vector of reference values 

of the unknown parameters, details of which are as follows: 

1. Stiffness in x  and y -directions: 312x yk k EI L  , where  210 GPaE   for steel 

and 69 GPa  for aluminum.  
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Figure 3. Section 4; measured inter-storey drift used for system identification. 
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2. Torsional stiffness:  3 s ak G G J L   , where  1 2G E    is the rigidity 

modulus of the material, with 0.3  . The subscripts s and a denote steel and 

aluminum respectively. Here J  is the polar area moment of inertia, taken to be the 

same for all the columns. 

3. Density: 8000 kg/m3for steel and 3000 kg/m3for aluminum. 

4. Damping ratio: 0.04 for all the fifteen modes. 

The random variables 1X  to 17X  are taken to be uniformly distributed in  0.42 0.98 , and, 

18X  to 32X  are assumed to be uniformly distributed in  0.02 0.98 .The measurement as 

shown in Fig. 3 is considered for identifying the system. The model for measurements is 

given by 
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Here    5 4k k k kH y y Y , and k  is the measurement noise modeled as a sequence of zero 

mean Gaussian iid random variables with variance, 5 23.6854 10  mm
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direction: forward; migration fraction: 0.1; migration interval: 5; elite count: 2; generations: 

30; time limit: 200000, fitness limit: 610 , stall generation limit:10; and stall time 

limit:100000. In order to ascertain that global optimum solution is obtained, a parametric 

study has been conducted on optimization problems with similar number of variables and the 

values are fixed based on experience gained. 
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likelihood function values as: 34473, 37175, 38154, 
34367, and 38520. Accordingly, the solution obtained 
on the fifth trial is considered as being acceptable. The 
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The genetic algorithm has been run five times giving rise to five solution vectors with the 

optimal likelihood function values as: 34473, 37175, 38154, 34367, and 38520. Accordingly, 

the solution obtained on the fifth trial is considered as being acceptable. The identified non-

dimensional parameter vector, * = [ 0.8627, 0.6638, 0.5698, 0.9357, 0.9379, 0.7573, 0.7194, 

0.5628, 0.9745, 0.6718, 0.6426, 0.9611, 0.4726, 0.5259, 0.9116, 0.9271, 0.8504, 0.9033, 

0.0354, 0.0929, 0.6049, 0.0541    0.4376, 0.4085, 0.0461, 0.5281, 0.4479, 0.6328, 0.1954, 

0.0210, 0.8477, 0.1116]t.

From these non-dimensional factors, the density of steel and aluminum are determined as 

7416.80 kg/m3 and 2551.20 kg/m3 respectively. Accordingly, the lumped  mass, and the mass 

moment of inertia at each floor are deduced as follows: 1 45.52 kgm  , 2 45.18 kgm  ,

3 45.52 kgm  , 4 36.10 kgm  , 5 43.22 kgm  , 2
1 2.18 kgmI  , 2

2 2.21 kgmI  ,

2
3 2.20 kgmI  , 2

4 1.80 kgmI  , and 2
5 1.91 kgmI  . Similarly, the stiffness matrix, K is 

obtained as 

    1.7090         0          -0.0992     -0.3708          0        0.0068         0             0            0                0            0                 0              0               0           0
         0        1.7090      -0.1480           0         -0.3708    0.0102         0            0            0                0            0                 0              0               0           0
   -0.0992   -0.1480       0.2368      0.0217      0.0324   -0.0474         0            0            0                0            0                 0              0               0           0
   -0.3708         0           0.0217      0.7416          0        -0.0137   -0.3708        0         0.0217          0            0                 0              0               0           0 
         0       -0.3708       0.0324           0          0.7416   -0.0203         0       -0.3708    0.0292          0            0                 0              0               0           0
    0.0068    0.0102      -0.0474     -0.0137     -0.0203    0.0959    0.0068    0.0102   -0.0473          0            0                 0              0               0           0
         0            0                 0         -0.3708           0           0.0068    0.7416         0       -0.0435   -0.3708         0          0.0137          0              0           0
         0            0                 0               0         -0.3708       0.0102         0        0.7416   -0.0584         0        -0.3708     0.0163          0              0           0
         0            0                 0          0.0217      0.0292      -0.0473   -0.0435   -0.0584    0.1023    0.0217    0.0292     -0.0482          0              0           0
         0            0                 0              0               0              0         -0.3708         0        0.0217    0.7416         0          -0.0275    -0.3708          0       0.0259
         0            0                 0              0               0              0               0       -0.3708    0.0292         0         0.7416     -0.0326          0       -0.3708    0.0328
         0            0                 0              0               0              0          0.0137    0.0163   -0.0482   -0.0275    -0.0326      0.0976     0.0137    0.0163   -0.0485
         0            0                 0              0               0              0               0             0            0        -0.3708         0            0.0137     0.3708         0       -0.0259
         0            0                 0              0               0              0               0             0            0              0        -0.3708       0.0163         0         0.3708   -0.0328
         0            0                 0              0               0              0               0             0            0          0.0259     0.0328     -0.0485    -0.0259   -0.0328    0.0537

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

The stiffness values in the x  and y -directions have the units of MN/m and the torsional 

stiffness is in MNm/rad. The damping ratios for the fifteen modes are obtained as 0.0361, 

0.0014, 0.0037, 0.0242, 0.0022, 0.0175, 0.0163, 0.0184, 0.0211, 0.0179, 0.0253, 0.0078, 

0.0048, 0.0339, and 0.0045 respectively. From the above structural matrices, thefifteen 

natural frequencies are determined as 4.8021, 4.9246, 10.1820, 13.3615, 13.7879, 20.8248, 
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Figure 4. Section 4; measured inter-storey drift used for updating reliability. 
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Figure 4. Section 4; measured inter-storey drift used  
for updating reliability.
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Figure 5. Section 4; measured base accelerationcorresponding to measurement used for 

system identification. 
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Figure 5. Section 4; measured base accelerationcorresponding  
to measurement used for system identification.
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Figure 6. Section 4; measured base accelerationcorresponding to measurement used for 

updating reliability models. 
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Figure 6. Section 4; measured base accelerationcorresponding to 
measurement used for updating reliability models.
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Figure 7. Section 4; comparison of measurement and estimated response 
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Figure 7. Section 4; comparison of measurement and estimated 
response
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Figure 8. Section 4; comparison of probability of failure determined experimentally and 

estimated by using the identified model. 
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Figure 8. Section 4; comparison of probability of failure 
determined experimentally and estimated by using the identified 

model.
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Figure 9. Section 4; control force; * 1.6 mm;  4.0 s.mh  
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stiffness matrix, K is obtained as

The stiffness values in the x  and y-directions 
have the units of MN/m and the torsional stiffness 
is in MNm/rad. The damping ratios for the fifteen 
modes are obtained as 0.0361, 0.0014, 0.0037, 0.0242, 
0.0022, 0.0175, 0.0163, 0.0184, 0.0211, 0.0179, 0.0253, 
0.0078, 0.0048, 0.0339, and 0.0045 respectively. From 
the above structural matrices, thefifteen natural 
frequencies are determined as 4.8021, 4.9246, 
10.1820, 13.3615, 13.7879, 20.8248, 21.9023, 24.3520, 
27.2877, 28.1258, 30.6755, 32.1236, 36.9902, 46.9998, 
and 55.1148 Hz.Comparison of the measured and 
estimated response of the inter-storey drift considered 
for identifying the system is shown in Fig. 7. Fig. 8 
shows the comparison of the probability of failure 
determined experimentally [40] and analytically for 
different values of the threshold level, *h . Based 
on the reasonably good mutual agreement between 
measured and estimated values evident in this figure, 
it is concluded that the task of system identification 
has been accomplished satisfactorily. The next step is 
to update the reliability model against future random 
excitations.

4.2 reliability Model updating

Measured inter-storey drift between fourth 
and fifth floors, as shown in Fig. 4 is considered for 
updating the reliability model. Similar to Eq. (20), the 
measurement equation is written as
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  is shown in Fig. 9. The conditional 
probability of failure is estimated using Methods 1 
and 2 (105 samples) for different threshold values 
and is plotted in Fig. 10 which demonstrates a good 
agreement between the two methods. The estimate 
for Method 1 shown in the plot is the mean of five 
estimates obtained each with a sample size of 500.

5. discussions and Conclusions

The numerical work associated with the illustration 
in section 4 was carried out on a Core ™ i5650 @ 3.20 
GHz computer with 8 GB of RAM. The time taken for 
obtaining the probability of failure using brute force 
Monte Carlo simulation along with 105 number of 
samples is 43393.24. Whereas, the proposed method 
takes 2151.37 s (1435.20s for obtaining the control 
force and 716.17 for 500 number of simulations). It 
is important to note that these time requirements 
crucially depend on the sample sizes used and 
step sizes adopted in various time discretization 
steps. Within the framework of the choices made, 
it can be observed that the results from variance 
reduction (Method 1) show significant reduction in 
computational time of the order of 70% as compared 
to brute force Monte Carlo simulation (Method 2).

The work reported in this paper develops a 
framework for updating reliability models of linear 
dynamical systems when measured data on the system 
performance under operating loads become available. 
The framework combines dynamic state estimation 
methods with simulation based approaches in 
estimating the reliability of the system conditioned on 
measured data and for ensemble of future excitations. 
The contribution of the paper lies in demonstrating 
the method earlier developed by the authors to 
problems with experimental measurement data, and 
development of a frame work for the problem of 
combined system identification and reliability model 
updating. 

Figure 10. Section 4; estimates of conditional probability  
of failure.
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1. introduction

Structures deteriorate with time during their 
normal use.  They also suffer damages when exposed 
to natural events like large earthquakes or high 
winds. Man-made events like impacts or explosions 
can also cause different levels of damages to them. 
To maintain the intended use of the structures and 
economic activities of the region, it is important to 
detect the location and severity of defects as early 
as possible to that required remedial actions can 
be promptly initiated. All defects are not equally 
important in maintaining the use of the structure. It 
is also important to decide whether the structure is 
beyond repair; it needs to be replaced. The topic has 
recently attracted serious multi-disciplinary research 
interests. This is generally known as structural 
health assessment (SHA) in the literature. Due to 
lack of available resources, developing objective 
SHA techniques is now one of the very active 
research areas in the profession. It has many different 
components including the study of structural 
behavior, development of sensors, presence of 
uncertainty in every phase of the investigations, and 
integrating all available information to objectively 
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assess the current health of a structure. The authors 
and their team members are active in developing 
inspection-based SHA techniques. Some of their 
recent work is presented in this paper.

The most common technique used for SHA is 
the visual inspection or assessment. By tapping a 
structure and listening to the generated sound to 
assess its health was used over centuries. Obviously, 
its success will depend on the experience of the 
inspector. A structure consisting of numerous 
structural elements, SHA can be very challenging 
using visual inspections. If defects are hidden behind 
walls, fire proofing material, facades, etc., they cannot 
be visually inspected. Sometimes, some parts of the 
structure can be inaccessible. If visual inspection 
indicates the location and type of defects, and if they 
are accessible, we have technological sophistication to 
inspect them more thoroughly using many techniques 
including radiographs, magnetic, ultrasonic, etc. 
However, their success will depend on the knowledge 
of locations and types of defects a priori. For real civil 
engineering structures, this type of information will be 
unavailable in most cases. These are generally known 
as non-model approaches. Alternatives to visual or 
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specialized instrument-based techniques need to be 
developed.  

To address numerous deficiencies of non-model 
based approaches, several model-based approaches 
were developed. The research team at the University 
of Arizona proposed several model-based approaches 
by representing structures by finite elements (FEs). 
The basic intent is that by tracking changes in the 
properties of these elements, the location and severity 
of defects can be detected. The FE-based formulation 
can be developed for the static or dynamic application 
of loading.  Due to its numerous advantages, the 
formulation based on dynamic application of loading 
is very popular with researchers. Dynamic behavior 
can be studied in two ways: (a) frequency domain 
using modal properties and (b) time domain. Since 
modal properties represent global behavior, i.e., 
whether the structure is defect-free or defective 
without giving information on the structure at the local 
level, only time domain approaches were exclusively 
considered by the research team.  It is not possible to 
present the state-of-the-art in the related areas here 
but it can be found in the literature [1-5]. 

2. Challenges in Structural Health assessment 

Before presenting a new concept, it is necessary 
to briefly discuss the challenges in structural health 
assessment and the contributions already made by the 
team. The overall basic idea in all activities of the team is 
related to the finite element-based time domain system 
identification (SI) concept and how to implement it 
in the most effective way. A typical SI-based concept 
has three essential elements: (a) characteristics of 
the dynamic loading to excite the structure, (b) the 
system to be identified, generally represented by 
finite elements, and (c) dynamic responses measured 
at different locations in the structure. By knowing 
the excitation and response information, the system 
can be identified using an inverse transformation 
technique.  The signature hidden in the response time 
histories will give the information on the heath of the 
structure. The dynamic properties of a system are 
generally expressed in terms of mass, stiffness, and 
damping. The mass of elements is generally assumed 
to be known. At present, damping properties may 
not be confidently correlated with the damage state 
of a structure. Thus, by tracking the changes in the 
stiffness properties of elements, or using information 
on them from the previous inspections, if available, or 
deviation from other similar structural elements, the 
location and severity of defects can be assessed. 

The concept appears to be straightforward. 
However, to increase its implementation potential, 
few challenges will have to be resolved.  Outside 
the laboratory environment, it is extremely difficult 
to record excitation time history. Just after an 
earthquake, it may not even be available at the location 
of interest. It will be extremely desirable, if the system 
can be identified using only response information, 
completely ignoring the excitation information. It will 
be mathematically challenging since two of the three 
elements of SI will be unknown.  It is also not possible 
to instrument the whole structure to collect response 
information. Thus, the structure needs to be identified 
using only limited responses measured at a small 
part of the structure. The dynamic responses, in our 
case, acceleration time histories must be measured 
by sensors (accelerometers).  However, no sensor is 
noise-free. Thus, a structure needs to be identified 
using only a small number of noise-contaminated 
responses. Considering the complexity and nature of 
challenges, Maybeck [6] suggested that the SI-based 
concept might not be appropriate to assess structural 
health. The team successfully demonstrated that the 
above statement is not correct. If different sources 
of uncertainties are treated appropriately with 
advanced data processing algorithms and other 
innovative approaches, a system can be identified 
using the SI-based concept and thus the health of a 
structure can be assessed. 

3. SHa approaches developed by the research 
team: a brief review

The team addressed all the challenges identified 
in the previous section. To address the excitation 
information-related problem, the team sequentially 
proposed several SI techniques with unknown input 
(UI). Using the least-squares based concept, the team 
members developed several techniques including 
iterative least-squares with unknown input (ILS-UI) [7], 
modified ILS-UI [8], generalized ILS-UI [9], and three 
dimensional generalized ILS-UI [10]. The measured 
response information can be noise-contaminated. 
The major weakness of these procedures is that they 
require dynamic response information to be available 
at all dynamic degrees of freedom (DDOFs). This 
led to the development of several procedures that 
can identify the structural system using only limited 
number of noise-contaminated responses. These 
procedures used the extended Kalman filter (EKF) 
concept. They are known as iterative least-squares 
extended Kalman filter with unknown input (ILS-
EKF-UI) [11], modified ILS-EKF-UI [12], generalized 
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ILS-EKF-UI [13], and three dimensional generalized 
ILS-EKF-UI [14].

4. necessity for a new SHa Procedure

All the discussions made in the previous sections 
are essentially for linear structural systems.  Most civil 
structural systems behave nonlinearly; therefore, a 
new SI-based SHA procedure is necessary for highly 
nonlinear systems and it is presented in this paper.

The nonlinear system identification using 
measured dynamic responses has attracted attention 
of researchers in the last decades. Nonlinearity is 
generic in nature and linear behavior is an exception 
[15]. However, the estimation of nonlinear systems 
is not easy. There are many sources of uncertainties 
in the state of the system; model uncertainties, 
measurement uncertainties, and uncertainties due 
to different sources of noise acting on the system. 
To get the optimal solution to the nonlinear filtering 
problem, a complete description of the conditional 
probability density is necessary. Unfortunately, 
unbounded number of parameters is required to 
get the exact description [16].  Many techniques of 
suboptimal approximation have been developed for 
nonlinear structural system identification. Kerschen 
et al. [15] presented a review of the past and recent 
developments in system identification of nonlinear 
dynamical structures.

Of the various reported methods, the Kalman  
filter is one of the best known and widely used 
algorithms for SI. It is robust and requires only the 
first and second moment of probabilistic description 
because the filter is well established on the basis of the 
linear Gaussian assumption. For nonlinear SI, EKF was 
developed to account for the nonlinearities. The EKF 
accounts for nonlinearities by linearizing the system 
about its last-known best estimate with the assumption 
that the error incurred by neglecting the higher-order 
terms is small in comparison to the first-order terms. 
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unscented Kalman filter with weighted global iteration 
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[18] in the EKF algorithm and denoted as extended 
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by several illustrative examples to verify and compare 
with EKF-based approaches and to demonstrate the 
implementation potential of the concept. 

5. Mathematical formulation

The UKF-WGI procedure is generally used 
when the response information is limited and noise 
contaminated. The use of UKF-WGI also helps to 
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incorporate error in the basic mathematical model 
representing the structure as well as the presence of 
noise in the response information. To implement any 
UKF-based approach, the excitation information and 
the state vector must be available. Obviously, the 
excitation information is unknown in the proposed 
approach. Also, at the initiation of the inspection, the 
vector will be unknown; it needs to be identified for 
SHA. The authors generated the necessary information 
using a substructure approach and the ILS-UI approach 
by considering responses are measured at a small part 
of a structure.  The identification of the substructure 
produces the information on the excitation. It also 
helps to estimate the initial state vector. The procedure 
is discussed in detail by the authors elsewhere [28, 
29]. Using the information on excitation and state 
vector, the whole structure can be identified by the 
UKF-WGI procedure. The mathematics behind UKF-
WGI is emphasized in the following discussions.  As 
mentioned earlier, the locations and severity of defects 
are assessed by comparing the identified stiffness 
parameters with expected or previous values if 
inspected previously, or deviation from other similar 
structural elements. 

5.1 Concept of uKf Procedure

For the implementation of UKF procedure, it is 
necessary to describe the dynamic system by a set 
of nonlinear differential equations expressing in the 
state-space form as:
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where h is the function that relates the state to the measurement;  is the state vector at t = 

kt; t is the constant time increment; and  is a vector of zero mean white noise Gaussian 

processes  with covariance matrix  . The noise covariance matrix is generally assumed to 

be diagonal. In the present study, the value of diagonal entries of  is considered to be 10-4.

To initiate the filtering algorithm, it is necessary to have an initial estimate of the uncertain 

state vector. The initial value of displacement and velocity not measured at DDOFs can be 

assumed to be zero. The initial value of stiffness parameters for the whole structure was 

considered to be their theoretical value of defect-free case. 

The initial error covariance matrix contains information on the errors in the observed 

displacement and velocity responses and in the initial values assigned to the unknown 

stiffness parameters of the whole structure. It is generally assumed to be a diagonal matrix 

with large numbers. Jazwinski [30] and Al-Hussein and Haldar [29] pointed out that the 

diagonal entries for the covariance values for the system parameters should be large positive 

numbers to accelerate the convergence of the iteration process. A value of 1000 is used in this 

study.  

The UKF procedure comprises three steps as following [31, 32]: 

a. Sigma vector calculation step 

At current state vector , sets of 2n+1 symmetric sigma vectors are generated so that they 

have the same mean and covariance of as following: 
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where  is the dimension of the state vector;  is a scaling parameter 

which determines the spread of the sigma points;  is a secondary scaling parameter;  is a 

square root of the covariance matrix such that ; and  is the ith column of ’s 

matrix. Note that must be symmetric and positive definite which allows us to find the 

square root using Cholesky decomposition. 

b. Prediction step 

In the prediction step, it is necessary to transform the sigma vectors through the nonlinear 

dynamic equation as: 

(6)

The predicted state vector can be shown to be:  

(7)

and its predicted error covariance matrix is: 

(8)

where  is a parameter added to the weight on the zeroth sigma point of the calculation of the 

covariance. The weight factor Wi can be shown to be: 
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processes for all q time points in the time history are termed as a global iteration. After the 

initial values are assigned to the state vector and its error covariance matrix, the local 

iterations are successively carried out for each q time point used in the identification to 

complete the first global iteration. To implement the next global iterations, the authors [29] 

incorporated the weighted global iteration with an objective function in the UKF algorithm to 

obtain a stable and convergent solution. In the second global iteration, the initial values of the 

stiffness parameters are the same as that of obtained at the completion of first global iteration. 

A weight factor w is introduced in the stiffness covariance matrix obtained at the completion 

of the first global iteration to amplify it and then used it as the initial stiffness covariance in 

the second global iteration. The same processes of local iterations are carried out for all the 

time points and a new set of state vector and error covariance matrix are obtained at the 

completion of second global iteration. The global iteration processes are continued until the 

estimated error in the identified stiffness parameters at the end of two consecutive global 

iterations becomes smaller than a predetermined convergence criterion ( ). If they diverge, 

the best estimated values based on minimum objective function are considered, as 

discussed elsewhere by Hoshiya and Saito [18]. 
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to the state vector and its error covariance matrix, the 
local iterations are successively carried out for each q 
time point used in the identification to complete the 
first global iteration. To implement the next global 
iterations, the authors [29] incorporated the weighted 
global iteration with an objective function in the UKF 
algorithm to obtain a stable and convergent solution. 
In the second global iteration, the initial values of the 
stiffness parameters are the same as that of obtained 
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at the completion of first global iteration. A weight 
factor w is introduced in the stiffness covariance 
matrix obtained at the completion of the first global 
iteration to amplify it and then used it as the initial 
stiffness covariance in the second global iteration. 
The same processes of local iterations are carried 
out for all the time points and a new set of state 
vector and error covariance matrix are obtained at 
the completion of second global iteration. The global 
iteration processes are continued until the estimated 
error in the identified stiffness parameters at the end 
of two consecutive global iterations becomes smaller 
than a predetermined convergence criterion (ε). If they 
diverge, the best estimated values based on minimum 
objective function 

12

where  is the updated state vector and  is the updated error covariance 

matrix. 

5.2 Integration of Weighted Global Iteration Procedure with UKF

The iteration processes between successive time points in the UKF procedure, i.e. generating 

sigma vectors, prediction, and updating steps, are termed as local iterations and the iteration 

processes for all q time points in the time history are termed as a global iteration. After the 

initial values are assigned to the state vector and its error covariance matrix, the local 

iterations are successively carried out for each q time point used in the identification to 

complete the first global iteration. To implement the next global iterations, the authors [29] 

incorporated the weighted global iteration with an objective function in the UKF algorithm to 

obtain a stable and convergent solution. In the second global iteration, the initial values of the 

stiffness parameters are the same as that of obtained at the completion of first global iteration. 

A weight factor w is introduced in the stiffness covariance matrix obtained at the completion 

of the first global iteration to amplify it and then used it as the initial stiffness covariance in 

the second global iteration. The same processes of local iterations are carried out for all the 

time points and a new set of state vector and error covariance matrix are obtained at the 

completion of second global iteration. The global iteration processes are continued until the 

estimated error in the identified stiffness parameters at the end of two consecutive global 

iterations becomes smaller than a predetermined convergence criterion ( ). If they diverge, 

the best estimated values based on minimum objective function are considered, as 

discussed elsewhere by Hoshiya and Saito [18]. 

6. Verification of the Proposed UKF-based Approach and Comparison with Previous 

EKF-Based Approach 

 are considered, as discussed 
elsewhere by Hoshiya and Saito [18].

6. Verification of the Proposed uKf-based 
approach and Comparison with Previous EKf-
based approach

Before the proposed UKF-based approach can 
be accepted, it needs verifications by identifying 
relatively large realistic structures exhibiting nonlinear 
behavior. To establish its superiority, it is also 
necessary to compare the identified results with the 
EKF-based procedure. For appropriate verification, 
both defect-free and defective states of the structure 
are considered. For the defective state, the presence of 
one or multiple defects of different levels of severity 
is considered. The optimum number of dynamic 
responses required to identify structural parameters 
is used in all cases. 

6.1 description of the frame

A one-bay three-story steel frame, as shown in 
Figure 1, is considered. The same frame was tested in 
the laboratory by the research team at the University 
of Arizona [37]. To fit the testing facilities, the frame 
was scaled to one-third of its actual dimensions. The 
scaled frame has a bay width of 3.05 m and story height 
of 1.22 m. The frame consists of 9 members; 6 columns 
and 3 beams. Steel section of size S4x7.7 was used 
for all the beams and columns in order to minimize 
the effects of fabrication defects and differences in 
material properties. The frame is represented by 
the finite element (FE) with 9 elements and 8 nodes. 
Each node has three DDOFs; two translational and 
one rotational. The support condition at the bases is 
considered to be fixed. Therefore, the total number 
of DDOFs for the frame is 18. The actual stiffness 
parameters ki, defined in terms of (Ei Ii /Li), for the beam 
and column are estimated to be 96500 N-m and 241250 

N-m, respectively. The first two natural frequencies of 
the defect-free frame are estimated to be f1 = 9.90 Hz 
and f2 = 34.77 Hz. Then, the two Rayleigh damping 
coefficients α and β are estimated using the procedure 
suggested by Clough and Penzien [38]. The value 
of α and β is found to be 1.1628328 and 0.00008559, 
respectively for an equivalent modal damping of 
1.201%. The frame is excited by a sinusoidal load 
f(t) = 1400 sin (58.23t) N applied at node 1 as shown 
in Figure 1. For the theoretical verification of the 
methods, the responses of the frame in the presence 
of geometric nonlinearity are numerically generated 
using a commercial software ANSYS (ver. 15.0) [39]. 
The responses in terms of displacement, velocity and 
acceleration time histories are collected at 9 DDOFs 
(responses at nodes 1, 2 and 3). The responses used in 
the health assessment process are from 0.02 to 0.32s 
with time increment of 0.00025s providing a total of 
1201 time points.

6.2 Health assessment of frame

The capabilities of the proposed UKF and EKF-
based procedures are examined in this paper by 
considering the following cases:
1. Defect-free and a small defect in a single 

member
2. Moderate to severe defect in a single member
3. Defects in multiple members

6.2.1 defect-free and a small defect in a single 
member

The optimum number of responses required 
to identify the frame is found to be 9.  Using only 
responses at 9 DDOFs (nodes 1, 2 and 3), the 
stiffness parameters of all members in the frame are 
identified for the defect-free state and the results are 
summarized in Table 1, Column 3. The maximum error 
in the identification (percentage changes in identified 
stiffness parameters with respect to the actual values) 
is about 0.1%. The acceptable error in the identification 
process was reported to be about 10% [40, 41]. 
Obviously, the proposed UKF-WGI is very accurate. 
Since the identified stiffness parameter did not vary 
significantly from one member to another and from 
the expected values, the proposed method correctly 
identified the defect-free state of the frame. 

The same frame is then identified using the EKF-
WGI procedure and the results are summarized in 
Column 4 of Table 1. The maximum error in the 
identification is about 0.8%. It is still within the 
acceptable level but not as good as the proposed 
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method. For this case also, the defect-free state can be 
predicted but with less confidence.

After the successful verification of the defect-
free state, the following two defect scenarios are 
considered:
a. Defect 1 - loss of cross-sectional area over a finite 

length in member 3
b. Defect 2 – reduction in stiffness of member 3 by 

10%

For Defect 1, the cross-sectional area of member 
3 is considered to be corroded over a length of 20 
cm, located at a distance of 0.5 m from node 5, as 
shown in Figure 2. The web and flange thicknesses 
are considered to be reduced by 40% of their original 
values. The loss of thicknesses will result in the 
reduction of the cross-sectional area by 38.70% and the 
moment of inertia by 35.46% from the nominal values. 
For Defect 2, the moment of inertia of member 3 over 
the entire length is considered to be reduced by 10% 
of the defect-free value.

Using only responses at 9 DDOFs (nodes 1, 2 and 
3), the stiffness parameters of all members in the frame 
are identified for the above-mentioned two cases using 
both UKF and EKF-based procedures and the results 

Table 1. Change (%) in identified stiffness parameter 
(EI/L) for defect-free and small defect cases

Mem- 
ber

Theore-
tical 

(N-m)

Defect-
Free Defect 1 Defect 2

UKF EKF UKF EKF UKF EKF
(1) (2) (3) (4) (5) (6) (7) (8)
k1 96500 0.0 -0.1 -0.1 0.0 0.1 0.2
k2 96500 0.0 0.2 0.1 0.1 -0.1 -0.5
k3 96500 0.0 -0.2 -4.3 -4.3 -9.6 -9.1
k4 241250 0.0 -0.1 0.1 -0.1 0.2 -0.1
k5 241250 0.1 -0.8 -0.1 -0.8 0.2 -0.5
k6 241250 0.1 0.1 -0.2 -0.1 0.1 -0.2
k7 241250 0.0 -0.2 0.0 -0.2 0.0 -0.3
k8 241250 0.0 0.2 -0.3 -0.1 -0.5 -0.5
k9 241250 0.0 0.1 -0.3 -0.2 -0.4 -0.6

Table 2. Change (%) in identified stiffness 
parameter (EI/L) for moderate to severe defect cases

Member
Theore- 

tical  
(N-m)

Defect 3 Defect 4 Defect 5

UKF EKF UKF EKF UKF EKF

(1) (2) (3) (4) (5) (6) (7) (8)
k1 96500 0.2 -1.6 -0.5 -7.2 -79.9 -80.4
k2 96500 -0.4 2.9 -29.3 -19.9 -0.5 6.7
k3 96500 -19.1 -23.1 -1.1 -17.8 0.7 -16.9
k4 241250 0.4 -2.3 -0.5 -5.9 0.0 -0.2
k5 241250 0.5 -5.1 -1.0 -15.0 0.8 -15.7
k6 241250 -0.2 4.8 1.9 17.5 -0.5 15.1
k7 241250 0.1 -2.8 -1.3 -27.0 1.8 -13.0
k8 241250 -0.9 2.4 -0.6 46.7 -1.1 47.7
k9 241250 -0.9 2.0 1.9 -10.0 -0.1 -17.2

Table 3. Change (%) in identified stiffness 
parameter (EI/L) for multiple defects

Member
Theore- 

tical  
(N-m)

Defect 6 Defect 7 Defect 8

UKF EKF UKF EKF UKF EKF

(1) (2) (3) (4) (5) (6) (7) (8)
k1 96500 -60.1 -62.0 -0.2 -7.5 -30.0 -34.7
k2 96500 -29.7 -23.2 -24.8 -14.2 -20.0 -9.8
k3 96500 -0.8 -16.4 -15.0 -32.2 -9.9 -27.6
k4 241250 -0.2 -3.9 -0.1 -6.7 0.1 -5.8
k5 241250 -0.6 -14.8 -0.2 -15.8 0.2 -15.9
k6 241250 1.0 18.9 0.7 19.3 0.3 19.8
k7 241250 -0.4 -21.8 -0.4 -21.2 0.0 -20.5
k8 241250 0.3 44.3 -0.4 37.8 -0.3 36.9
k9 241250 0.8 -12.3 0.0 -3.1 -0.1 -3.0

24

Figure 1. Finite element representation of three-story frame

Figure 2. Defect 1 representation 
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are summarized in Table 1. The results indicate that 
both the UKF and EKF-based procedures identified the 
location and severity of defects correctly. However, 
UKF-WGI appears to be superior to EKF-WGI in 
identifying Defect 2.   

It can be concluded that both methods are capable 
of identifying defect-free and defective states of the 
frame but the proposed method appears to be better 
than EKF in the overall sense.   

6.2.2 Moderate to severe defect in a single member

In this case, the following three defective scenarios 
are considered:
a. Defect 3 - reduction in stiffness of member 3 by 

20%
b. Defect 4 - reduction in stiffness of member 2 by 

30%
c. Defect 5 - reduction in stiffness of member 1 by 

80%

In these defects, the moment of inertia of the 
member over the entire length is considered to be 
reduced by the specified percentage from the defect-
free value. The results of all three defects using UKF-
WGI and EKF-WGI are summarized in Table 2.  For 
Defect 3 with 20% reduction, both procedures appear 
to locate the defective member correctly. However, 
in detecting the severity of the defect, EKF-WGI is 
less accurate. Also, by considering the changes in the 
stiffness parameter of all the members, EKF-WGI is less 
conclusive.  Differences of the two approaches become 
very significant for Defects 4 and 5. In fact, one can 
conclude that EKF-WGI failed to identify the defective 
states. Changes in the stiffness parameter for defect-
free members for Defect 4 are higher than the defective 
member.  For Defect 5, one can erroneously conclude 
that more than one member are defective. An inspector 
should not have any such assessment difficulties if 
UKF-WGI is used. The proposed method is accurate 
and superior to EKF-WGI in every aspect. 

6.2.3 defects in multiple members

In this case, the following three defective scenarios 
are considered:
a. Defect 6 - reductions in stiffness of members 1 

and 2 by 60 and 30%, respectively
b. Defect 7 - reductions in stiffness of members 2 

and 3 by 25 and 15%, respectively
c. Defect 8 - reductions in stiffness of members 1, 2, 

and 3 by 30, 20, and 10%, respectively

In these defects, the moment of inertia of more 
than one member over the entire length is considered 
to be reduced by the specified percentage from the 
defect-free value. The identified stiffness parameters 
of all the members for all the defect scenarios using 
UKF-WGI and EKF-WGI are summarized in Table 
3. All the observations made for Defects 3- 5 in 
the previous section are also applicable for these 
defective states. The proposed UKF-WGI not only 
identified the defective members correctly, it also 
estimated the severity of the defects accurately. On 
the other hand, EKF-WGI failed to identify the frame 
and cannot be used for the SHA of the frame under 
consideration. 

From the examples given in the paper and 
considering other examples given by the team using 
EKF-WGI elsewhere, it can be concluded that the 
applicability of the two procedures will depend on the 
level of nonlinearity. Both methods will be appropriate 
for linear or mildly nonlinear cases. However, since 
the level of nonlinearity is expected to be unknown at 
the initiation of the inspection, to be on the safe side, 
the UKF-based proposed procedure should be used 
to assess structural health in the future. 

7. Conclusions

A novel structural health assessment procedure 
for nonlinear structural systems is presented. It is 
developed by integrating the unscented Kalman 
filter concept with the weighted global iteration 
procedure with an objective function. It is denoted 
as unscented Kalman filter with weighted global 
iteration (UKF-WGI). It is a finite elements-based 
time-domain system-identification technique. 
It can be used to assess structural health at the 
element level using only a limited number of 
noise-contaminated responses. The efficiency of the 
procedure is demonstrated by identifying a realistic 
frame. Defect(s) with different level of severity is 
simulated in single and multiple member(s) and 
then the capability of the procedure is examined. 
The examples confirmed that the method is capable 
of identifying defect-free and defective states of 
structures. The proposed method is compared with 
the EKF-WGI procedure. The proposed UKF-WGI 
is superior to EKF-WGI in all aspects, particularly 
when the level of nonlinearity is severe. Since the 
level of nonlinearity is expected to be unknown at 
the initiation of the inspection, to be on the safe side, 
the proposed UKF- based procedure should be used 
to assess structural health in the future. 
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abstract   

The Wavelet Transforms have been used to enhance damage sensitive features for structural health 
monitoring. Although, the Continuous Wavelet Transforms have also been employed, the Discrete 
Wavelet Transform (DWT) becomes a natural choice in view of its capability to optimally localize 
the space/time and frequency/scale resolution. Whereas, a number of alternative DWT families 
exist; the choice of a particular basis for enhancement of damage features is somehow arbitrary. 
In the present study, the feature enhancement capability of several most commonly employed 
wavelet families are compared in order to assess their relative efficacy. The superior performance 
of Cohen-Daubechies-Feauveau family is observed and appears to be the sole choice where the 
damage onset is at immediate vicinity of the boundary. The relative efficiencies of enhancements 
are demonstrated considering the possible variations of the damage locations, extents, as well 
as alternate features.

Keywords: Damage Detection, Wavelets, Mode Shape Curvature, Damage Feature, Sensitivity 
analysis

1. introduction

Assessment of structural health and prognosis 
becomes an increasing concern to the structural 
engineering research community. This includes 
detection, classification, identification of location and 
determination of severity of damage, estimation of 
the remaining service life and if necessary proposing 
suitable retrofitting options. Though, the traditional 
nondestructive techniques are quite popular for the 
detection of damage in structures, they required 
manual intervention and can only identifies local 
damage. The aim of modern Structural Health 
Monitoring (SHM) is the real time, automatic and 
continuous assessment of structures in service with 
minimum manual intervention. They also aim to be 
global i.e. can detect damage in any location of the 
structure. Further, the SHM methodologies must be 
robust i.e. tolerant to environmental noise. Therefore, 
the research in modern SHM strives at exploring 
and deriving features from the structural response, 
which can faithfully indicate the onset of structural 
damage.

A number of investigations in search of damage 
sensitive features have been taken up in the past. A 
brief review of these can be seen in Doebling et al. [1]. 

Most of these features are based on measured vibration 
signal of the structure and the typical features are 
based on changes in their natural frequencies, mode 
shapes [2], changes in modal curvature [3], changes 
in Frequency Response Function (FRF) [4] and so 
on. All such features are based on the assumption 
that the changes in the properties of the structure are 
essentially reflected in changes of these parameters. 
Although these techniques perform well in some 
cases, they often suffer from the fact that it is not easy 
to extract local information caused by small damage 
from modal parameters, which is rather a global 
characteristic [5]. The development of time domain 
based methodologies in the recent past which do 
not require data reduction and feature extractions is 
notable. The time domain approach was employed for 
damage detection in beam using vibration data with a 
moving oscillator as an excitation source [6]. The time 
domain methodology has been extended to damage 
detection in smart structures [7] as well. Time domain 
identification of structure by Extended Kalman Filter 
was introduced by Hoshiya and Saito [8]. This has 
been extended and generalized by Ling and Haldar 
[9], which was also validated experimentally by Vo 
and Haldar [10]. More details on time domain based 
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methodology can be obtained from Sohn and Farrar 
[11].   

The wavelet transform has been appeared to be one 
of the most prominent techniques[12,13]to enhance 
the sensitivity of damage features with respect to the 
incipient damage in structures. Wang and Deng [5] 
proposed a damage detection technique using Wavelet 
and demonstrated it on a damaged beam with a crack. 
The technique avoids complete analysis of structure 
and does not require prior knowledge on the reference 
structure. Hou et al. [12] demonstrated the Wavelet 
based approach for structural damage detection with 
reference to a model, consisting of multiple breakable 
springs, to show the effectiveness of the technique in 
detecting fatigue induced damage. It is shown that the 
technique is robust against noise intensity and damage 
severity. The relatively lower frequency resolution 
capability of Wavelet transforms have been overcome 
by usage of Wavelet Packet Transform, as reported 
by Sun and Chang [13] for SHM applications. In 
their study, the Wavelet packet based damage 
features were corroborated to the damage severity 
through regression analysis by means of Neural 
Network. The Wavelet based damage detection 
methodology has been implemented in frame 
structure by Ovanesova and Suarez [14]. The two 
dimensional Haar wavelet has been used by Kim 
et al. [15] for nondestructive damage evaluation of 
plates using multi-resolution analysis. Rucka and 
Wilde [16] studied the application of Continuous 
Wavelet Transform in vibration based damage 
detection of beams and plates, considering the mode 
shapes containing the damage features. The Wavelet 
Transform of the mode shape difference has been 
identified as a potential damage feature by Poudel 
et al. [17]. Although, the mode shape curvature has 
been well established as an effective damage feature, 
Wang and Qiao [18] has shown the potential of 
the irregularity in mode shapes as a good damage 
indicator in beam, achieved through Wavelet based 
processing of irregular profile.

The choices of Wavelet basis are somewhat 
arbitrary in most of the aforementioned studies. In 
certain instances, the Continuous Wavelet family 
has been adopted, whereas, in others, the Discrete 
Wavelet Transform is a choice. In both the discrete 
and continuous Wavelet Transform, specific basis 
has also been used for extraction of damage sensitive 
features. The usage of Wavelet is attractive due to the 
fact that the Wavelet transforms are quite efficient 
to amplify the hidden singularities in the response 

signal of the structure [19]. Further, the Wavelets 
also pose excellent capability of localizing an event in 
time and/or space, which make effective for analysis 
of non-stationary signals [20]. However, with these 
facts, the choice of the class of Wavelet or particular 
basis function for this purpose is still somewhat ad 
hoc in nature. A particular choice does not essentially 
ensure that for a given scenario, the selection of basis 
is optimal. In this context, it is of worth mentioning 
here that a number of studies have been reported 
in the past on the optimal selection of wavelet 
basis for various other applications for example in 
signal de-noising [21], texture classifications [22]  
and multi-scale data representation [23]. Motivated 
with these applications, the feature enhancement 
capabilities of most commonly employed wavelet 
families are compared in this study to assess their 
relative efficacy. For demonstration purpose, the well 
acclaimed modal curvature difference (with respect 
to reference structure) and its hierarchical scale-wise 
wavelet decompositions are adopted as the damage 
sensitive features. The superior performance of Cohen-
Daubechies-Feauveau (CDF) family is observed and 
appears to be the sole choice where the damage onset 
is at immediate vicinity of the boundary. The relative 
efficiencies of enhancements are demonstrated with 
regard to the possible variations of damage locations, 
extents as well as alternate feature.     

2. background and formulations

2.1 Mode Shape Curvature as a damage sensitive 
feature

The mode shapes of a structure are obtained by 
solving the respective generalized eigenvalue problem 
as:
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in which double subscripts of j refers to the second 
order derivative with respect to the spatial coordinate 
j and x∆ is the spatial resolution of the mode shape. 
The mode shape curvature is related to the flexural 
stiffness of beam section as:
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Where, M is the bending moment at a section, 
E is the modulus of elasticity, and I is the second 
moment of inertia of the cross sectional area. The 
reason of sensitivity of mode shape curvature to the 
damage is due to the reduction in flexural rigidity
( )EI , which leads to locally increased curvature 
around the location of damage. Therefore, the mode 
shape curvature feature becomes useful for detecting 
and localizing damage. Furthermore, the change in the 
mode shape curvature can be correlated to the changes 
in the flexural rigidity ( )EI , from which an estimate 
of the extent of damage can be derived.   

It may be noted here that the present study does 
not emphasize or advocate for the usage of only 
modal curvature feature, but adopt this as a feature to 
demonstrate the wavelet enhancement of the feature 
sensitivity with respect to damage. In fact, as far as 
the wavelet enhancement is concerned, any damage 
feature can be adopted for the purpose and the present 
formulation is not restricted to any particular damage 
feature.     

2.2 feature Enhancement by the Wavelet 
transform

The Wavelet Transform is an important 
mathematical tool for multi-resolution analysis to 
represent hierarchical data. The transform uses certain 
wavelet basis which are derived from basic templates 
by scaling and shifting the respective mother wavelets. 
A variety of different wavelet exists and particular 
families of wavelet are suitable over the others for 
case specific applications. The major advantage of 
wavelet analysis of a function is that it enables one 
to extract and examine its features on different scales 
and locations. In one dimension, a continuous wavelet 
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Where c is a constant evaluated from the properties of the wavelet basis. 

The wavelets can be broadly categorized as continuous or discrete wavelets. In continuous wavelet, 

the wavelet basis function is expressed as a continuous function whereas, the discrete wavelets are 

expressed as a discrete filters defined by the coefficients’ values and positions. An arbitrary level of 

frequency resolution is possible to attain through the Continuous Wavelet Transform (CWT), 

whereas, the Discrete Wavelet Transform (DWT) will only provide the transform in terms of a 

number of discrete scales, the resolution of which is dictated by the sampling resolution of the 

function/signal and the resolution of that scale. Unlike the spectrum of scales (frequencies) provided 

by the CWT, the DWT optimally adjust its localization in space/time and in frequencies/scales. In 

doing so, a balance must be established between the two, since arbitrary resolution cannot be 

achieved. An improved resolution in one is always at the expense of compromise in the other, which 

is analogous to the uncertainty principle (resolution in position and momentum) in quantum 

mechanics [26].   

The DWT algorithm is implemented as a fast algorithm. A digitized function of length n  is 

alternatively convolved with the low and high pass filters to result into fine and coarse information 

respectively, which are subsequently grouped into two halves of length  2n by down sampling the 
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wavelet, the wavelet basis function is expressed 
as a continuous function whereas, the discrete 
wavelets are expressed as a discrete filters defined 
by the coefficients’ values and positions. An 
arbitrary level of frequency resolution is possible to 
attain through the Continuous Wavelet Transform 
(CWT), whereas, the Discrete Wavelet Transform 
(DWT) will only provide the transform in terms of a 
number of discrete scales, the resolution of which is 
dictated by the sampling resolution of the function/
signal and the resolution of that scale. Unlike the 
spectrum of scales (frequencies) provided by the 
CWT, the DWT optimally adjust its localization 
in space/time and in frequencies/scales. In doing 
so, a balance must be established between the two, 
since arbitrary resolution cannot be achieved. An 
improved resolution in one is always at the expense 
of compromise in the other, which is analogous to 
the uncertainty principle (resolution in position and 
momentum) in quantum mechanics [26].  

The DWT algorithm is implemented as a fast 
algorithm. A digitized function of length n  is 
alternatively convolved with the low and high pass 
filters to result into fine and coarse information 
respectively, which are subsequently grouped into 
two halves of length ( )2n by down sampling the 
signal. The process is repeated by choosing the next 
coarser part of the signal of length( )2n . At the end, 
a number of scales containing increasingly finer and 
coarser information are obtained. The aforementioned 
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Figure 2: The analysis wavelet filters for the CDF wavelets      

decompositions of a signal is schematically shown in 
Figure 1.

Figure 1: Hierarchical scale-wise decomposition  
of a function through DWT

Although the application of CWT in SHM is 
reported in literature [16], the DWT is naturally a 
better choice for feature enhancement, keeping in view 
the ability of DWT to localize the scale/frequency 
and time/location of a signal/field variations in 
an optimal manner [26, 27]. However, there exist a 
number of discrete wavelet families to carry out the 
DWT, which are broadly classified as orthogonal and 
bi-orthogonal wavelets. In the Orthogonal wavelet the 
basis wavelets (i.e. the analysis filter for the forward 
transform and the synthesis filter for the inverse 
wavelet transform) are orthogonal. Whereas in Bi-
orthogonal two different sets of filters are employed, in 
which, the analysis and synthesis filters are mutually 
orthogonal among themselves. Thus requires two 
set of orthogonality conditions to be satisfied. Due to 
this, the bi-orthogonal wavelets allow more degrees of 
freedom than the orthogonal wavelets while designing 
the filter and hence allow the possibility of designing 
symmetric filter [23, 28]. 

The wavelets transform defined until now assume 
that the function is either periodic and/or fixed at its 
ends. Most of these wavelet transform cannot take 
care of the finite interval on which the signal/field is 
defined. Recently, some special class of wavelets are 
developed which are defined on the exact interval of 
the real line, termed as Wavelets in the interval, which 
can adaptively adjust their number of coefficients in 
the filter as it perform the convolution operations 
increasingly closer to the boundaries [29]. The Bi-
orthogonal family offers such flexibility for treatment 
of the finite boundary, while designing/modifying the 
filters for wavelet transform near the boundary.

This class of wavelets is designed based on 
lifting scheme, which also offer much convenience 
for developing such wavelets. One of the earliest 
wavelet that was defined on the interval was that of 
CDF wavelet, which is adopted in the present study 
for processing the damage feature for enhancement. 
Such class of wavelet, due to their capability of exactly 

representing the data on and around the immediate 
vicinity of the boundary is expected to perform better 
when the damage is particularly localized around the 
boundaries of the domain. The underlying analysis 
filters (CDF filter) are shown in Figure 2(a) and 2(b). 
The symmetric nature of these wavelets is particularly 
notable as offered by the bi-orthogonal family only. 
However, near the boundary of the signal the filters 
modify its length and value of the coefficients as well. 
The details of such wavelet can be found elsewhere 
[27, 29].  
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indicated by many investigators [3]. This is chosen as the feature for demonstration of further 

enhancement that can be achieved through wavelet transform technique.  

In this context, it is worth mentioning that the difference in modal curvature itself is an excellent 

feature to detect and localize damage in structure and further enhancement of the feature might not 

be necessary except in some pathological cases. One such case is considered herein which the 

damage lays at the boundary of the structural domain. Although the efficacy of the wavelet 

enhancement is demonstrated here with respect to the mode shape curvature feature, the procedure is 

general enough to be applied to any type of damage feature and can be useful in enhancing features 

to facilitate damage detection and localization which is otherwise not possible or obscure in many 
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the boundary of the structural domain. Although the 
efficacy of the wavelet enhancement is demonstrated 
here with respect to the mode shape curvature feature, 
the procedure is general enough to be applied to any 
type of damage feature and can be useful in enhancing 
features to facilitate damage detection and localization 
which is otherwise not possible or obscure in many 
circumstances. Once established, the wavelet based 
enhancement and the optimal choice of the underlying 
wavelet basis for the same can be extended for more 
cases where the identification of damage through 
conventional damage feature poses problem.   

The wavelet transform is applied on the difference 
in the mode shape curvature, and the respective vector 
quantity is decomposed into number of scales (denoted 
by 
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The Wavelet transform (with Daubechies basis 6.8) of the same is presented in Figure 3 along 

hierarchy of scales with varying spatial resolutions along the scales. It is observed that, as one moves 

from coarser (low frequency resolution) to finer (higher frequency resolution) scales, the spatial 

resolutions get compromised. The implications of this in feature enhancement (the singular function 

is the feature itself) is that with increasingly finer scales, the enhancement increases (as shown by the 

numerical values) but that is simultaneously accompanied by an increasingly reduced level of 

localization capability. The enhancement is evaluated and its efficiency is demonstrated in enhancing 

the feature in the following section for case specific damage scenarios. 

4. Numerical Illustration and Discussions 

A cantilever beam is selected for numerical illustration on the present Wavelet based damage feature 

enhancement strategy. The idealized beam is inflicted with artificial damage by locally reducing its 

stiffness, i.e. its flexural rigidity  EI . The respective mode shapes are obtained by modal analysis. 

The curvature of the mode shapes are then obtained by finite difference approximation. First, the 

damage is inflicted at the middle of the beam and the respective modal curvature values along 

different nodes along the length of the beam are processed through the DWT. The beam is 

discretized into 512 numbers of nodes for finite element based analysis used for demonstration 

purpose. In this regard, it is worth mentioning that it is often practically not feasible to instrument a 

realistic structure with many numbers of sensors to get its responses at all nodes. The wavelet 

analysis of the data, on the other hand, requires sufficient data length for its processing through fast 

algorithms. In such situation, some expansion technique must be employed in order to extend the 

measured data to sufficient length to make it amenable to wavelet processing [30,31].       

The mode shapes of damaged and undamaged structures are processed for their curvatures and the 

difference is obtained. The enhancement of this feature, as attained through alternative families of 

wavelet transforms are shown in Figure 4(b), whereas the feature itself (difference in mode shape 

The Wavelet transform (with Daubechies basis 6.8) 
of the same is presented in Figure 3 along hierarchy 
of scales with varying spatial resolutions along 
the scales. It is observed that, as one moves from 
coarser (low frequency resolution) to finer (higher 
frequency resolution) scales, the spatial resolutions 
get compromised. The implications of this in feature 
enhancement (the singular function is the feature 
itself) is that with increasingly finer scales, the 
enhancement increases (as shown by the numerical 
values) but that is simultaneously accompanied by an 
increasingly reduced level of localization capability. 
The enhancement is evaluated and its efficiency is 
demonstrated in enhancing the feature in the following 
section for case specific damage scenarios.
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purpose. In this regard, it is worth mentioning that 
it is often practically not feasible to instrument a 
realistic structure with many numbers of sensors to 
get its responses at all nodes. The wavelet analysis of 
the data, on the other hand, requires sufficient data 
length for its processing through fast algorithms. 
In such situation, some expansion technique must 
be employed in order to extend the measured data 
to sufficient length to make it amenable to wavelet 
processing [30,31].      

The mode shapes of damaged and undamaged 
structures are processed for their curvatures and the 
differences are obtained. The enhancement of this 

feature, as attained through alternative families of 
wavelet transforms are shown in Figure 4(b), whereas 
the feature itself (difference in mode shape curvature) is 
shown in Figure4(a).The particular wavelet basis that has 
been employed in generating these plots are Daubechies 
4, bi-orthogonal spline10.4 and CDF 4.6 [19,20].

Although the difference in the mode shape 
curvature itself has been proved to be an excellent 
candidate for feature based detection of damage, the 
present results show that the sensitivity of the same 
has been improved by an order of magnitude (around 
300) with the application of the Wavelet Transform. 
Further, all the wavelets are not equally effective in 
enhancing the feature. Figure4(b) clearly indicates to 
the relative superiority of the CDF Wavelet over the 
Orthogonal or Bi-orthogonal ones. Also notable is the 
much improved efficiency of enhancement attained 
through the Bi-orthogonal family while compared 
with its orthogonal counterparts.   

It must be mentioned here that the wavelet 
enhanced feature as depicted in Figure4(b) belongs to 
a specific scale for each family of wavelets. However, 
it is observed that the specific scale at which the 
maximal enhancement occurs varies from one wavelet 
family to the others. The scale-wise variations of such 
enhancement are further illustrated in Table 1 for 
each wavelet family. It is observed that the maximum 
enhancement in each wavelet family corresponds to 
different scale, which may be termed as the dominant 
scale for enhancement of damage features. Results 
in Table 1 also clearly show that the enhancement 
capability of the Bi-orthogonal family is much 
more than the orthogonal ones and the maximum 
enhancement is obtained by using the CDF family, 
which is a special class of bi-orthogonal wavelet 
defined on the exact interval of the real line. 
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The wavelet based feature enhancement capability 
is further studied with respect to the same modal 
curvature but corresponds to higher modes (the second 
and third modes) which can be treated as alternate 
features. The difference in mode shape curvature from 
these two higher modes are shown and compared 
in Figure 5(a), whereas the respective mode specific 
wavelet enhancements are shown in Figure 5(b). As it 
is already established from the previous results (Figure 
4(b)) that the CDF is the preferred choice among the 
other alternative wavelet family, the results from the 
CDF is only presented and compared in these plots. It 
is observed that the mode shape curvature in higher 
modes (second/third modes) shows much higher 
sensitivity in their respective feature value. However, 
comparing their wavelet enhanced counterparts, it 
can be inferred that the first mode enrichment rather 
shows better feature than the higher (second) mode 
enrichment. In this regard, it is important to note that, 
though the sensitivity of the mode shape curvature 
feature increases substantially in increasingly higher 
modes, exciting the structure in higher modes poses 
difficulty [25]. Thus, the wavelet feature enhancement 
to provide  much better feature in the first mode 
itself (over the higher ones) provide an important 
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Figure 6: (a) Difference in Mode Shape curvature for a beam 
damaged at the boundary and respective wavelet enhanced 

feature (b) at scale  resolution 64

around the immediate vicinity of the boundary is expected to perform better when the damage is 

particularly localized around the boundaries of the domain. The underlying analysis filters (CDF 

filter) are shown in Figure 2(a) and 2(b). The symmetric nature of these wavelets is particularly 

notable as offered by the bi-orthogonal family only. However, near the boundary of the signal the 

filters modify its length and value of the coefficients as well. The details of such wavelet can be 

found elsewhere [27, 29].   

With the above discussion in view, the wavelet transform from various families have been applied on 

the mode shape curvature based damage feature to enhance the sensitivity of the same. The feature 

enhancements are qualitatively presented in the subsequent discussion. A comparison among the 

relative enhancements is also presented in order to identify the best suitable family of wavelet basis 

for such purposes.    

3. Wavelet Based Enhancement of Mode Shape Curvature Based Damage Feature

The difference in the i th mode shape curvature can be evaluated as: 
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u are the i th mode shape curvatures of the damaged and undamaged structure, 

respectively. These can be readily obtained from equation (2) using  i
d and  i

u , the i th mode 

shape from the damaged and undamaged structure. This provides a legitimate damage feature as 

indicated by many investigators [3]. This is chosen as the feature for demonstration of further 

enhancement that can be achieved through wavelet transform technique.  

In this context, it is worth mentioning that the difference in modal curvature itself is an excellent 

feature to detect and localize damage in structure and further enhancement of the feature might not 

be necessary except in some pathological cases. One such case is considered herein which the 

damage lays at the boundary of the structural domain. Although the efficacy of the wavelet 

enhancement is demonstrated here with respect to the mode shape curvature feature, the procedure is 

general enough to be applied to any type of damage feature and can be useful in enhancing features 

to facilitate damage detection and localization which is otherwise not possible or obscure in many 
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x)

alternative to bypass the requirement and difficulties 
associated with exciting the higher modes in search 
for more sensitive damage feature.

Until now, the discussion is limited to the damage 
that are occurring in the mid span (or close to the mid 
span) or far from the boundaries of the structure. In 
next, the damage at the immediate vicinity of the 
boundary of the domain is considered. The cantilever 
with a localized damage very close to the free end 
is considered. Respective difference in mode shape 
curvature value is then obtained and shown in 
Figure 6(a). It is observed that the damage near the 
boundary cannot be represented by the mode shape 
curvature feature, as there is no marked discrepancies 
(singularity) observed in the plot, which is unlike 
to the observations made earlier (Figure 4(a)), in 
case of damage in the middle of the domain or at 
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the other is due to the fact that this particular wavelet 
family is exactly defined over the finite interval [28,29] 
and the respective transform can exactly represent the 
minute details at the boundary, which is not possible 
to achieve by using the other class of wavelet basis.

The performance of the wavelet enhancement 
scheme is further tested in case of multiple damage 
scenarios. The damage is initiated in two segments of 
the beam, at 1/3 and 2/3 of the span. The magnitudes 
of damage, as defined by the respective reductions in 
stiffness properties of the section are adopted to be 
identical. Respective difference in the mode shape 
curvatures are shown in Figure 7(a), in which the 
occurrence of the damage are clearly reflected by the 
two jumps. The enhancements of these features are 
further achieved following the procedure of wavelet 
transform, and the enhanced features are shown in 
Figure 7(b).It can be observed that the enhancements 
are achieved for both the damage scenarios as 
reflected in the peaks shown in Figure 7(b). However, 
comparisons among the various wavelet families show 
that the CDF and the bi-orthogonal basis provide 
much better enhancement of the feature than the 
orthogonal one. Further, the CDF basis performs better 
than the bi-orthogonal. These results clearly indicate 
the feature enhancement efficiency offered by the 
CDF over the orthogonal family in case of multiple 
damage scenarios.

The efficiency of enhancement attained through 
CDF wavelet families in different modes are now 
compared in Figure 8. In general, it is noted that 
the higher modes provide better localization and 
indication of damage. However, after enhancement, 
it is observed that the enhanced features do not 
significantly vary from one mode to another and the 
lower modes (preferably the fundamental mode) 
can also be as efficient as the higher ones provided 
the modal feature extracted from this is used in 
conjunction with the wavelet enhancement.   

5. Conclusions

An attempt has been made to compare the feature 
enhancement capability of several most commonly 
employed wavelet families in order to assess their 
relative efficacy. The results from the study provide 
some insights about the relative efficacy of alternative 
wavelet basis in enhancing/extracting damage 
sensitive features useful to detect, localize and quantify 
damage. It is demonstrated than in general transform 
based on the bi-orthogonal wavelet family provides 
better results than the orthogonal basis for enhancing 

Figure 8: Comparison of wavelet based feature  
enhancement in different modes
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least not arbitrarily close to the domain boundary. 
Thus, the mode shape curvature cannot serve as 
a legitimate candidate as a sensitive feature that 
can indicate damage near the boundary. The three 
classes of wavelet families are then tried to see their 
consequences. Respective wavelet enhanced features 
at two different scales are shown and compared in 
Figures6(b) and 6(c). It is observed that though the 
mode shape curvature difference fails, its wavelet 
enhancement is able to provide a feature which can 
clearly indicate the presence of damage around the 
boundary. The superior performance of CDF is also 
notable to represent this kind of damage. Although 
the bi-orthogonal family provides the feature at 
certain scales, it has been observed (but not shown 
herein) that the behavior of the enhanced features 
along the hierarchy of scales is not consistent. Thus the 
CDF appears to be the only option for such damage 
scenario. The reason for the superiority of CDF over 
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damage features. In particular, the CDF family is found 
to be superior for this purpose. Further, the CDF family, 
which is defined on the exact interval of the real line, 
takes care of the finite length of the structural domain 
and becomes the only choice to detect damage features 
in case the damage is localized in the boundary regions. 
The robustness of the feature enhancement technique 
as presented is also verified by numerical studies 
involving variations in the extent, location and number 
(single/multiple) of damage. Although the conclusion 
in the present study is solely based on the mode shape 
curvature based feature, the findings from this study 
can be useful for selection of specific wavelet family in 
order to enhance/extract damage features, which are 
otherwise difficult to assess.
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1. introduction

By the year 2030, the United States targets 20% 
wind-based electricity generation, over 300 GW, [1]. In 
order to obtain more stable wind speeds for increased 
energy generation, taller wind turbine towers are 
being built. The size of wind turbines has increased 
over the years, now ranging from 35 to more than 
100 meters in height [2]. A wind turbine, including 
its supporting pillar and foundation, forms a complex 
structural system that is subject to a unique set of 
forces.  In addition to a dynamic non-uniform wind 
pressure on blades, the entire structure is also subject 
to the dynamic action of the rotating blades, additional 
wind forces on the pillar and, in offshore cases, forces 
from sea waves. In addition to fluctuating stresses that 
would affect the integrity of blades, a combination of 
these forces will result in the system instability that, 
if not properly controlled, may dramatically affect the 
operation of the turbine and compromise its safety. 

The complexities and increase in the size of wind 
turbines have made it difficult to perform inspection 
and maintenance work. In addition, locations of 
wind turbines, in remote mountainous or rough 
sea regions, have made it difficult to maintain and 
repair such structures. Due to these remote locations 
and turbine downtime, wind turbines have a high 
cost of operation and maintenance. Thus, condition 
monitoring and fault diagnosis of wind turbines 
are crucial in their sustainable operation. Reactive 
maintenance dominated the early practices as turbines 
were operated until failure occurred. More recently, 
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preventative or condition-based maintenance have 
been adopted for periodic inspections based on 
predictions on when subsystems in wind turbines 
would fail. 

Therefore, there must be routine monitoring of the 
turbines in order to improve safety considerations, 
minimize the down time, and lower the frequency 
of sudden breakdowns. Benefits of a fault detection 
system, in this case a Structural Health Monitoring 
(SHM) system, are: 1) avoidance of premature 
breakdown, 2) reduced maintenance cost, 3) 
supervision at remote sides and remote diagnosis, 
4) improvement of energy capacity output, and 5) 
support for further development of wind turbine 
technology as efficient fault detection would allow 
more resourceful spending in advances. Although 
current state-of-the-art structural health monitoring 
systems have been implemented on wind turbines 
for several years, a feature enabling SHM procedure 
to specifically target structural anomalies (including 
structural stability and active control in addition to 
traditional damage assessment analysis) have not been 
addressed in currently available systems. Moreover, 
most state-of-the-art SHM systems for wind turbines 
are focused on the blades and rotating systems and not 
on the wind turbine towers. As many reported failures 
of wind turbine structures are based on the failure of 
their towers, mostly due to extreme environmental 
conditions such as extreme wind, there is a crucial 
need for protocols to specifically address the SHM 
procedures for wind turbine towers. And as such, the 
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developed protocols will ultimately be utilized for 
the condition assessment of the entire wind turbine 
systems [3-8]. 

In order to address the aforementioned 
shortcomings with SHM systems for wind turbine 
structures, this paper discusses the development 
of, and a conceptual design for, an onsite structural 
condition assessment and control tool for the entire 
structure of a wind turbine system, with a focus 
on the tower structure, based on a wireless sensor 
fusion platform that is remote, compact, and quick 
to install. This innovative tool, in addition to the 
implementation of a wireless sensor system for 
structural health monitoring of wind turbines, is also 
able to continuously communicate with the sensor 
platform and conduct on-time analyses in order to 
advise on: 
(a) System performance
(b) System’s critical conditions in terms of stress 

concentrations, large movements or unusual 
structural behavior

(c) Critical loading patterns (especially in offshore 
turbines) that may compromise stability

(d) Blade usage and potential damage growth and 
structural worthiness as operation continues

(e) Critical time for scheduled maintenance and 
repair  

This onsite structural condition assessment and 
control tool will work as an “active control” system 
that can monitor and alter the system dynamic 
characteristics in order to control and reduce potential 
damage to the structure. It is anticipated that the 
onsite structural condition assessment and control 

tool proposed in this research will equip a turbine 
with a powerful system that not only addresses 
the traditional damage potentials of the blades, but 
also further addresses other issues related to the 
safe performance of the entire turbine structure  
(Figure 1). 

This development and design concepts reported in 
this paper are part of an ongoing research by the author 
at Illinois Institute of Technology. The developed 
framework represents the results and finding that 
constitutes a “phase-one” type of study.  Currently, the 
prototype design and field investigations are planned 
for the continuation of the study.  

The system, once fully operational, has a direct 
impact on the overall safety of wind turbine systems 
and increasing their reliability of performance. 
This will further impact the operation of turbines 
in reducing their down time and increasing their 
productivity and efficiency of service. Upon success of 
this project, and with the enhanced safety anticipated 
with the turbine operations, the power industry is 
expected to benefit in terms of higher efficiency and 
lower maintenance.

1.1 Condition assessment Procedures

The structural health and condition of in-
service structures is usually assessed through 
visual inspections and nondestructive testing and 
evaluation (NDT/NDE) methods conducted on a 
pre-set schedule. In general, attempts to quantify 
the performance of older structures using visual 
inspection have resulted in subjective and relatively 
unorganized protocols [9]. Objective evaluation of 
system level behavior of structures based on sensor 
network systems is desirable for structural condition 
assessment purposes.

1.2 Sensor-based Structural Measurements

The goal of sensor-based structural measurements 
is to employ sensing instruments to provide information 
pertaining to the condition of the structure [10]. 
Today’s practice of structural measurements involves 
a host of structural parameters. For those parameters, 
the sensor-based data is compiled either continuously 
or intermittently. There are several existing techniques 
to measure those parameters in structures. There are 
contact methods that place various sensors, such as 
strain gauges, accelerometers and Fiber Bragg Grating 
(FBG) sensors along a structure. Conversely, there 
exist non-contact methods such as Laser Doppler 
Vibrometer (LDV), Global Positioning System Figure 1. Schematic depiction of the developed method
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(GPS), and Terrestrial Laser Scanning (TSL) [11]. The 
availability of compact data acquisition systems along 
with the wireless technology has made the process 
of data compilation more affordable and convenient.  
It is envisioned that in the near future, more wind-
turbine authorities will take the advantage of the 
wireless instrumentation and data acquisition process 
in developing systems that can continuously be used 
to monitor the state of this structures 

1.3 failure locations (Hot Spots) - Wind turbine 
tower Possible anomalies

The most common type of damage incurred is 
rotor or blade damage along with tower damage. 
Blades account for 15-20% of the total turbine cost and 
their damage is the most expensive type of damage 
to repair [12]. The most critical load is the flap wise 
bending load that arises when the turbine has been 
brought to a standstill due to high wind, and the 
blade is hit by the fifty year extreme wind gust [12]. 
Researchers have examined blade failures; and the 
work on improving blade performance (with the aid 
of condition monitoring) is progressing. However, 
the tower failures are those that are overlooked and 
are amongst the most dangerous failure types often 
resulting in damage to other structures as well as 
causing the total destruction of the system itself. The 
hot spot for such a failure occurs at the welded or 
bolted joints of the tripod of the structure.  This is 
prevalent for offshore wind turbines for which the 
central joint of the tripod constitutes as the most critical 
location for fatigue and fracture design consideration. 
In the case of a marine atmosphere, the splash zone 
of the tower due to exposure is also vulnerable to 
such failures. More specifically within towers, cracks 
are generally detected in many of the circumferential 
welded joints between lower rings and the flanges that 
connect the towers to the foundations [12]. 

Most cracks are associated to fatigue phenomena 
caused by: 1) inadequate weld geometrical design, 
2) inadequate weld process parameters, 3) material-
process incompatibilities, 4) inadequate weld process 
execution, and 5) unanticipated service requirements. 
Analyses at the location of the most stressed section of 
the tower (close to the foundation) show that failure 
is due to maximum bending moments on the lower 
section of the tower. Ultrasonic testing on previous 
towers has found that the cracks that appear are 
greater on the inner side of the section than the outer 
side [5]. This signals that the cracking process probably 
begins from the inside (internal crack) and propagates 

as a through crack. Hardness measurements generally 
yield no significant variations; while it is conceivable 
that the fatigue process from wind, along with its 
variation in forces and moments, cause the cracking 
in the towers. A useful tool is Fatigue Damage 
Assessment where nominal stresses are used to 
estimate elastic stress values in the location of interest. 
From such an analysis, a nominal stress permissible for 
the component’s life is derived, which is compared to 
applied stress. The method uses hot spot stress or notch 
stress for this purpose.  However, this is appropriate 
for components with stress concentrators in which hot 
spot stresses are calculated along with known stress-
number of cycles to failure (SN) information for failure 
analysis. In situations when complex geometries exist 
(such as for example in connections and joints), this 
process may result in overestimation of fatigue life, 
unless SN relations specific to the type of geometry 
is known. Furthermore, most current methods of 
fatigue damage use non-random load patterns.  
However, towers have loading sequences that could 
be categorized as random; and as it has been reported, 
a majority of the random nominal stresses are within 
the range of 10 MPa to 200 MPa [13], which is quite 
large in terms of variation.

1.4 failure Case Study 

A failure case study is presented regarding a 
collapsed wind turbine located in Taichung Harbor on 
September 28, 2008 [2]. The wind turbine tower was 
broken in three sections; the lower two parts buckled 
and snapped during a typhoon. The collapse was 
investigated to see if it followed one of the causes of 
engineering disasters: human factors, design flaws, 
material failures, extreme conditions or environments, 
or a combination of these. It is noted that observations 
from other wind turbine collapses had found that 
the primary cause of collapse was strong winds and 
storms in 52.2% of the cases [2].When testing intact 
and fractured bolts, it was found that all the bolts 
that fractured failed to meet the yield and ultimate 
strength requirements per design specifications. Thus, 
bolt strength was inadequate as a result of either 
poor bolt quality control or that the bolts may have 
had a locked-in stress when screwed into the flange; 
leading to continuous deformation. A re-analysis 
was conducted in order to predict the tower response 
under different wind loads specified in original design. 
Failure modes of tower collapse, incorporated in the 
analysis, included excessive deformation, fatigue, 
fracture, yielding, and plastic collapse. The re-analysis 
suggested that the bolts of the tower merely met 
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strength specifications for a lesser wind speed than 
they were originally designed. Recent specifications 
were not checked specifically in regards to the bolts. 
The fact that the tower studied was damaged more 
than other turbines in the same type of wind load 
environment suggests that a crosswind, such as 
vortex shedding or wake galloping, could have 
been the primary cause of damage to the structure. 
Main causes of the collapse were found to be due 
to strong winds, insufficient bolt strength, and 
poor bolt quality during construction. By analyzing 
the construction procedure, design specifications 
and a managerial system, the severity of a similar 
failure or its damage in the future can be minimized 
effectively.

2. Methodology framework

The developed framework for condition assessment 
for a specific existing wind turbine tower constituted 
four major steps described below:

Step 1: Preliminary investigations 

As part of the development of the monitoring 
system, preliminary investigations were conducted 
to specifically address the basic requirements for the 
system.  Specific studies concentrated on:  
a) Surveys of potential sources of dynamic loads 

(including wind load) to obtain (i) the severity 
of vibrations induced; (ii) their significance on 
various structural and non-structural components; 
and (iii) the critical components that will need 
to be monitored on a short-term or long-term 
basis.

b) Review of current local standards and design 
guidelines of various code bodies that address 
issues related to, and assess the acceptable levels 
of, vibrations and deflections for wind turbine 
systems. 

c) Studies of current and available monitoring 
systems for wind turbine systems.

d) Investigation of traditional and modern sensor 
technologies used to monitor the structural 
parameters of wind turbine systems. A variety 
of sensors measuring structural parameters such 
as transducers for displacements, accelerometers 
for vibrations, strain gauges and fiber optics 
for strains can be assessed for their potential 
applications in monitoring. The accuracy, 
measurement ranges, operating temperatures, 
advantages and disadvantages of the sensors 
needs to be investigated. 

Step 2: development of a framework for 
Monitoring

In this step, appropriate sensors (e.g. acoustic 
emission, strain gauges, and accelerometers) were 
studied to develop a design for a sensor fusion 
framework for the health monitoring for wind turbine 
system.  As part of the findings in our study, the basic 
features of the system was identified and determined 
to be a framework that can: 1) monitor critical 
parameters, 2) identify potential problems, 3) plan 
inspection and maintenance schedules, and 4) create an 
alarming system as a means to offer warnings in cases 
where critical conditions prevail that need immediate 
actions to remedy and/or correct problems in an effort 
to prevent potential failures and to enhance safety. 
Furthermore, the monitoring framework includes 
measurement sensors, software and hardware for data 
acquisition, processing and transmission units, as well 
as data management system. 

Step 3: field Measurements and data Quality 
assurance

This step is currently under way and constitutes 
sensor installation at critical locations to measure 
parameters and monitor the structural behavior. The 
data anticipated to include: a) structure information 
and identifying number, b) type of sensors and their 
performance, c) date and time of recording, c) results 
of damage identification, and d) string of data specific 
to each sensor. Table 1 summarizes the sensor platform 
used in this work.

table 1. Sensor Platform

Sensors Parameter location 
Accelerometers Vibration Base of tower 

outside perimeter
Strain Gauges Strain Connecting bolts
Joint Meters Displacement Baseplate/

foundation

As large amount of raw data is gathered from the 
sensors, collection, interpretation and analysis of, and 
the quality assurance procedures for, the collected 
data must be provided by a data management 
system. 

The data quality assurance (QA) is a critical step 
to ensure the accuracy and robustness of the data 
compiled.  The QA procedure includes statistical 
analysis of trends in the data; and specific correlations 
that exist between measured parameters and certain 
key structural features and/or the input loads. Similar 
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QA procedures have been successfully used by others 
in a variety of health monitoring applications [14]. 

Step 4: development of a Warning System 

As data enters the central station and is 
processed, it is expected to be used to pinpoint 
areas where additional investigations are needed 
or corrective actions must be taken preemptively 
to abate the damaging effects of existing anomalies. 
This warning system can: a) pinpoint to areas 
where there are potentials for short-term or long-
term damage, b) provide advices and/or solutions 
that can be implemented to prevent damage and 
d) suggest the types of corrective actions that will 
need to be taken.  Using this framework, if any 
anomaly is sensed, the structure must be inspected, 
and proper repair recommended by engineers will 
be executed.

3. Summary and Conclusions

The failure of infrastructural systems particularly 
those related to sustainable energy generation has 
significant societal and human consequences. The work 
develops an objective condition assessment platform 
for wind turbines that integrates reconfigurable 
sensors, finite element models, and structural 
measurements. This framework enhances the ability 
to assess the structural condition of in-service wind 
turbine structures, particularly in cases with unknown 
design validation. The condition assessment tool can 
be used for asset management of structures using 
visual inspection reports, collected non-destructive-
test measurements and mathematical modeling with 
a greater level of confidence due to the inclusion 
of uncertainty into the protocol. The resulting 
information can be implemented into structural asset 
management programs for wind turbine systems to 
provide more accurate information to the owners for 
decision making on the structure’s condition. This 
improves the planning and a more cost-effective 
process for repair, and rehabilitation of wind turbine 
structures. 

This tool increases the overall safety of wind 
turbines and in their reliability of performance, 
their operation in terms of reducing their down 
time and increasing their productivity and efficiency 
of service. The result of this work, in future, can 
lead to establishment of a protocol for sustainable 
management for operation of wind turbine 
systems. 

4. acknowledgement

The author acknowledges the support of the 
Wanger Institute for Sustainable Energy Research 
for the preliminary studies of this work. The author 
also acknowledges the guidance and assistance of 
Professor Jamshid Mohammadi, Professor Jafar Saniie, 
Professor Erdal Oruklu and Mr. Afshin Zahraee on 
this paper.

references
1. Quilligan, A., O’Connor, A., & Pakrashi, V. (2011). Fragility 

Analysis of Steel and Concrete Wind Turbine Towers. 
Engineering Structures, 270-282.

2. Chou, J. s., & Tu, W. T. (2011). Failure Analysis and Risk 
Management of a Collapsed Large Wind Turbine Tower. 
Engineering Failure Analysis, 295-313.

3. Wiser R. and Bolinger M., (2008) “Annual report on U.S. 
wind power installation, cost, performance trend: 2007,” 
U.S Department of Energy, Washington, DC, Tech. Rep.

4. Byon E., Ntaimo L., Singh C. and Ding Y. (2013), “Wind 
Energy Facility Reliability and Maintenance” in Handbook 
of Wind Power Systems, Springer.

5. Mcmillan D., and Ault G.W., (2007 ) “Towards quantification 
of condition monitoring benefit for wind turbine generators”, 
European Wind Energy Conference & Exhibition, Milan.

6.  Swartz R. A., Lynch J. P., Zerbst S., Sweetman B. and. Rolfes 
R, (2010) “Structural Monitoring of Wind Turbines using 
Wireless Sensor Networks”, Smart Structures and Systems, 
pp. 183-196.

7. Nagayama, T., & Spencer, Jr., B. F. (2007). Structural Health 
Monitoring Using Smart Sensors. Urbana: Newmark 
Structural Engineering Laboratory University of Illinois 
at Urbana-Champaign.

8. Ciang, C. C., Lee, J.-R., & Bang, H.-J. (2008). Structural 
Health Monitoring for a Wind Turbine System: A Review 
of Damage Detection Methods. Measurement Science and 
Technology, 1-20.

9. Roberts, J.E. and Shepard, R. (2000). Bridge Management 
for the 21st Century. Proc. Of the Fifth International Bridge 
Engineering Conference, TRB, (1696) A197-A203.

10. Chang, F. K. (2003). Structural Health Monitoring 2003 
From Diagnostics and Prognostics to Structural Health 
Management, DEStech Publications.

11. Park, H. S., and H. M. Lee (2007 ) “New Approach for 
Health Monitoring Structures: Terrestrial Laser Scanning.” 
Computer-Aided Civil and Infrastructure Engineering 22, 
19-30.

12. Lavassas, I., Nikolaidis, G., Zervas, P., Efthimiou, E., 
Doudoumis, I. N., & Baniotopoulos, C. C. (2003). Analysis 
and Design of the Prototype of a Steel 1-MW Wind Turbine 
Tower. Engineering Structures, 1097-1106.

13. Guo, P., & Infield, D. (2012). Wind Turbine Tower 
Vibration Modeling and Monitoring by the Nonlinear State 
Estimation Technique (NSET). Energies, 5279-5293.

14. Braun, J. F., and Mohammadi., J. (2004) “Structural 
Monitoring as a Non-Destructive Test Method in Fatigue 
Reliability Assessment of Aging Aircraft.” In NDT Methods 
Applied to Fatigue Reliability Assessment of Structures. 
Published by the American Society of Civil Engineers, 
ASCE.

Mehdi Modares  / Life Cycle Reliability and Safety Engineering Vol.4 Issue 1 (2015) 44-48



49 © 2015 SRESA All rights reserved

"
"

"



50 © 2015 SRESA All rights reserved



51 © 2015 SRESA All rights reserved



52 © 2015 SRESA All rights reserved

Contents

Vol.4 issue no.1 Jan-March 2015 iSSn – 2250 0820

1.  An Ensemble Kushner-Stratonovich (EnKS) Nonlinear Filter:  
Additive Particle Updates in Non-Iterative and Iterative Forms 
Saikat Sarkar and Debasish Roy (India) ……………………….........….  1

2. Experimental Studies on Reliability Model Updating of  
a Building Frame Model under Random Earthquake Loads  
V. S. Sundar and C. S. Manohar (India)  …………………………….… 14

3. Health Assessment of Nonlinear Structural Systems 
Abdullah Al-Hussein and Achintya Haldar (USA)  ……………..……     25

4. Performance of Alternative Wavelet Basis for Feature Based  
Damage Detection in Structures 
Suprateek Roy, Sudib K. Mishra, Subrata Chakraborty (India) ……..…..  35

5. Condition and Health Assessment of Wind-Turbine  
Tower Structures 
Mehdi Modares (USA) …………………………………………………    44


