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Editorial

  Life Cycle Reliability and Safety Engineering 
Vol.3 Issue 2 (2014)

This special issue highlights the important and extended versions of contributions made in SMiRT 
21 to knowledge base of structural reliability and safety.

This issue contains 5 papers. The first 4 papers are extended versions of selected papers from 
SMiRT 21. All these papers are in the area of ‘Structural Reliability’, which is in the scope of this 
journal. The 5th paper is a regular paper that also falls under structural reliability.

The first paper is about the safety factor evaluation for prestressed inner containment shell in 
Indian NPPs. The paper concentrates on development of partial safety factors (PSF) for accidental 
pressure design. PSFs account for uncertainties in load, material and mathematical modeling. The 
paper develops a set of optimal reliability-based PSFs for the design of prestressed concrete at collapse 
limit state under MSLB/LOCA conditions.

The second paper evaluates failure probability of expansion bellow at reactor containment 
building. A computationally efficient evaluation method – Higher Order Response surface method 
– has been used for the evaluation. The method uses Chebyshev polynomial for estimation of order 
of stochastic variables. The method also facilitates the sensitivity analysis without any additional 
computational cost.

The third paper is about seismic fragility analysis of nuclear reactor SSCs (Structures, Systems 
and components). The paper reports the results of seismic re-evaluation of an operating reactor FBTR 
(Fast Breeder Test Reactor). The objectives of this re-evaluation are – safe shutdown of the plant, 
maintenance of safe shutdown, long-term decay heat removal and containment of radioactivity. 
The paper details out the probabilistic seismic hazard analysis to determine seismic demand, safety 
analysis to identify SSCs and different approaches adopted in the seismic fragility analysis.

The fourth paper is about updating the reliability models of structures using measure responses. 
The challenges involved in the process are determination of system parameters/forcing functions 
followed by solution of a constrained non-linear optimization problem – inverse reliability. The 
solution methods used in the paper are application of Bayes’ theorem, subset simulation and numerical 
optimization.

The fifth paper describes safety assessment of NPP pipelines against thermomechanical 
fatigue in presence of hybrid uncertainities. For piping components in high temperature 
applications, theromomechanical fatigue is one of the primary life-limiting factors. The paper 
employs a strain-based approach for safety assessment. A case study has been taken to illustrate 
their method.

We sincerely hope that this special issue will provide a stimulating experience to all our valued 
readers. 

Dr. B.K. Dutta 
Dr. R.K. Singh
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Development of Partial Safety factors for accidental Pressure Design 
Case of Prestressed inner Containment Shells in indian nPPS
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abstract
Partial safety factors (PSFs) used in reliability-based design are intended to account for 
uncertainties in load, material and mathematical modeling while ensuring that the target reliability 
is satisfied for the relevant class of structural components in the given load combination and limit 
state. This paper describes the methodology in detail for developing a set of optimal reliability-
based PSFs for the design of prestressed concrete inner containment shells in Indian NPPs at 
collapse limit state under MSLB/LOCA conditions. The mechanical formulation of the flexural 
limit state is based on the principle behind prestressed concrete design recommended by IS 1343 and 
SP16. The applied biaxial moments are combined according to Wood’s criteria. The optimization 
of the PSFs is based on reliability indices obtained from importance sampling and a local linear 
response surface fit; Monte Carlo simulations are performed to determine the capacity statistics 
and dependence between capacity and applied loads. Numerical examples are provided.

Keywords: Reliability, partial safety factor, optimization, prestressed concrete shell, nuclear 
power plant
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1. introduction

The design of containment shells for Indian 
Pressurized Heavy Water Reactors (PHWRs) has 
evolved over the years, originating from a steel 
cylindrical shell capped with a steel dome (CIRUS 
Reactor, Trombay), followed by the use of reinforced 
concrete walls and pre-stressed concrete dome 
(Rajasthan Atomic Power Station) to the use of Pre-
Stressed concrete for the entire shell (Madras Atomic 
Power Station) and pre-stressed concrete double 
containment shells (first employed in the Narora and 
Kakrapar Power Stations). The Kaiga and Rajasthan 
Atomic Power Plants marked a further improvement 
in the design philosophy with complete double 
containment shells having independent domes [1]. The 
inner containment shells used in recent PHWRs are 
cylindrical structures of 63 m height, with prestressed 
concrete spherical domes containing 4 large openings 
to facilitate the replacement of steam generators. [2]. 
Until recently, nuclear containment structures in India 
were designed using the French RCC-G code.  The 
raft of the PWHR at Tarapur was designed using the 
ASME code and checked against RCC-G [1].  There is 
yet no formal Indian design standard for containment 
structures. In 2007, the Atomic Energy Regulatory 

Board (AERB) of India released the CSE-3 codes [3] 
which is currently under review.

Significant uncertainties exist in the structural 
behavior of the IC Shells of PHWRs, arising out of 
the random nature of material, geometry, prestressing 
and loadings. As early as 1974, Shinozuka and 
Shao [4] conducted a probabilistic assessment of 
prestressed concrete pressure vessels using the first 
order second moment approximation. Uncertainties 
in loads and in the material and geometry of the 
vessels were considered while short term accidental 
load effects were modeled as Poisson Processes. 
The overall uncertainty in structural behavior of 
nuclear containment structures, as in any general 
structure, is caused by uncertainties in resistance 
and demand quantities. The uncertainty associated 
with the resistance of containment shells arises out of 
uncertainty in the strengths of concrete and steel as 
well as in shell geometry. While concrete strength has 
been found to be better controlled in the nuclear power 
plant industry than in the ordinary building industry, 
steel strength variability does not display a noticeable 
reduction. Variability in sectional dimensions is 
comparatively quite low and has negligible impact 
on the overall uncertainty in structural resistance [5]. 
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Loads acting on concrete containments intrinsically 
involve random uncertainties, and therefore need 
to be treated probabilistically. Different loads 
have different degrees of randomness and may 
entail appropriate adjustments in the probabilistic 
framework, for example, the variability of dead load 
being substantially lower than that of an accidental 
pressurization load, the former can be treated as a 
deterministic quantity for simplification of analysis 
[6]. Another significant source of uncertainty is the 
long term behavior of these structures  which is highly 
variable owing to material changes (for example, 
prestress loss in tendons and creep in concrete) and 
the occurrence of accidental events [7, 8].

It is most rational to treat uncertainties associated 
with parameters governing the design and construction 
of a structure in a probabilistic format, specifically, 
to model the time-invariant quantities as random 
variables and the time-dependent ones as stochastic 
processes. Recognizing the existence of these 
uncertainties is an admission of the fact that the 
structure may not always satisfy its performance and 
safety objectives during its intended design life.  The 
logical extension of this admission is to ensure that 
the likelihood of unsatisfactory performance be kept 
acceptably low during the life of the structure.

The subject of structural reliability provides the 
tools and methodologies to explicitly determine the 
probability of such failures (“failure” here in the sense 
of non-compliance or non-performance) by taking into 
account all relevant uncertainties.  These techniques 
can be used to design new structures with specified 
(i.e., target) reliabilities, and to maintain existing 
structures at or above specified reliabilities. Target 
reliabilities are discussed in the next subsection. 
Even though such computed probabilities of failure 
(reliability being 1 minus failure probability) may 
not have a frequentist or actuarial basis, structural 
reliability provides a neutral and non-denominational 
basis to compare different (and often disparate) 
designs and maintenance strategies on a common 
basis.   

A limit state function (or performance function), 
g(X), for a structural component is defined in terms 
of the basic variables, X, such that:

 ( )  0 denotes failure
( )  0 denotes satisfactory performance

g X
g X

<
>                (1)

and the surface given by:

 ( )  0g X =                                               (2)

is called the limit state equation or limit state 
surface. The performance function g is typically 
obtained from the mechanics of the problem at hand.   
For multiple failure modes or if there are multiple 
critical sections, Eq.  is generalized to an appropriate 
union of failure events. 

The basic variable generally comprise of quantities 
like material properties, loads or load-effects, 
environmental parameters, geometric quantities, 
modeling uncertainties, etc. They are usually modeled 
as random variables; however, those with negligible 
`uncertainties may be treated as deterministic. The 
general expression of failure probability is
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where fX(x) is the joint probability density function for X. The reliability of the structure would then be defined as 
Rel= 1 - Pf.  

Like any other design approach, reliability based design is an iterative process: the design is adjusted until 
adequate safety is achieved and cost and functional requirements are met. The final step of meeting the target 
reliability can either be direct where the computed structural reliability has to exactly satisfy the target reliability for 
each relevant limit state or it can be indirect as in partial safety factors (PSF) based design where the structure 
implicitly satisfies the target reliability within a certain tolerance [9]. The term load and resistance factor design 
(LRFD) implies the approach followed in the United States where the nominal resistance in the design equation is 
multiplied by an explicit “resistance factor” but the nominal material properties that go into determining the 
resistance are not factored. The term PSF based design implies the approach taken in Europe where there is no 
explicit resistance factor in design, but each material property generally has its own partial safety factor.  The latter 
approach is taken in this work. 

Closed-form solutions to Eq. (3) are generally unavailable. Two different approaches are widely in use: (i) 
analytic methods based on constrained optimization and normal probability approximations, and (ii) simulation 
based algorithms with or without variation reduction techniques and both can provide accurate and efficient 
solutions to the structural reliability problem. The first kind, grouped under First Order Reliability Methods (or 
FORM), holds an advantage over the simulation based methods in that the design point(s) and the sensitivity of each 
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until adequate safety is achieved and cost and 
functional requirements are met. The final step of 
meeting the target reliability can either be direct where 
the computed structural reliability has to exactly 
satisfy the target reliability for each relevant limit state 
or it can be indirect as in partial safety factors (PSF) 
based design where the structure implicitly satisfies 
the target reliability within a certain tolerance [9]. 
The term load and resistance factor design (LRFD) 
implies the approach followed in the United States 
where the nominal resistance in the design equation 
is multiplied by an explicit “resistance factor” but the 
nominal material properties that go into determining 
the resistance are not factored. The term PSF based 
design implies the approach taken in Europe where 
there is no explicit resistance factor in design, but each 
material property generally has its own partial safety 
factor.  The latter approach is taken in this work.

Closed-form solutions to Eq.  are generally 
unavailable. Two different approaches are widely 
in use: (i) analytic methods based on constrained 
optimization and normal probability approximations, 
and (ii) simulation based algorithms with or without 
variation reduction techniques and both can provide 
accurate and efficient solutions to the structural 
reliability problem. The first kind, grouped under 
First Order Reliability Methods (or FORM), holds an 
advantage over the simulation based methods in that 

Baidurya Bhattacharya  et al. / Life Cycle Reliability and Safety Engineering Vol.3 Issue 2 (2014) 1-14



3 © 2014 SRESA All rights reserved

the design point(s) and the sensitivity of each basic 
variable can be explicitly determined.  However, 
FORM can prove to be costly or even infeasible if the 
size of the reliability problem goes up (in terms of 
basic variables and/or number of limit states) or if the 
limit state is not analytic in the basic variables, and is 
not used in this work. Monte Carlo simulations with 
Importance Sampling have been used to compute 
failure probabilities.

2. target Reliability

It has become increasingly common to express 
safety requirements, as well as some functionality 
requirements, in reliability based formats. A 
reliability based approach to design, by accounting 
for randomness in the different design variables and 
uncertainties in the mathematical models, provides 
tools for ensuring that the performance requirements 
are violated as rarely as considered acceptable.   

The cause, reference period, and consequences of 
violation of different performance requirements may 
vary, and if a reliability approach is taken, the target 
reliability in each performance requirement must take 
such difference into account [9-12]. For  example,  If the 
structure gives appropriate warning before collapse, 
the failure consequences reduce and that in turn can 
reduce the target reliability for that mode [11, 13].  
Functionality target reliabilities may be developed 
exclusively from economic considerations.  The safety 
target reliability levels required of a structure, on the 
other hand,  cannot be left solely to the discretion of 
the owner, or be derived solely from a minimum total 
expected cost consideration, since structural collapse 
causing a large loss of human life and/or property may 
not be acceptable either to the society or the regulators. 
Design codes, therefore often place a lower limit on 
the reliability of safety related limit states [9, 14]. For 
optimizing a structure with multiple performance 
requirements, Wen [15] suggested minimizing the 
weighted sum of the squared difference of the target 
and actual reliabilities. 

ISO 2394 [10], and later JCSS [11], proposed three 
levels of requirements with appropriate degrees of 
reliability: (i) serviceability (adequate performance 
under all expected actions), (ii) ultimate (ability 
to withstand extreme and/or frequently repeated 
actions during construction and anticipated use), (iii) 
structural integrity (i.e., progressive collapse in ISO 
2394 and robustness in JCSS). Target reliability values 
were suggested based on the consequences of failure 
for ultimate limit states and relative cost of safety 

measure for serviceability limit states. The Canadian 
Standards Association [16]  defines two safety classes 
and one serviceability class (and corresponding annual 
target reliabilities) for the verification of the safety 
of offshore structures (i) Safety class 1- great risk to 
life or high potential for environmental pollution 
or damage, 2) Safety class 2-small risk to life or low 
potential for environmental pollution or damage, and 
3)  Serviceability Impaired function and none of the 
other two safety classes being violated. Det Norske 
Veritas [13] specifies three types of structural failures 
for offshore structures and target reliabilities for each 
corresponding to the seriousness of the consequences 
of failure. The American Bureau of Shipping [17] 
identified four levels of failure consequences for various 
combinations of limit states and component class for 
the concept Mobile Offshore Base and assigned target 
reliabilities for each. Ghosn & Moses [18] suggest three 
levels of performance to ensure adequate redundancy 
of bridge structures corresponding to functionality, 
ultimate and damaged condition limit states, while 
Nowak et al. [19] recommend two different reliability 
levels for bridge structures corresponding to ultimate 
and serviceability limit states. Nuclear power plant 
containment structures are designed for earthquakes 
at two different levels of intensity and correspondingly 
to two different criteria for failure [3, 20, 21]. Damage, 
if any, caused by the Operating Basis Earthquake 
(OBE) must not lead to loss of functionality of the 
nuclear power plant; whereas the Safe Shutdown 
Earthquake (SSE) that has a higher intensity and longer 
recurrence interval than OBE, is allowed to cause the 
power plant to shut down but must not cause any 
radioactive leakage to the environment or loss of 
structural integrity.

The fact that the consequences of failure of a 
critical component in a nuclear reactor are potentially 
catastrophic has driven the interest in building so 
called “inherently safe reactors” which are publicly 
perceived to have a zero probability of failure. 
The application of a probabilistic risk assessment 
framework to such structures then has the dual 
purpose of determining the probability of meeting the 
stipulated conditions under which “inherently safe” 
performance is guaranteed, and the probability of 
departure from acceptable performance under these 
conditions. Values of maximum acceptable probability 
levels set by regulatory authorities of different nations 
for accidents that cause severe damage to the reactor 
core have ranged from 1x10-6 per year to 1x10-4 per 
year [22].

Baidurya Bhattacharya  et al. / Life Cycle Reliability and Safety Engineering Vol.3 Issue 2 (2014) 1-14



4 © 2014 SRESA All rights reserved

Given the inability to predict the occurrence or 
magnitude of earthquakes, the uncertainties involved 
from source to site, and the potential for massive 
damage, it is not surprising that performance based 
design has been most enthusiastically espoused in 
the seismic engineering community, as evident in  
SEAOC [23], ATC-40 [24] and FEMA 273/274 [25].  
Performance levels for seismic design are commonly 
defined in terms of increasing severities, e.g., (i) 
Immediate Occupancy (IO), the state of damage at 
which the building is safe to occupy without any 
significant repairs, (ii) Structural Damage (SD), an 
intermediate level of damage in which significant 
structural and non-structural damage has occurred 
without loss of global stability, and (iii) Collapse 
Prevention (CP), representing extensive structural 
damage that causes global instability [26].  A 
comparison of the performance of structures designed 
to one ultimate design earthquake vs. those designed 
to dual level performance levels indicated that the 
latter produces relatively stronger structures [15].  A 
similar finding was echoed by Ghobarah [27] who 
opined that the reason for the revision of the then 
design standards to more reliable performance based 
methods was that after severe earthquakes (such as 
Northridge and Kobe), while structures designed 
to the existing codes performed well with respect to 
safety, the extent of damage and the economic costs 
were unexpectedly high.  

3. Reliability of Prestressed Concrete Sections

The tensile strength of concrete is negligible 
compared to its compressive strength.  In ordinary 
reinforced concrete, the reinforcing steel is used to 
carry the tensile stresses, and the concrete near the 
tensile face may crack.  Prestressing is intended to 
artificially induce compressive stresses in the concrete 
to counteract the tensile stresses caused by external 
loads, such that the loaded section remains mostly if 
not entirely in compression [28].  

Prestressed concrete (for shells, slabs, girders etc.) 
is often adopted when in addition to satisfying strength 
requirements, the member is also required to be 
slender (e.g., from aesthetic or weight considerations)  
and/or to limit cracking (e.g., to satisfy leak-
tightness). Prestressed concrete members are relatively 
lightweight as they are built from high strength steel 
and high strength concrete, more resistant to shear, 
and can recover from effects of overloading.  However, 
prestressed concrete structures are more expensive, 

have a smaller margin for error, and the design 
process of prestressed members is more complicated.  
Although the loss of prestress with time is built into 
the design, unintended loss of prestress arising from 
corrosion of the tendons, slippage etc. can have 
catastrophic consequences. 

Prestressed concrete sections may fail in several 
possible ways (such as a combination of flexure, shear 
and torsion, bursting of end blocks, bearing, anchorage 
or connection failures, excessive deflections etc.). 
This work however, only looks at ultimate flexural 
limit state defined by collapse of concrete due to 
crushing.

Several reliability based studies on partially 
prestressed concrete sections have been conducted 
in the past. Al-Harthy and Frangopol [29] studied 
prestressed beams designed to the 1989 ACI 318, 
considering 3 different limit states (ultimate flexure, 
cracking in flexure and permissible stresses), random 
dead and live loads, material and geometric properties, 
prestressing forces and modeling uncertainty. Their 
studies concluded that the reliability indices implied 
by the 1989 ACI 318 design standard are non-uniform 
over various ranges of loads, span lengths and 
limit states. Hamann and Bulleit [30] examined the 
reliability of under reinforced high-strength concrete 
prestressed beams designed in accordance with the 
1983 ACI-318 standard, considering only the ultimate 
flexural limit state of beams subjected to dead and 
snow loads. While Al-Harthy and Frangopol included 
all the material and geometric random variables in a 
FORM analysis, Hamann and Bulleit first estimated the 
moment capacity through Monte Carlo simulations, 
fitted the data to standard distributions, and then 
performed a first order second moment reliability 
analysis on the linear limit state.

Reliability for Class-1 structures, particularly 
concrete containment structures for nuclear power 
plants, is a much researched subject primarily due 
to the dire failure consequences of the containment 
structure in terms of environmental impact, radiation 
effect on human health and other economic costs. 
Hwang et al. [6] described a Load and Resistance 
Factor Design (LRFD)-based approach to determine 
the critical load combinations for design of concrete 
containment structures. The limit state, corresponding 
to ultimate strength of concrete, was defined in the 
2-D space of membrane stress and bending moment 
in the shell, leading to an octagonal limit state surface. 
Pandey [8] and Varpasuo [31] also worked on the 
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on the reliability of concrete containments, their 
limit states forming sides of the octagonal limit state 
considered by Hwang et al [6].

4. Mechanics of Pre-Stressed Concrete Sections

In this work, we look at collapse limit state 
of partially prestressed sections in flexure which 
corresponds to crushing of concrete in compression 
(reinforcements may yield). Bidirectional flexure on 
shell elements corresponding to nuclear power plant 
inner containment structures with voids have been 
modeled using Wood’s criteria [32] summarized in 
Appendix A. The material properties of concrete and 
steel and the mechanistic formulation of both the limit 
states are discussed next.

In Indian Standards such as IS 456 [33] the 
compressive stress-strain relationship for concrete 
is taken to be parabolic up to a strain of 0.002, and 
horizontal from that point on. The nominal compressive 
strength of concrete is taken to be fcn =fck /1.5 where  
fck is the characteristic compressive strength. The design 
compressive strength of concrete is fcn /γc, where γc is 
the material safety factor on concrete strength. The 
value of γc is usually taken to be 1.5 for normal design 
condition and as 1.15 for abnormal design condition. 
The failure strain of concrete in bending compression 
is 0.0035. IS 1343[34] specifies the minimum grade 
of concrete as M30 for post-tensioning and M40 for 
pre-tensioning. 

The stress-strain behavior of concrete in tension 
is linear [35] and the tensile strength is taken to 
be fcγ = 0.7√fck and the modulus of elasticity of 
concrete in tension is assumed to be same as the 
secant modulus of concrete in compression which is  
Ec= 5000√fck The maximum tensile strain in concrete 
is then,
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The design yield stress for reinforcing steel is  
fyn/γs where fyn is the nominal yield strength and γs is 
the material safety factor on yield strength of steel and 
is taken to be 1.15 for normal design conditions and 
1.0 for abnormal conditions. The nominal modulus of 
elasticity of steel, En, is 200000 N/mm2.

The moment capacity of a partially prestressed 
concrete section, given the amount of prestressing 
force and the geometric and material properties 
can be obtained in the form of an interaction 
diagram using strain compatibility equations and 
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Figure 1 shows the strain and stress diagrams for an example section similar to the ones used in this work - 
with one set of prestressing tendons and two layers of ordinary reinforcement. In the figure, C= compressive force in 
concrete, fs1 = force in top reinforcement, fs2 = force in bottom reinforcement and P = prestressing force.  

For given amount of prestress the position of the neutral axis is determined iteratively by balancing the 
tensile and compressive forces on the section.  The moment capacity can then be found by taking the moment of the 
forces about any convenient point.  In determining the collapse moment capacity, two cases are possible (Figure 2): 
the neutral axis (NA) outside and the neutral axis inside the section. In the former, the entire section is in 
compression and in the latter, concrete has cracked and is assumed not to carry any load in the tensile zone.
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JI has to be considered as a void in concrete, i.e. while calculating the contribution of concrete to the strength the 
area considered is the total area minus the area of the void. For the typical prestressed containment shell, the void 
depth is approximately 0.15 times the total depth of the element. 

The forces and moments acting on the section (for example Dead Load, Ordinary Live Load, Construction 
Live Load, Pre Stressing Load and Accidental Pressure Load) have two normal components (xx and yy) and one 
shearing (xy) component. Additionally, areas occupied by pre stressing cables are considered as voids in concrete. 
The section is thus under bi-directional flexural loading.  

The components of the externally applied loads (Nxx and Nyy) on the section act in the same direction as the 
pre-stressing cables. As a result, the external forces cause the section to be in compression, thus acting like a 
external pre stressing forces. These forces therefore affect the moment capacity of the section. On the other end, 
applied moments on the section are caused due to the same set of forces. Thus both the capacity of the system and 
the loading on the system are affected by a common source and therefore it is possible that the applied moment and 
the moment capacity will show some degree of correlation. 
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Figure 3 shows an example prestressed concrete 
element corresponding to the shell structure of nuclear 
power plant inner containment structures. Two layers 
of ordinary reinforcement top and bottom can be seen 
and JI and JO correspond to prestressing cables in the 
North-South and East-West directions respectively. 
In the co-ordinate system adopted, these two are 
considered as the x and y directions.

When calculating the flexural strength of an element 
such as this, the space taken by the prestressing cable 
JI has to be considered as a void in concrete, i.e. while 
calculating the contribution of concrete to the strength 
the area considered is the total area minus the area of 
the void. For the typical prestressed containment shell, 
the void depth is approximately 0.15 times the total 
depth of the element.

The forces and moments acting on the section (for 
example Dead Load, Ordinary Live Load, Construction 
Live Load, Pre Stressing Load and Accidental Pressure 
Load) have two normal components (xx and yy) and 
one shearing (xy) component. Additionally, areas 
occupied by pre stressing cables are considered 
as voids in concrete. The section is thus under  
bi-directional flexural loading. 

The components of the externally applied loads 
(Nxx and Nyy) on the section act in the same direction as 
the pre-stressing cables. As a result, the external forces 
cause the section to be in compression, thus acting like 
a external pre stressing forces. These forces therefore 
affect the moment capacity of the section. On the other 
end, applied moments on the section are caused due 
to the same set of forces. Thus both the capacity of the 
system and the loading on the system are affected by 
a common source and therefore it is possible that the 
applied moment and the moment capacity will show 
some degree of correlation.

The design check is carried out in the principal 
plane with respect to stresses. Applied moments are 
converted to this plane according to the basic rules 
of tensorial transformation. The moment capacities 
of the section in each of the 2 principal directions are 
computed from interaction diagrams with transformed 
dimensions, reinforcement areas and voids. The 
applied moments in directions X and Y are obtained 
using Wood’s Criteria [32], summarized in Appendix 
A) which outlines a procedure to obtain applied 
moments in x and y direction at the bottom and the 
top of the section (M*

xtop, M*
xbottom, M*

ytop, M*
ybottom), 

eliminating the torsional moment component Mxy.

Since the structural analysis used to compute stress 
resultants is completely linear in nature, the different 
stress resultant components (Nxx, Nyy, Nxy, Mxx, Mxy,  
Mxy) in a given load case are statistically fully 
dependent on one another. Additionally, stress 
resultants due to different load cases are completely 
independent. The correlation matrix that is developed 
for analysis is based on these two assumptions.

5. Reliability analysis and Calibration of PSfs

5.1 limit States and Basic Variables

Since this work concerns the reliability of PC shells 
in biaxial flexure, the limit states in x and y directions 
can be written respectively as: 

cap, app, 0x x yg M M= − =                                               (5)

cap, app, 0y y yg M M= − =                                               (6)

so that failure of the section is given by:

{Failure}= 0 0x yg g< ∪ <                                               (7)

and the failure probability can be written as:
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{Failure} all 

Failuref X X
x x

P f x d x f x d x


      I  (8) 

The indicator function, I , on the right hand side of Eq. [4.4] evaluates the expression within brackets so 
that: 

 1, if [ ] is true
[ ]

0,  if [ ] is false


   
I  (9) 

and is a convenient way to convert the domain of integration from the failure region to the entire range of x which is 
useful in simulation based estimates as described subsequently. 

cap,xM  and cap,yM are the moment capacities in x and y directions respectively. Likewise, app,xM  and 

app,yM are the applied moments.  As stated above, the moment capacity corresponds to collapse of the section. From 

this point forward, unless otherwise mentioned, all moments in this work are normalized by 2
ckf bD  and all forces 

by ckf bD . 
Before going into the details of the individual terms above, it is important to recall that the moment 

capacities and applied moments are mutually statistically dependent since the capacities are functions of the axial 
loads which in turn are linearly related to the applied moments in each load case.  In addition, the capacities in the x 
and y directions are strongly correlated as they are functions of the same material properties and some of the same 
axial loads. 

As explained in Appendix-A, app,xM  and app,yM  are defined respectively as 
* *max(abs( ),abs( ))xtop xbottomM M and * *max(abs( ),abs( ))ytop ybottomM M  and are functions of the applied moments Mxx ,Myy
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and is a convenient way to convert the domain of 
integration from the failure region to the entire range 
of x which is useful in simulation based estimates as 
described subsequently.

cap,xM  and cap,yM  are the moment capacities in x and 
y directions respectively. Likewise, app,xM  and 

app,yM  are 
the applied moments. As stated above, the moment 
capacity corresponds to collapse of the section. From 
this point forward, unless otherwise mentioned, all 
moments in this work are normalized by 2

ckf bD  and 
all forces by ckf bD .

Before going into the details of the individual 
terms above, it is important to recall that the moment 
capacities and applied moments are mutually 
statistically dependent since the capacities are 
functions of the axial loads which in turn are linearly 
related to the applied moments in each load case.  
In addition, the capacities in the x and y directions 
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are strongly correlated as they are functions of the 
same material properties and some of the same axial 
loads.

As explained in Appendix-A, app,xM  and app,yM  are 
defined respectively as * *max(abs( ),abs( ))xtop xbottomM M
and * *max(abs( ),abs( ))ytop ybottomM M  and are functions 
of the applied moments Mxx ,Myy and Mxy caused by 
all load cases relevant to the load combination at 
hand. For example, we can have the load combination 
Dead (D) + Prestressing (Ps) + Ordinary Live (Lo) + 
Temperature (T)  + Accidental Pressure (Pa) giving 
us:

 
, , , , ,

, , , , ,

, , , , ,

xx xx D xx Ps xx Lo xx T xx Pa

yy yy D yy Ps yy Lo yy T yy Pa

xy xy D xy Ps xy Lo xy T xy Pa

M M M M M M

M M M M M M

M M M M M M

= + + +

= + + +

= + + +
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The normalized moment capacity, capM , is a 
function of the applied in-plane compression, material 
properties ( , , , ,c y c tf f E ε ε ) and geometric quantities  
( / , / , / , /ck voidp f d D e D t D ):

 
cap , , , , , , , , , void

cap c y c t
ck

tp d eM M P f f E
f D D D

ε ε
 

=  
          (11)

Of these, the random terms are: the applied 
in-plane compressive force, P , the compressive 
strength of concrete, cf , the yield strength, yf , and 
the Young’s modulus, E, of the reinforcing steel. The 
compressive force P in turn is the algebraic sum of 
forces from all load cases in the load combination 
considered. 

The nominal or design values of the moment 
capacities, to be used in design equations discussed 
below,  can be obtained by substituting the random 
quantities in Eq. [4.9] by their design values:

 
, cap , , , , , , , , ,yncd void

cap n n n c t
c s ck

ff tp d eM M P E
f D D D

ε ε
γ γ

 
==  

                                                                                 
(12)

As stated above, in accidental pressure load case, 
the material safety factor on concrete compressive 
strength, γc is commonly taken to be 1.15, while that 
on yield strength of reinforcing steel, γs is commonly 
1.0.  

The moment capacities ,cap xM and ,cap yM thus 
defined are implicit functions of four basic variables; 
their distributions and correlations with applied 
moments are obtained by numerical simulation, which 
in turn are used in the reliability analyses.

5.2 Monte Carlo Simulations and importance 
Sampling

Except in very special situations, closed form 
solution to the structural reliability problem (Eq.(8)) 
does not exist and numerical approximations are 
needed. The true probability of failure, fP , 
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all all 

Failure Failuref X U
x u

P f x d x f u du        I I  (13) 

can be estimated using basic (or “brute-force” or “crude”) Monte Carlo simulations (MCS) in practice as: 
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1ˆ 0 0
N

f x i y i
i

P g T U g T U
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      I  (14) 

where a zero-mean normal vector U  with the same correlation matrix  as the basic variables is generated first and 

then transformed element by element according to the full distribution transformation: 
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not exist and numerical approximations are needed.  The true probability of failure, fP ,  

        
all all 

Failure Failuref X U
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where a zero-mean normal vector U  with the same correlation matrix  as the basic variables is generated first and 

then transformed element by element according to the full distribution transformation: 
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iX i iT u x F x u     (15) 

where a zero-mean normal vector U  with the 
same correlation matrix ρ as the basic variables 
is generated first and then transformed element 
by element according to the full distribution 
transformation:

( )  ( ) ( )
iX i iT u x F x u= ⇒ = Φ                                        (15)

The use of the same 
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The use of the same for U as for X results in error, but the error is generally small [36].  N  is the total number of 
times the random vector U  is generated, and Ui  is the ith realization of the vector.  It is well-known that the basic 
Monte-Carlo simulation-based estimate of Pf has a relatively slow and inefficient rate of convergence. The 
coefficient of variation (COV) of the estimate is: 

 ˆc.o.v.( ) (1 ) ( ) 1 ( )f f f fP P NP NP    (16) 

which is proportional to 1 N and points to an inefficient relation between sample size and accuracy (and stability) 
of the estimate.   

Such limitations of the basic Monte Carlo simulation technique have led to several “variance reducing” 
refinements.  Notable among them is Latin hypercube sampling (e.g., [37]), importance sampling (e.g.[38]) along 
with its variants (e.g., [39], [40])  which, if performed carefully, can significantly reduce the required sampling size.  
Nevertheless, importance sampling and other variance reducing techniques should be performed with care, as their 
results may be quite sensitive to the type and the point of maximum likelihood of the sampling distribution, and an 
improper choice can produce erroneous results.. In this work, we have adopted Importance Sampling to estimate the 
failure probability in Eq. (13).  

The mathematical formulation of importance sampling is simply obtained by modifying the basic 
expression of failure probability (Eq. (8)) as: 

    
   

{Failure} {Failure}

X
f X H

Hx x

f x
P f x d x f x d x

f x 

    (17) 

where Hf  is any PDF not equal to zero in the region of interest.  A judicious choice of Hf  can ensure low variance 
of the estimated failure probability.  By a simple change of the variable of integration, the failure probability 
estimate is as before the computation of the expectation of the indicator function but now modified with a correction 
factor ( /U Hf f ): 

        
 1

1ˆ 0 0
N

U i
f x i y i

i H i

f h
P g T h g T h

N f h

      I  (18) 

It is important to note that this expectation as computed with respect to the sampling density Hf  and the estimate of 
failure probability is obtained by simulating vectors of H. The choice of Hf  is extremely important, and depending 
on the limit state function, an improper choice may lead to errors in the estimate of Pf.   
In this work, H has been taken as a jointly Normal random vector with the same correlation matrix  as U, but with a 
mean vector that is closer to the failure region. This mean vector is chosen carefully by comparing the IS results 
with basic MCS results for the range of problems encountered.  The variance of the estimate in Eq. (18) is: 

 2

( )1ˆvar ( ) var
( )

U i
f i
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f h
P

f hN
 

   
 

 I  (19) 

which can be estimated during the sampling as: 
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giving the coefficient of variation (COV) of the failure probability estimated through importance sampling as: 

 for U  as for X results in 
error, but the error is generally small [36].  N  is the total 
number of times the random vector U   is generated, 
and Ui  is the ith realization of the vector.  It is well-
known that the basic Monte-Carlo simulation-based 
estimate of Pf has a relatively slow and inefficient rate 
of convergence. The coefficient of variation (COV) of 
the estimate is:

ˆc.o.v.( ) (1 ) ( ) 1 ( )f f f fP P NP NP= − ≈                (16)

which is proportional to 1 N and points to an 
inefficient relation between sample size and accuracy 
(and stability) of the estimate.  

Such limitations of the basic Monte Carlo 
simulation technique have led to several “variance 
reducing” refinements.  Notable among them is Latin 
hypercube sampling (e.g., [37]), importance sampling 
(e.g.[38]) along with its variants (e.g., [39], [40])  which, 
if performed carefully, can significantly reduce the 
required sampling size.  Nevertheless, importance 
sampling and other variance reducing techniques 
should be performed with care, as their results may be 
quite sensitive to the type and the point of maximum 
likelihood of the sampling distribution, and an 
improper choice can produce erroneous results.. In 
this work, we have adopted Importance Sampling to 
estimate the failure probability in Eq. 
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The mathematical formulation of importance 
sampling is simply obtained by modifying the basic 
expression of failure probability (Eq. ) as:

( ) ( )
( ) ( )

{Failure} {Failure}

X
f X H

Hx x

f x
P f x d x f x d x

f x∈ ∈

= =∫ ∫   
     (17)

where Hf  is any PDF not equal to zero in the 
region of interest.  A judicious choice of Hf  can ensure 
low variance of the estimated failure probability.  By a 
simple change of the variable of integration, the failure 
probability estimate is as before the computation of the 
expectation of the indicator function but now modified 
with a correction factor ( /U Hf f ):

 
( )( ) ( )( ) ( )

( )1
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U i
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i H i
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P g T h g T h
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It is important to note that this expectation as 
computed with respect to the sampling density Hf  
and the estimate of failure probability is obtained by 
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an improper choice may lead to errors in the estimate 
of Pf .  

In this work, H has been taken as a jointly Normal 
random vector with the same correlation matrix ρ as 
U, but with a mean vector that is closer to the failure 
region. This mean vector is chosen carefully by 
comparing the IS results with basic MCS results for 
the range of problems encountered. The variance of 
the estimate in Eq. (18)  is:
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giving the coefficient of variation (COV) of the failure 
probability estimated through importance sampling 
as:

ˆ ˆ( )ˆ ˆ( ) ˆ
f

f
f

S P
V P

P
=                                                            (21)

One of our stopping criteria for the Importance 
Sampling simulation in this work involves an 
upper limit on the COV of the estimated failure 
probability. 

5.3 Partial Safety factors and their optimization

Reliability based partial safety factor (PSF) design is 
intended to ensure a nearly uniform level of reliability 
across a given category of structural components for 
a given class of limit state under a particular load 
combination [41]. We approach the topic of optimizing 
PSFs by noting that any arbitrary point, Xa, on the limit 
state surface by definition satisfies:

( ) 0ag X =                                                           (22)

Conversely, a “design point” Xd on the limit state 
surface can be carefully chosen so that it “locates” the 
limit state in the space of basic variables such that a 
pre-defined target reliability is ensured for the design.  
The ensuing design equation:

( ) 0dg X =                                                            (23)

is essentially a relationship among the parameters of 
the basic variables and gives a minimum requirement 
type of tool in the hand of the design engineer to 
ensure target reliability for the design in an indirect 
manner. Since nominal or characteristic values of 
basic variables are typically used in design, Eq.  may 
be rewritten as:

 1
1 1

1

, , , ,..., 0,   where ...
n nn

n n
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X X
g XX X Xγ γ
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   (24) 

where the superscript n indicates the nominal value 
of the variable. We have partitioned the vector of 
basic variables into k resistance type and m – k action 
type quantities.  The partial safety factors, iγ , are 
typically greater than one: for resistance type variables 
they divide the nominal values while for action type 
variables they multiply the nominal values to obtain 
the design point: 

 
,

,

resistance PSFs : , 1,...,

action PSFs : , 1,...,

i n
i d

i
d
i

i
i n

X
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X
X

i k m
X
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= =

= = +
                                                            (25)

If the design equation (23)  can be separated into a 
strength term and a combination of load-effect terms, 
the following safety checking scheme may be adopted 
for design:

 
1

, 1,...,
n m k

q ni
n i is

ii

S
R i k l Qγ

γ

−

=

   = ≥   
  
∑                                (26)

where Rn = the nominal resistance and a function of 
factored strength parameters, l = load-effect function, 
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table 1: Statistics of Basic Variables

Random 
Variable Description Statistics Distribution(mean, CoV) Source

M’LC, xx

M’LC, xy

M’LC, yy

normalized applied 
moments

for each load case (LC) in given load 
combination, combined according to 

Wood’s criteria

FEM Analysis of IC Shell 
Model

P’LC,xx

P’LC,xy

P’LC,yy

normalized force for each load case (LC) in given load 
combination

FEM Analysis of IC Shell 
Model

M’cap,xx

M’cap,yy

normalized moment 
capacity

obtained through Interaction diagram 
(fn of P’LC,xx , P’LC,xy  and P’LC,yy)

Structural Analysis of 
Prestressed concrete 

section

fc

compressive strength of 
concrete Normal, (max(fck+0.825sc, fck+4), sc)* [33]

fy Yield strength of steel Lognormal(1.1133fyn,0.09) [43], [30]
E Young’s modulus Normal(1.001103En,0.01) [43]

* sc=standard deviation for characteristic strength (in MPa) of concrete as given in IS 1343[34]

table 3: Distribution types of loads

load type Distribution type C.o.V Bias
Dead Normal 0.1 1.0
Pre-Stress Lognormal 0.15 1.2
Live (Ordinary) Lognormal 0.15 1.0
Temperature Gumbel 0.15 0.9
Accidental 
Pressure

Gumbel 0.15 0.8

table 2: Deterministic Parameters

Parameter Description Values taken
p Percent reinforcement 0.2%  

fck

Characteristic 
compressive strength 

of concrete
45 MPa

fcn = fck/1.5 Nominal compressive 
strength of concrete 30 MPa

fyn

Nominal yield strength 
of reinforcing steel 415 MPa

En

Nominal Young’s 
modulus of reinforcing 

steel
200 GPa

e/D Eccentricity of 
prestressing force 0

d/D cover depth 0.05

void range no concrete due to PS 
cables 0.5D to 0.6 D

n
iS =nominal value of ith strength/material parameter,
s
iγ  = ith strength/material factor, n

iQ = the nominal 
value of the ith load and q

iγ  = ith load factor. Note 
that there is no separate resistance factor multiplying 
the nominal resistance (as in LRFD) since material 
partial safety factors have already been incorporated 
in computing the strength.  

The nominal values generally are fixed by 
professional practice and thus are inflexible. Some of 
the m partial safety factors (often those associated with 
material properties) can also be fixed in advance. The 
remaining PSFs can be chosen by the code developer 
so as to locate the design point, and hence locate the 
limit state as alluded to above, and hence achieve a 
desired reliability for the structure.  Such an exercise 
can be conveniently performed if the strength and 
load effect terms can be separated as above in which 
case the limit state equation can be normalized by the 
design equation:

cap app

cap app

0n n

M M
M M

− =                                                            (27)

The reliability problem now becomes:
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                                                                                       (28)

Baidurya Bhattacharya  et al. / Life Cycle Reliability and Safety Engineering Vol.3 Issue 2 (2014) 1-14



10 © 2014 SRESA All rights reserved

table 4: nominal load effects for the critical element in each group

load case  load effect
 nxx (ton/m) nyy(ton/m) nxy (ton/m) Mxx (ton-m/m) Myy (ton-m/m) Mxy (ton-m/m)

Group 1
D -9.61E+00 -1.22E+01 9.64E+00 -2.14E-01 -2.27E-01 3.91E-02
Ps -4.44E+02 -4.77E+02 1.25E+02 1.53E+00 1.90E+00 -1.39E+00
Lo -9.61E-01 -1.03E+00 2.82E-01 -3.37E-02 -3.63E-02 1.03E-02
T 3.12E+00 2.75E+00 1.34E+00 3.38E+00 3.42E+00 -1.27E-01
Pa 2.08E+02 2.26E+02 -7.09E+01 5.96E+00 6.29E+00 -1.30E+00
 Group 2
D -5.41E+01 -1.54E+01 2.80E+00 -8.11E+00 -1.31E+00 2.74E+00
Ps -1.02E+03 -6.20E+02 -5.63E+01 3.55E+01 -5.00E+00 6.20E+00
Lo -2.58E+00 -6.15E-01 3.18E-01 1.20E-02 1.27E-02 6.93E-02
T 1.56E+00 -1.28E-01 -4.86E-01 1.17E+01 2.78E+00 -1.90E+00
Pa 5.80E+02 1.50E+02 -7.01E+01 1.64E+01 -3.10E+00 -2.56E+01
 Group 3
D -2.65E+01 2.12E+00 6.12E+00 6.72E-01 -1.24E-01 -4.42E-02
Ps -5.23E+02 -2.43E+02 2.42E+01 1.85E+01 8.95E+00 -2.07E+00
Lo -1.04E+00 -3.24E-01 6.12E-02 -2.36E-02 -1.36E-02 -4.47E-04
T -1.09E-01 5.88E+00 1.86E+00 4.56E+00 3.66E+00 -8.39E-02
Pa 2.46E+02 6.23E+01 -1.91E+01 -1.47E-01 1.98E+00 5.85E-01
 Group 4
D 3.73E+00 -4.10E+01 2.24E-01 -1.34E-01 -6.23E-01 -1.18E-02
Ps -6.70E+02 -5.32E+02 -1.89E+01 1.17E+00 -1.39E+01 -1.89E-01
Lo 2.55E-01 -8.37E-01 -2.62E-03 -4.52E-03 -2.28E-02 -4.45E-06
T 7.88E+00 5.93E-02 1.48E-02 5.01E+00 5.61E+00 -1.06E-02
Pa 2.85E+02 1.80E+02 1.77E+00 2.91E+00 1.23E+01 -8.57E-02

table 5: typical correlation matrix (group 1)

Dead Prestress live temperature Pressure Mcapxx Mcapyy

Dead 1.0000 -0.0028 0.0005 0.0054 -0.0006 0.099 0.0117
Prestress -0.0028 1.0000 -0.0028 -0.0093 0.0029 0.9156 0.9072

live 0.0005 -0.0028 1.0000 0.0049 -0.0053 0.0036 0.0023
temperature 0.0054 -0.0093 0.0049 1.0000 0.0060 -0.0176 -0.0156

Pressure -0.0006 0.0029 -0.0053 0.0060 1.0000 -0.2935 -0.2972
Mcapxx 0.0099 0.9156 0.0036 -0.0176 -0.2935 1.0000 0.9956

Mcapyy 0.0117 0.9072 0.0023 -0.0156 -0.2972 0.9956 1.0000

table 6: Bias and CoVs of moment capacities

Group Mcapxx Mcapyy

Bias CoV Bias CoV
1 1.82 0.159 1.41 0.157
2 1.65 0.133 1.42 0.171
3 1.40 0.137 1.59 0.149
4 1.58 0.133 1.54 0.145
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table 7: optimization parameters

Parameter Value
Target reliability, βT 3.5 
Tolerance on target reliability, 
∆β

1.0

Weights on four Groups, wi 0.25, 0.25, 0.25, 0.25
Material PSF on concrete 
strength, γc

1.3

Material PSF on steel 
strength,γs

1.0

Lower bounds on load PSFs 1.0, 1.0, 1.0, 1.0, 1.3
Upper bounds on load PSFs 1.2, 1.2, 1.3, 1.4, 1.8

table 8: optimal results

Parameter optimal values
Beta values at optimum 
(Groups 1 – 4 respectively)

2.41, 3.88, 4.51, 4.25

Objective value 
(weighted squared error)

0.82

Optimal PSFs  
(D, Ps, Lo, T, Pa)

1.19, 1.09, 1.24, 1.35, 1.51

where Tβ is the target reliability index. Of 
course, this is an under-defined problem and even 
though some of the PSFs may be fixed in advance as 
stated above, it has an infinite number of solutions.  
Additional considerations are needed to improve the 
problem definition. Such considerations naturally 
arise when PSFs are needed to be “optimized” for a 
class of structures and are discussed next. 

It is common to expect that the design equation 
be valid for r representative structural components 
(or groups), and let wi be the weight (i.e., relative 
importance or relative frequency) assigned to the  
ith such component  (or group). These r representative 
components may differ from each other on account of 
different locations, geometric dimensions, nominal 
loads, material grades etc. For a given set of PSFs, 
let the reliability of the ith group be βi. Choosing a 
new set of PSFs gives us a new design, a new design 
point, and consequently, a different reliability index.  
If there has to be one design equation, i.e., one set 
of PSFs, for all the r representative components, the 
deviations of all βi’s from Tβ must in some sense be 
minimized.  The design equation (Eq.(24) or Eq. (26)), 
when using the optimal PSFs obtained this way, can 
ensure a nearly uniform reliability for the range of 
components. Several constraints may be introduced 
to the optimization problem to satisfy engineering 

and policy considerations (as summarized in [42]).  
Moreover, some partial safety factors, such as those on 
material strengths, may be fixed in advance as stated 
above.  The PSF optimization exercise adopted in this 
paper has the following form:

 ( )( )21
1 1
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max
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subject to: min( ) , 1,...,

, 1,...,

, 1,...,

, 1,...,

r r
q q

i i m k T i
i i

i T
q
i i
q
i i
s
i i

w w

i r
i m k
i m k

m i k

β γ γ β

β β

γ γ

γ γ

γ

−
= =

 − = 
 

> =

≥ = −

≤ = −

= =

∑ ∑
 

                                                                          

 (29) 

6. numerical Example 

An example problem based on the prestressed IC 
shells of typical 220 MWe Indian PHWRs has been set 
up to demonstrate the methodology developed in this 
paper. A combination involving 5 load cases namely 
Dead Load (D), Pre-Stressing Load (Ps), Ordinary 
Live Load (L0), Accidental Temperature Load (T) and 
Accidental Pressure Load (Pa) has been considered. For 
each load case sets of six stress resultants (Nxx, Nyy, Nxy, 
Mxx, Myy, Mxy) have been obtained from linear elastic 
finite element analyses. The FE model consisted of 
about 2500 elements.  

Four structural groups of the IC Shell have been 
selected for finding optimal PSFs (Group 1: dome 
general area between two SG openings, Group 2: SG 
opening, Group 3: dome general area between SG 
opening and ring beam, Group 4: IC wall).  The section 
depths (D) are respectively 500, 1200, 500 and 610 mm. 
For each group the critical element has been identified 
as the one having the lowest capacity demand ratio 
– by considering all nominal stress resultants for the 
given load combination.  The objective of the example 
is to obtain a set of partial safety factors for the 5 
applied loads that satisfy a set of optimality criteria.  

The statistical parameters and nominal values 
used in the problem are listed in Tables 1 – 4. The 
computed correlation coefficients for Group 1 obtained 
between the moment capacities and applied moments 
are listed in Table 5. Noticeable here is the high 
positive correlation between moment capacity and 
prestressing force and the high negative correlation 
between the moment capacity and the accidental 
pressurization force. The moment capacities in x and 
y directions are almost fully mutually dependent. 
These are consistent with our intuitive expectations 
from the mechanics of the problem.  The bias and COV 
of the moment capacities obtained for each group are 
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provided in Table 6.  The optimization parameters 
(cf. Eq. ) are listed in Table 7.  While estimating the 
objective function in Eq. , a linear response was fitted 
around the given decision variable vector in order 
to smooth the sampling related fluctuations in the 
estimated reliability indices.  Table 8 lists the optimal 
results for this example problem. 

7. Conclusions

A set of optimal partial safety factors (for collapse 
limit state) ensuring a nearly uniform level of reliability 
across 4 groups of structural elements in a typical IC 
Shell of an Indian NPP have been obtained. The 
complete methodology for the same was developed 
from first principles. Correlations between demand 
and capacity terms owing to the structural mechanics 
underlying the problem were taken into account and 
the methodology developed accordingly. Analysis of 
the structural behavior of prestressed concrete section 
was formulated using recommendations provided 
in IS 1343 and SP 16. Monte Carlo simulations using 
(1) Importance Sampling and (2) a linear response 
surface fit for variance reduction was used to 
compute probabilities of failure. The load factors 
obtained in this example problem are in agreement 
with design practices from around the world, except 
the temperature load factor is typically lower than 
found here since thermal loads are categorized as 
secondary loads caused by geometric constraints and 
local yielding and micro-cracking ultimately result in 
redistribution of forces. 
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The design check is carried out in the principal 
plane with respect to stresses, which is inclined at an 
angle θ given by:

 2
tan 2 xx

x y

N
N N

θ =
−

  

On this plane shearing stresses are absent and the 
perpendicular (principal) stresses are given by:

 2 2
1 ( )

2 2
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The applied moments are converted to this 
plane according to standard tensor transformation 
procedures that lead to the following expressions:
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The moment capacity in direction1 and 2 (or X 
and Y) are then computed from interaction diagrams 
with transformed dimensions, reinforcement areas 
and voids. The applied moments in directions X and 
Y are obtained using Wood’s Criteria. This outlines 
a procedure to obtain applied moments in X and Y 
direction at the bottom and the top of the section 
according to the following procedure:

Bottom Reinforcement

The bottom reinforcement can be calculated for 
following set of moments in x- and y- directions

 *
x XX XYM M M= +   

appendix a: Wood’s Criteria for Moment Combination

 

*
y YY XYM M M= +

 

If both *
xM  & *

yM  calculated as per the above 
equation are found to be negative, then both are 
assigned a zero value and not utilized for design.  If 

*
xM  is negative, then

 
2

* *and 0XY
y YY x

XX

MM M M
M

= + =  

If  *
yM  is negative, then
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* *and 0XY
x XX y

YY

MM M M
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Top Reinforcement

The top reinforcement can be calculated for 
following set of moments in x- and y- directions

 *
x XX XYM M M= −  

 *
y YY XYM M M= −  

If both *
xM  & *

yM  calculated as per the above 
equation are found to be negative, then both are 
assigned a zero value and not utilized for design.  If 

*
xM  is negative, then

 
2

* *and 0XY
y YY x

XX

MM M M
M

= − =  

If  *
yM  is negative, then

 
2

* *and 0XY
x XX y

YY

MM M M
M

= − =  

The limit state in x direction (i.e, principal plane 
1) and y directions are respectively:

* *
_ max(abs( ),abs( ))cap x xtop xbottomM M M−       

* *
_ max(abs( ),abs( ))cap y ytop ybottomM M M−    
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Expansion bellows are an integral part of the pressure boundary in the nuclear power plants, 
when they are used in the Reactor Containment Building (RCB) penetrations as soft connection 
to mitigate the effects of differential movements between the penetrating pipe and containment 
shell. The expansion bellows at the RCB penetration of secondary sodium line of Prototype Fast 
Breeder Reactor experience high axial and lateral duty at normal operating condition. Since these 
expansion bellows has lower safety margin compared to other mechanical components as it operate 
in the plastic zone, they may provide a potential source of leakage of contaminations to atmosphere 
in the event of failure of their structural integrity. In this work evaluation of failure probability 
of expansion bellow using a computationally efficient method based on higher order response 
surface method is presented. The developed method use Chebyshev polynomial for estimation 
of order of stochastic variables in the Limit State (LS) function as well as for approximation of 
LS function. The developed method also facilitates the sensitivity analysis of LS without any 
additional computational cost. 

Keywords: Failure probability, Bellow, Response surface, Chebyshev polynomial, Fatigue
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1. introduction

Expansion bellows are an integral part of the 
pressure boundary in the nuclear power plants. 
They are used in the containment penetrations as 
soft connection to mitigate the effects of differential 
movements between the penetrating pipe and 
containment shell [1]. Expansion bellows are also 
used as inline components in the pipeline or in the 
components like heat exchangers to provide flexibility 
for thermal expansion and to function as pressure 
containing elements. As piping penetration bellows, 
it is the last engineered barriers to prevent the release 
of radioactive materials to the atmosphere from 
containment. Therefore they are a potential source of 
leakage of contaminations to atmosphere in the event of 
failure of their structural integrity. This paper presents 
a methodology to estimate the probability of failure 
of expansion bellows at the Reactor Containment 
Building (RCB) penetration of secondary sodium line 
of Prototype Fast Breeder Reactor (PFBR).

American Society of Mechanical Engineers 
(ASME) Boiler & Pressure Vessel (B&PV) code, Section 

VIII, Div.-2 [2] has given the criteria for checking the 
stability and fatigue failure of the expansion bellows 
for the static or quasi-static load. These criteria need 
evaluation of equivalent axial duty from the axial, 
lateral and bending duty of the bellows, calculated 
from relative translational and rotational movement 
of ends of these bellows. Based on the equivalent 
axial duty, allowable numbers of cycles to prevent 
fatigue damage are determined from the equations 
given in reference-2. The allowable number of cycles 
have design margin of 3 on cycles and 1.25 on stress 
to account the effect of scatter of data, surface finish, 
atmosphere. The Expansion Joint Manufacturer 
Association (EJMA) standard also provides average 
fatigue life from best-fit curve [3]. However, the 
allowable number of cycle obtained from the EJMA 
is average number of cycle to failure without any 
design margin. 

ASME B&PV, Section III, Div.-1, Subsection-NB for 
pipelines and components have design margin of 20 on 
cycles and 2.0 on stress on the best fit curve obtained 
from  fatigue test on the specimen in the laboratory 
environment.  The Section-III criteria document states 
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that these factors account for data scatter, size, surface 
finish and atmosphere etc. It appears that the margin 
on allowable number of cycles obtained from the 
EJMA standard and ASME Section-VIII, Div.-2 is lesser 
than that of safety related pipelines and components. 
This implies that failure probability of expansion 
bellow will be higher than other components and 
must be evaluated to demonstrate the achievement of 
target reliability of safety system containing expansion 
bellows.

One of the safety function performed by expansion 
bellow in the PFBR is for containment isolation at 
RCB penetration for secondary sodium pipelines.  
The secondary sodium line of PFBR, which is 500 
MWe sodium cooled pool type fast reactor, is at 
the temperature of 5250C and passes through RCB 
penetration between Intermediate Heat Exchanger 
(IHX) and surge tank. High temperature and large 
vertical length of the line cause large thermal expansion 
of this pipe segment. To accommodate this expansion 
four expansion bellows in series are provided at the 
RCB penetration.  Isolation of RCB will be jeopardize 
if there will be any breach of structural integrity of 
these bellows.  In view of safety importance of these 
expansion bellows, failure probability of these bellows 
is evaluated with a procedure based on response 
surface method. The brief details of procedure and 
evaluation of failure probability of expansion bellow 
at RCB penetration is explained in coming sections.

2. Procedure of failure Probability Evaluation

If structural behavior of a component is defined 
by a function ( )g X , where ( ) 0g =X  being the Limit 
State (LS) function and ( ) 0g ≤X being the failure 
domain, then failure probability based on reliability 
theory can be defined as [4,5]

( ) 0

[ ( ) 0] ( )f
g

P P g f d
≤

= ≤ = ∫ X
X

X x x
   

                                   (1)

where ( )fX x is the joint probability density 
function for the vector X of basic random variables 
comprising of loads, material strengths and 
dimensions. In general, the ( )fX x  is rarely available 
and only marginal probability distribution function 
is used for analysis. 

In structural reliability analysis, Monte Carlo 
Simulation (MCS) is a well-known technique to 
accurately estimate the failure probability, pf, 
regardless of complexity of the system or the LS. But 
MCS becomes computationally intensive for structural 

reliability analysis of complex systems with low failure 
probabilities and MCS can be infeasible when the 
analysis requires a large number of computationally 
intensive simulations. 

Considering the difficulties of the multi-fold 
integral of Eq.(1), methods like First Order Reliability 
Method (FORM) or Second Order Reliability Method 
(SORM) are also developed. These methods use either 
an analytical approximation of this integral or an 
analytical approximation of this integral in invariant 
form that are simpler to compute [6, 7, 8, and 9]. These 
methods require explicit or implicit LS functions 
defined a priori. In actual problems true LS cannot be 
easily expressed in analytical form. 

In fact it is general practice in the NPP industry 
to use Finite Element (FE) analysis to study the 
behavior of complicated systems to realistically model 
loading, material, boundary conditions. Therefore, any 
reliability method for failure probability assessment 
of NPP components must be able to integrate the 
desirable features of FE analysis procedure. The 
method should also be computationally efficient to 
reduce computational efforts to an acceptable level.  

2.1 Response Surface Method

The Response Surface Method (RSM) is a technique 
which can provide an efficient and reasonably 
accurate estimate of failure probabilities regardless 
of the complexity of the failure process of the actual 
system. It is used to approximate the original complex 
and implicit LS functions by simple and explicit LS 
functions. Thus, RSM avoid the disadvantages of 
Monte-Carlo simulation methods by replacing the 
true input–output relationship by an approximation 
function. Recent studies have shown that successive 
iteration of RSM by integrating with FORM gives 
reasonably good explicit approximation of LS function 
[10, 11]. These methods use a grid of experimental 
design points at which the response of actual LS is 
evaluated to determine the unknown coefficients of 
polynomial representing the response surface.  

Unfortunately, the selection of experimental 
design points has no precise theoretical guidelines 
but has large influence on the estimate of failure 
property [12]. Also work carried out by Gavin et al. 
has shown that successive generation of response 
surface by integrating with FORM doesn’t guaranty 
the convergence of failure probability [13]. The main 
reason for divergence of failure probability is due to 
improper selection of order of polynomial and region 
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of experimental design points. Gavin et al. suggested 
a method called HOSRSM, in which an algorithm to 
estimate the order of random variables using Chebyshev 
polynomial as basis function is proposed at the expense 
of some extra computation cost. Prior information about 
order of the random variables increases the robustness 
of RSM in approximating the LS. 

Although, it is found that in many cases HOSRSM 
give reasonable approximation of the LS functions, 
yet there are cases where it gives erroneous results. 
Especially for the problem where order estimation of 
the variable is insufficient or the higher order terms 
are present as mix-term in LS. For example consider 
the simple equation with cosine terms as given in 
Eq.(2):

1
2 1( ) cos(2 ) 3 0

5
Xg X X X= + + + =   

                                 
  (2)

The approximation of LS function using the 
algorithm proposed by Boucher et al [10] with second 
order polynomial is shown in the figure 1(a). It can be 
clearly seen that second order polynomial will not be 
able to align the true LS curve as it is of higher order. 
Figure 1(b) represents the approximation using the 
HOSRSM with of two different random number sets. 
This method fails to estimate the good approximation 
of LS because it incorrectly estimated the order of 
Chebyshev polynomial. As a further extension of the 
work carried by Gavin et al. on evaluation of failure 
probability using higher order RSM and remove some 
of its shortcoming a procedure called Higher Order 
Response Surface Method (HORSuM) is proposed for 
evaluation of failure probability. A brief description of 
this procedure and its application for the evaluation 
of failure probability of expansion bellow is next 
sections.
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where the coefficients bij correspond to uni-variate basis function, and the coefficients 
cq correspond to multi-variate basis function. The polynomial order ik , the total number of 
mixed terms m, and the order of a random variable in a mixed term piq are determined in the 
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function over regular polynomial because it satisfies the condition of discrete orthogonality, 
bounded between -1 to 1, and selection of Chebyshev nodes as experimental design points 
distribute the error in approximation of LS more uniformly in the sampled domain. The 
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where the coefficients bij correspond to uni-variate 
basis function, and the coefficients cq correspond to 
multi-variate basis function. The polynomial order

ik , the total number of mixed terms m, and the 
order of a random variable in a mixed term piq are 
determined in the various stages of the proposed 
method. The Chebyshev polynomial is chosen for 
the basis function over regular polynomial because 
it satisfies the condition of discrete orthogonality, 
bounded between -1 to 1, and selection of Chebyshev 
nodes as experimental design points distribute the 
error in approximation of LS more uniformly in the 
sampled domain. The proposed algorithm has three 
steps for generation of approximate LS ˆ ( )g X : (a) 
identification of the orders ik  of the random variables 
in the ˆ ( )g X  (b) determination of number and types 
of mixed terms (c) estimation of the coefficients of 
ˆ ( )g X   and determination of probability of failure, 

fP using ˆ ( )g X .

2.2.1 Polynomial orders

For a univariate function 1ˆ ( )g x that interpolates 
function 1( )g x at the m+1 roots of 1( )mT x+ , 1ˆ ( )g x can 
be written as a combination of orthogonal Chebyshev 
polynomial function as given in Eq. (5):  

1
1

'ˆ ( ) ( )
m

j j
j

g x d T x
=

=∑                                                 
  (5)        

   
where prime indicates that the first term is to be 

halved (which is convenient for obtaining a simple 
formula for all the coefficient of 

jd ). The coefficient 
jd is independent of each other therefore addition of 
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higher order Chebyshev polynomial doesn’t affect 
the coefficient of lower order polynomial. Since 
actual LS function ( )g x  is a multi-variate function, 
it is converted into uni-variate function ( )i ig x  by 
sampling all random variables, except Xi, at 0mr = . 
Whereas, random variables Xi is sampled at the M+1 
roots of 1( )MT x+ given by

( )cos( 0.5 / ( 1))mr m Mπ= − + , 

where m = 1, 2, 3,…………,(M+1).    (6)

The approximation of uni-variate ( )i ig x  with highest 
order polynomial ki is written as '

0

ˆ ( ) ( )
ik

i im j j im
j

g x d T x
=

=∑  

where 1,2,3,.........  such that im M k M= ≤        (7)

Using the discrete orthogonality relation from Eq.(6) 
we have,

 ' '

0 0 0 0
( ) ( ) ( ) ( )

i ik kM M

i im i im j j im i im j j ij
m j m j

g x T x d T x T x d K δ
= = = =

= =∑ ∑ ∑ ∑
                                                                                  (8)

where 0 1K n= +  and ( 1) / 2  when 1 .jK n j n= + ≤ ≤  
Thus coefficient of polynomial can be computed by 
means of formula

0

2 ( ) ( )
1

M

j i im j im
m

d g x T x
n =

=
+ ∑     

                 
                  (9)

In fact, in many cases

 '

0 0 0
( ) ( ) ( ) ( )

M n M

im i im j j k i k
m j m

g x T x d T x T x
= = =

=∑ ∑ ∑      (10)

are rapidly decreasing. Thus, the error in the 
approximation is dominated by numerically less 
significant higher order term. Also the error is 
oscillatory function distributed smoothly in the region 
of [-1, 1], which is a highly desirable property in the 
polynomial approximation. The algorithm takes seven 
Chebyshev nodes of 7 ( )T x for order estimation upto 
the sixth order.  Although more number of nodes can 
be taken but seven Chebyshev nodes gives sufficiently 
accurate estimate of coefficient of polynomial.  

Instead of incremental testing of order from 
3rd order to higher order as suggested by Gavin et 
al., the entire coefficients are estimated together. 
This eliminates the problem of odd and even 
function getting approximated with a very low order 
polynomial.  It also helps in evaluating the order of 
those variables which appear in LS function in only 
higher order. Selection of order of random variables 
is carried with following criteria: (i) if coefficient is 

more than 0.01% of constant term than that order is 
considered significant , (ii) if coefficient is more than 
1.0% of preceding lower order term than  that order 
is also considered significant . 

2.2.2 Mixed terms 

In problems with many random variables, mix-
terms (i.e.

1 21 2( ) ( )....... ( )
np p p nT x T x T x , where 1p , 2p  

and np  are order of the polynomial T(x1), T(x2) and 
T(x3) respectively) increase rapidly with increasing 
order of polynomials. Thus a suitable procedure has 
to be developed to filter out the insignificant mixed 
terms towards contribution to LS approximation. The 
mixed order polynomials 

1 21 1( ) ( )p pT x T x are plotted in 
figure-2, where 1p  is equal to two and 2p  varies from 
one to four. The mixed order polynomials are not 
perpendicular to each other, but they are bounded 
between [-1, 1]. 
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The mixed order polynomials are not perpendicular to each other, but they are 
bounded between [-1, 1].  Also mixed order polynomials of even order, i.e. with their sum of 
p1, p2, p3, ....... , pn are even, fulfill the condition of discrete orthogonality with the mixed-
order polynomial of odd order. The condition for this orthogonality is that the design points 
in the sample space must be mirror image about the origin. This property ensure that if a 
mixed order polynomial of even order is added in the approximate LS, it will have no 
influence on the coefficients of odd number mixed polynomial. Utilizing this property one 
can bi-furcated all the coefficients in odd and even order mixed polynomial, and regression 
can be done separately. This reduces the number of LS iteration required for regression 
analysis for development of LS analysis.  

To keep the number of deterministic evaluation of LS to minimum, stepwise forward 
selection procedure is employed for model building. The first step in the model building it is 
presumed to have all the term with their sum of order less than equal to minimum order, i.e. 

min( )i ii
p k . Subsequently, one term at a time is added in the model and following two 

criteria is employed to check the significance of added terms: (i) the polynomial coefficients 
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The mixed order polynomials are not perpendicular 
to each other, but they are bounded between [-1, 1].  
Also mixed order polynomials of even order, i.e. 
with their sum of p1, p2, p3, ....... , pn are even, fulfill the 
condition of discrete orthogonality with the mixed-
order polynomial of odd order. The condition for this 
orthogonality is that the design points in the sample 
space must be mirror image about the origin. This 
property ensure that if a mixed order polynomial of 
even order is added in the approximate LS, it will have 
no influence on the coefficients of odd number mixed 
polynomial. Utilizing this property one can bi-furcated 
all the coefficients in odd and even order mixed 
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polynomial, and regression can be done separately. 
This reduces the number of LS iteration required for 
regression analysis for development of LS analysis. 

To keep the number of deterministic evaluation of 
LS to minimum, stepwise forward selection procedure 
is employed for model building. The first step in the 
model building it is presumed to have all the term with 
their sum of order less than equal to minimum order, 
i.e. min( )i ii

p k≤∑ . Subsequently, one term at a time 
is added in the model and following two criteria is 
employed to check the significance of added terms: (i) 
the polynomial coefficients corresponding to the added 
term are not less than 0.1% of maximum coefficients 
(ii) adding of the new terms improve the Adjusted 
R2 of the regression model. Adjusted coefficient of 
determination R2 is used for the checking the adequacy 
of the regression model in representing the relationship 
between regressor X and the response variables g(X). 
It represents the proportion of variability in response 
variable that is accounted for by the regression model 
and can be given by Eq. (11):
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Where N is total number of sample points, p is total number of coefficients in the regression 
model and g  is mean value of given by ( )ig x       
  

2.2 3 Response Surface and Failure probability evaluation 
Once all the terms involved for the estimation of response surface is identified, the 

coefficients are estimated using least squares method. Response surface is developed with 
Chebyshev polynomial as basis function instead of regular polynomial. It is worthwhile to 
mention here that polynomial order evaluation and mixed order evaluation are performed 
using Chebyshev polynomial; therefore further deterministic evaluation of LS function is not 
required. This significantly reduces the total number of deterministic analysis involved in the 
procedure. In the last stage, a full scale MCS on the approximated LS is carried out to 
determine the Pf.  

The approximation of LS function using the HORSuM is shown in the figure-3. The 
accuracy and the efficiency of the HORSuM is compared with other methods like FORM, 
SORM, eHDMR and validation of the procedure is performed using full scale MCS. The 
validation work is not discussed in this paper. The failure probability of bellow using this 
method is explained in next section against LS based on fatigue failure. 
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2.2 3 Response Surface and failure probability 
evaluation

Once all the terms involved for the estimation 
of response surface is identified, the coefficients are 
estimated using least squares method. Response 
surface is developed with Chebyshev polynomial 
as basis function instead of regular polynomial. 
It is worthwhile to mention here that polynomial 
order evaluation and mixed order evaluation are 
performed using Chebyshev polynomial; therefore 
further deterministic evaluation of LS function is not 
required. This significantly reduces the total number 
of deterministic analysis involved in the procedure. 
In the last stage, a full scale MCS on the approximated 
LS is carried out to determine the Pf. 

The approximation of LS function using the 
HORSuM is shown in the figure-3. The accuracy and 
the efficiency of the HORSuM is compared with other 
methods like FORM, SORM, eHDMR and validation 
of the procedure is performed using full scale MCS. 

The validation work is not discussed in this paper. 
The failure probability of bellow using this method is 
explained in next section against LS based on fatigue 
failure.
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3. finite Element analysis of Expansion Bellow

3.1 Description of Bellow

Expansion bellows are part of the line segments 
which penetrated the RCB between IHX and surge 
tank. At normal operating conditions pipeline is at 
5250C, whereas in the shutdown condition it is at 
1500C. In case of draining of sodium from pipeline, 
it will reach the temperature of 400C. Expansion 
bellows will be approximately 500C lower than the 
pipeline temperature. Two expansion bellows are 
provided in both side of the containment wall to 
accommodate duty on the bellows at NOC. All these 
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Expansion bellows are part of the line segments which penetrated the RCB between 
IHX and surge tank. At normal operating conditions pipeline is at 5250C, whereas in the 
shutdown condition it is at 1500C. In case of draining of sodium from pipeline, it will reach 
the temperature of 400C. Expansion bellows will be approximately 500C lower than the 
pipeline temperature. Two expansion bellows are provided in both side of the containment 
wall to accommodate duty on the bellows at NOC. All these bellows are attached with the 
sleeve in series. One end of this sleeve is welded with guard pipe inside RCB Containment 
and other end with the main pipe outside RCB containment. Middle portion of the sleeve is 
welded with the embedment penetration (EP) coming from the containment opening. 
Expansion bellows configuration near containment penetration is shown in the figure-4. The 
expansion bellow is made up of austenitic steel SS304L. The geometric details of these 
bellows are as given in Table-1 with their nomenclatures in figure-5.  

 
Table 1: Geometric properties of the expansion joints 

S.N Geometric Properties 
1 Length of expansion joints (L) : 440 mm 
2 Inside Diameter of expansion joints : 840 mm 
3 Convolution height (w) : 29.5 mm 
4 No. of corrugation(N) : 10 
5 Convolution pitch (q) : 26 mm 
6 End tangent length (Lt) : 90 mm 
7 Crest Convolution radius (ric) : 7.5 mm 
8 Root Convolution radius (rir) : 7.5 mm 
9 Design number of Cycles (NDBE) : 1000 

 

 

Fig. 4: Expansion bellows at RCB penetration  
in secondary sodium pipeline
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bellows are attached with the sleeve in series. One 
end of this sleeve is welded with guard pipe inside 
RCB Containment and other end with the main pipe 
outside RCB containment. Middle portion of the 
sleeve is welded with the embedment penetration (EP) 
coming from the containment opening. Expansion 
bellows configuration near containment penetration is 
shown in the figure-4. The expansion bellow is made 
up of austenitic steel SS304L. The geometric details 
of these bellows are as given in Table-1 with their 
nomenclatures in figure-5. 

table 1: Geometric properties of  
the expansion joints

S.n Geometric Properties

1 Length of expansion joints (L) : 440 mm

2 Inside Diameter of expansion joints 
convolution (Db) : 840 mm

3 Convolution height (w) : 29.5 mm
4 No. of corrugation(N) : 10
5 Convolution pitch (q) : 26 mm
6 End tangent length (Lt) : 90 mm
7 Crest Convolution radius (ric) : 7.5 mm
8 Root Convolution radius (rir) : 7.5 mm
9 Design number of Cycles (NDBE) : 1000

bellows modeled with 8-noded shell element 
‘SHELL93’, is developed for analysis. The connectivity 
between pipe and shell element is provided by a spider 
of beam element shown in figure-6. The material 
properties of bellows are taken RCC-MR [15] and 
ASME [2]. An elastic analysis of bellow is performed to 
evaluate the equivalent local membrane and bending 
stress for fatigue evaluation. 
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Pressure load on the expansion bellows is very 
low and the stresses induced due to pressure are 
insignificant. Only significant load at the normal 
operating condition is thermal expansion of pipe 
segment between IHX and surge tank. The Von Mises 
stress in the below at the inner surface is 708.34 MPa 
as shown in figure-7. The stress developed in the 
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4.0 Failure Probability of Expansion Bellow  
4.1 LS Function for Bellow 

The secondary nature of thermal stress will lead to the gradual accumulation of plastic 
strain in the bellow and will cause failure of bellow due to low cycle fatigue. Therefore the 
LS for the bellow failure probability estimation is developed based on the fatigue failure 
criteria. Although several cumulative fatigue damage laws have been proposed, yet the 
Miner’s hypothesis of linear cumulative damage is a good assumption, when cycles of small 
and large stresses are evenly distributed throughout the service life. In the present work 
Miner’s hypothesis is used for the damage evaluation, where damage is simply the cycle ratio 
with basic assumptions of constant work absorption per cycle, and characteristic amount of 
work absorbed at failure [16]. The LS based on this assumption can be written as Eq.(12), 
Eq.(13) and Eq.(14). 

 

( )
( , )

DBE DBE
f f

failure a curve

N Ng X D D
N f S F

         (12) 

1( , , , )aS f t OD T E          (13) 

2 ( , , , )curve mds se sf enF f F F F F        (14) 

Where, fD  is cumulative Damage ratio variable, DBEN is number of full temperature 
cycles considered in the  design basis events of PFBR, aS  is alternating stress intensity, t and 
OD are thickness and outer diameter of bellow respectively, T is temperature range from 
shutdown to start-up, mdsF is factor for below material data scatter, seF is the factor for size 
effect , sfF is the factor for surface finish effect and enF is the factor for environment effect. 
To reduce the number of variables a cumulative factor curveF is selected to account for the 

Fig. 7: Von Mises stress range in the expansior 
bellow curimg NOC
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bellows is more than two times the yield strength of the 
bellow material and will not lead to shakedown of the 
bellow. Therefore fatigue-ratcheting due to thermal 
load became significant failure modes for bellow and 
considered as criteria of LS function formulation.

4.0 failure Probability of Expansion Bellow 

4.1 lS function for Bellow

The secondary nature of thermal stress will lead 
to the gradual accumulation of plastic strain in the 
bellow and will cause failure of bellow due to low 
cycle fatigue. Therefore the LS for the bellow failure 
probability estimation is developed based on the 
fatigue failure criteria. Although several cumulative 
fatigue damage laws have been proposed, yet the 
Miner’s hypothesis of linear cumulative damage is 
a good assumption, when cycles of small and large 
stresses are evenly distributed throughout the service 
life. In the present work Miner’s hypothesis is used for 
the damage evaluation, where damage is simply the 
cycle ratio with basic assumptions of constant work 
absorption per cycle, and characteristic amount of 
work absorbed at failure [16]. The LS based on this 
assumption can be written as Eq.(12), Eq.(13) and 
Eq.(14).

( )
( , )

DBE DBE
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failure a curve
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N f S F

= − = −

        

(12)

1( , , , )aS f t OD T E= ∆
                                           

 (13)

2 ( , , , )curve mds se sf enF f F F F F=
                                 

(14)

Where, fD  is cumulative Damage ratio variable, 
DBEN is number of full temperature cycles considered 

in the  design basis events of PFBR, aS  is alternating 
stress intensity, t and OD are thickness and outer 
diameter of bellow respectively, T∆  is temperature 
range from shutdown to start-up, mdsF is factor for 
below material data scatter, seF  is the factor for size 
effect, sfF is the factor for surface finish effect and 

enF is the factor for environment effect. To reduce 
the number of variables a cumulative factor curveF  is 

selected to account for the effect of , ,mds se sfF F F  and 
enF . The uncertainties in these parameters are discussed 

in the next section.

4.2 uncertainties in the Variables 

The bellow is made up of material SA-240, Grade 
TP304L alloy steel. The minimum Young modulus (E) 
for this material at the temperature of 4750 C specified 
in the RCC-MR is 157GPa.  The Coefficient of Variation 
(COV) in young modulus is estimated as 0.031based 
on the 90% confidence bound given in the ref [17] for 
material 316LN. Assuming that minimum yield stress 
value is given at 95 percentile, mean of young modulus 
is estimated as 168.4 MPa.

The cumulative damage ratio variable fD
estimated from the Minor’ hypothesis is load-
sequence independent and lacks of load-interaction 
accountability. It can also be said that Minor’s 
hypothesis does not distinguish between crack 
initiation and growth phases. It is observed that loads 
having the larger stress cycles near the beginning of 
life tend to accelerate failure which leads to 1fD ≤ . 
However, if the smaller stresses are applied first and 
progressively higher stresses follow, the cumulative 
damage ratio for failure 1fD ≥ . Therefore, fD  is taken 
as random variable with a mean value of 1 and COV 
of 0.1. 

The best-fit fatigue curve for fatigue damage 
evaluation is generated from fatigue design curve 
given in the reference-2, which has a design margin 
of 3 of cycles and 1.25 on the stress. Also there is 
large dispersion in the data due to various factors 
like , ,mds se sfF F F  and enF affects the fatigue life. To 
account this dispersion a cumulative factor curveF
is developed to represent the uncertainties in these 
factors. The COV of the curveF , estimated from the 
uncertainties in , ,mds se sfF F F  and enF  reported in the 
literature [18, 19], is equal to 0.240. The best-fit fatigue 
curve (estimated mean fatigue curve) and design 
fatigue curve is shown in the figure-8.

The diameter of the bellow is 840 mm and its 
thickness is 0.63 mm. Diameter and thickness are 

table 2: Statistical properties of the random variables of expansion bellow
Random 
variables

Young Modulus 
(E) (GPa)

Fatigue  
Curve-
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effect of , ,mds se sfF F F  and enF . The uncertainties in these parameters are discussed in the next 
section. 
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157GPa.  The Coefficient of Variation (COV) in young modulus is estimated as 0.031based 
on the 90% confidence bound given in the ref [17] for material 316LN. Assuming that 
minimum yield stress value is given at 95 percentile, mean of young modulus is estimated as 
168.4 MPa. 

The cumulative damage ratio variable fD estimated from the Minor’ hypothesis is 
load-sequence independent and lacks of load-interaction accountability. It can also be said 
that Minor’s hypothesis does not distinguish between crack initiation and growth phases. It is 
observed that loads having the larger stress cycles near the beginning of life tend to accelerate 
failure which leads to 1fD  . However, if the smaller stresses are applied first and 
progressively higher stresses follow, the cumulative damage ratio for failure 1fD  . 
Therefore, fD  is taken as random variable with a mean value of 1 and COV of 0.1.  

The best-fit fatigue curve for fatigue damage evaluation is generated from fatigue 
design curve given in the reference-2, which has a design margin of 3 of cycles and 1.25 on 
the stress. Also there is large dispersion in the data due to various factors like , ,mds se sfF F F  and 

enF affects the fatigue life.  To account this dispersion a cumulative factor curveF is developed 
to represent the uncertainties in these factors. The COV of the curveF , estimated from the 
uncertainties in , ,mds se sfF F F  and enF  reported in the literature [18, 19], is equal to 0.240. The 
best-fit fatigue curve (estimated mean fatigue curve) and design fatigue curve is shown in the 
figure-8. 

The diameter of the bellow is 840 mm and its thickness is 0.63 mm. Diameter and 
thickness are considered as random variables with COV 0.03. The COV in temperature range 
is considered as 10%. Pressure load are very low on the bellow and treated as deterministic 
load in the analysis. Table-2 shows the statistical properties of the random variables of 
expansion bellow. 

Table 2: Statistical properties of the random variables of expansion bellow 

Random 
variables 

Young 
Modulus 
(E) (GPa) 

Fatigue 
Curve- 

CF  

Diameter-
(OD) 
(mm) 

Thickness 
(t)  
(mm) 

Temperature 
Range ( T) 
 (0C) 

Cumulative 
Damage  
Ratio (Df) 

Distribution Lognormal Weibull Lognormal Lognormal Lognormal Lognormal 
Mean ( ) 168.4 As per 

Fig. 8 
840 0.63 325 1.0 

COV (  ) 0.031 0.240 0.03 0.03 0.10 0.10 
 

 

Diameter-
(OD) (mm)

Thickness 
(t) (mm)

Temperature 
Range (ΔT) (0C)

Cumulative 
Damage Ratio (Df)

Distribution Lognormal Weibull Lognormal Lognormal Lognormal Lognormal
Mean (μ) 168.4 As per Fig. 8 840 0.63 325 1.0
COV (Ω ) 0.031 0.240 0.03 0.03 0.10 0.10
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4.3 Order of Random Variables  

The orders of random variables are determined as described in the section-2.2.1. A 
total of forty-one LS evaluations are performed for the estimation of the order of six random 
variables. The material properties of bellow defined by Young Modulus and fatigue curve are 
assumed to be correlated. This reduces the effective number of random variables to five. The 
order of random variables associated with material properties, diameter, thickness, 
temperature and cumulative damage ratio estimated by HORSuM is 6, 2, 2, 6 and 1 
respectively. Figure-9 shows the graphical representation of sensitivity of LS function with 
random variables. It can be seen from this figure that there is strong dependence of LS with 
cumulative damage ratio, temperature and material properties, but relatively smaller 
dependence on thickness and outer diameter. The coefficients of polynomial of various orders 
shown in the Table-3 represent the numerical significance of that polynomial in the LS 
function simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Sensitivity of limit state function g(X) with 

random variables 

-1 -0.5 0 0.5 1
0.4

0.6

0.8

1

1.2

1.4

Normaised Random variables (X)

Li
m

it 
S

ta
te

 F
un

ct
io

n 
g(

X
)

 

 
Mat.Properties (F

curv e
 & E)

Diameter (OD)
Thickness (t)
Temperature (DelT)
Cum.Damage Ratio (D

f
)

Fig.8: Fatigue Curve for bellow material SA-240, Grade 
TP304L alloy steel

considered as random variables with COV 0.03. The 
COV in temperature range is considered as 10%. 
Pressure load are very low on the bellow and treated 
as deterministic load in the analysis. Table-2 shows 
the statistical properties of the random variables of 
expansion bellow.

4.3 order of Random Variables 

The orders of random variables are determined 
as described in the section-2.2.1. A total of forty-one 
LS evaluations are performed for the estimation 
of the order of six random variables. The material 
properties of bellow defined by Young Modulus 
and fatigue curve are assumed to be correlated. This 
reduces the effective number of random variables to 
five. The order of random variables associated with 
material properties, diameter, thickness, temperature 
and cumulative damage ratio estimated by HORSuM 
is 6, 2, 2, 6 and 1 respectively. Figure-9 shows the 
graphical representation of sensitivity of LS function 
with random variables. It can be seen from this figure 
that there is strong dependence of LS with cumulative 
damage ratio, temperature and material properties, 

 12

 
4.3 Order of Random Variables  

The orders of random variables are determined as described in the section-2.2.1. A 
total of forty-one LS evaluations are performed for the estimation of the order of six random 
variables. The material properties of bellow defined by Young Modulus and fatigue curve are 
assumed to be correlated. This reduces the effective number of random variables to five. The 
order of random variables associated with material properties, diameter, thickness, 
temperature and cumulative damage ratio estimated by HORSuM is 6, 2, 2, 6 and 1 
respectively. Figure-9 shows the graphical representation of sensitivity of LS function with 
random variables. It can be seen from this figure that there is strong dependence of LS with 
cumulative damage ratio, temperature and material properties, but relatively smaller 
dependence on thickness and outer diameter. The coefficients of polynomial of various orders 
shown in the Table-3 represent the numerical significance of that polynomial in the LS 
function simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 9: Sensitivity of limit state function g(X) with 

random variables 

-1 -0.5 0 0.5 1
0.4

0.6

0.8

1

1.2

1.4

Normaised Random variables (X)

Li
m

it 
S

ta
te

 F
un

ct
io

n 
g(

X
)

 

 
Mat.Properties (F

curv e
 & E)

Diameter (OD)
Thickness (t)
Temperature (DelT)
Cum.Damage Ratio (D

f
)

Fig. 9: Sensitivity of limit state function g(X) with  
random variables

Table 3: Coefficient of polynomial order defining sensitivity of random variables w.r.t limit state function

S.n Polynomial order Mat. Properties Diameter thickness temperature Cumulative Damage Ratio
1 T0 8.76E-01 8.95E-01 8.96E-01 8.32E-01 8.96E-01
2 T1 6.64E-02 2.53E-03 3.25E-03 2.31E-01 5.00E-01
3 T2 2.23E-02 1.12E-03 1.67E-04 6.45E-02 6.81E-05
4 T3 7.49E-03 7.70E-05 7.70E-05 2.31E-04 5.31E-17
5 T4 2.49E-03 3.69E-05 2.43E-06 1.73E-04 1.54E-05
6 T5 8.23E-04 3.75E-06 2.06E-05 2.65E-04 2.83E-05
7 T6 2.78E-04 2.82E-17 5.15E-18 2.67E-04 8.89E-05

but relatively smaller dependence on thickness and 
outer diameter. The coefficients of polynomial of 
various orders shown in the Table-3 represent the 
numerical significance of that polynomial in the LS 
function simulation.

4.4 Coefficient Estimation of LS Function 

Once the polynomial order gets estimated, next 
step is estimation of significant mixed order terms 
from hundreds of mix-terms. This is carried out as 
explained in the procedure HORSuM. The most 
significant ten terms of approximate LS function 
is shown in the Table-4. The polynomial order has 
five digits, where each digit symbolizing the order 
of random variables. The sequence of digits for the 
polynomial order is material properties, diameter, 
thickness, temperature and cumulative damage ratio 
respectively. 

4.5 failure probability of Expansion Bellow 

The failure probability of expansion bellow is 
estimated with FORM using the approximated LS 
function developed in the previous section. The failure 
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pressure boundary in PFBR. The deterministic 
analysis of bellow shows that they experience high 
axial and lateral duty at normal operating condition. 
The nature of loads shows that most probable failure 
mode is low cycle fatigue. The failure probability of 
these bellows is estimated using the method based on 
higher order response surface method. The proposed 
method, HORSuM, first accurately estimates the 
order of the Chebyshev polynomial required for 
LS approximation. Subsequently significant mixed 
order terms are selected based on their numerical 
significance and its contribution to adjusted R2 of 
the regression model. Check for significant mixed 
order terms reduce the total number of terms in the 
approximating polynomial, thus save the unnecessary 
computation work. The procedure is integrated with a 
FEA code ANSYS for failure probability estimation.

Failure probability is estimated against low cycle 
fatigue failure criteria, which has strong dependence 
on cumulative damage ration, material properties and 
temperature range, but less significant dependence 
on geometric properties like thickness and diameter. 
Probability of failure of expansion bellow estimated 
by HORSuM, which required only108 number of 
deterministic evaluation, is 6.304e-8. The failure 
probability is of the order of 10-8, which indicated 
that the expansion bellow will maintain the structural 
integrity with high reliability at the normal operating 
condition.
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abstract

Seismic evaluation of a nuclear installation is a major safety concern. With the changing seismic 
design and safety requirements, it is also important to re-evaluate existing nuclear plants. In 
this context, a seismic re-evaluation exercise of a fast breeder test reactor (FBTR) at Kalpakkam 
is carried out. FBTR was built based on the design of Rapsodie-Fortissimo reactor and is in 
operation since 1985. Seismic Probabilistic Safety Assessment (SPSA)based on the IAEA guideline is 
undertaken to carry out the seismic re-evaluation of FBTR. The safety objectives for re-evaluation 
are identified as (i) safe shutdown of the plant (ii) maintaining in safe shutdown condition, (iii) 
long term decay heat removal, and (iv) containment of radioactivity. The major steps involved 
in SPSA are the probabilistic seismic hazard analysis (PSHA) to determine seismic demand in 
probabilistic format; safety analysis based on event tree - fault tree approach to identify the 
structures, systems and components (SSC) to be re-evaluated; determination of system capacity 
in terms of, seismic fragility from that of components; finally plant fragility culminating to risk 
quantification. Fragility analysis of SSC is an important activity for Seismic PSA.To apply the 
SPSA methodology to Indian scenario, number of innovative approaches is worked out, especially 
in the area of fragility analysis. The fragility of components is derived adopting analysis, testing 
and experience based method for their qualification. The present paper will describe the different 
approaches adopted in the seismic fragility analysis of the components and systems of FBTR. The 
methodology is discussed with the example of fragility analysis of a decay heat removal system 
viz., Preheating and emergency cooling system of FBTR.

Keywords: Seismic PSA, safe shutdown, fragility analysis.
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1. introduction

Seismic fragility of an item of structures or 
equipment or a safety system, is defined as the 
conditional probability of its failure for a given value 
of the input parameter such as stress, moment, spectral 
acceleration, peak ground acceleration (PGA). The 
objective of fragility evaluation is to estimate the 
PGA value for which the seismic response of a given 
component (i.e. structural elements or equipment) 
located at a specified point in the structure exceeds 
the component capacity resulting in its failure. 
Estimation of this ground acceleration value, called 
the ground acceleration capacity of the component, 
is accomplished using information on plant design 
bases, responses calculated at the design and analysis 
stage, and as-built dimensions and material properties. 
Because there are many sources of variability in the 
estimation of this ground acceleration capacity, the 

component fragility is described by means of a family 
of fragility curves. A probability value is assigned to 
each curve to reflect the uncertainty in the fragility 
estimation, usually in terms of non-exceedance 
probability. The component fragilities form the input 
in the system model to obtain Seismic Core Damage 
Frequency (SCDF) or seismic margin of the plant.
This paper deals with the new approaches adopted 
for seismic fragility analysis of SSC in estimation of 
SCDFof FBTR.

The FBTR is a 40 MWt, loop type, sodium cooled 
fast reactor, operating at IGCAR, Kalpakkam since 
1985. The reactor was built with French collaboration 
based on the design of the Rapsodie-Fortissimo reactor 
in Cadarache. Recently, a seismic re-evaluation of 
FBTR is carried out with the primary objective of 
reviewing the extent of seismic excitation FBTR 
can withstand without compromising its safety. In 
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order to achieve this, the seismic capacity of safety 
related structures, systems and components (SSC) of 
the plant required to achieve safety functions, viz., 
safe shutdown of the plant, maintaining the plant in 
safe shutdown, long-term decay heat removal and 
containment of radioactivity, are determined [1]. 

2. Plant fragility of fBtR

Six potential initiating events are considered 
for evaluation of plant fragility of FBTR. Each of 
the initiating events is analysed using event tree 
approach to model the plant responses taking into 
account the associated frontline systemspresent 
to mitigate the progression of such unsafe events. 
The frontline systems are analyzed using fault 
tree approach to find all credible ways in which 
the undesired state (failure of the system) could 
be reached. (Fig. 1). To derive the seismic fragility 
of the plant, the Boolean expression for each 
accident sequence caused by an initiating event 
is derived and solved in terms of the fragility of 
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Fig.3: Fault tree for failure of Decay heat removal by PHEC

The fault tree corresponding to S5 viz., Preheating and Emergency Cooling 

system is given in Fig. 3. The Boolean expression for top event (PHEC system failure) of 

this fault tree derived from Fig. 3 is: 
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T1, T2, T3 and T4 are transfer gates which are 
expanded further as separate fault trees and ,  etc, are 
the failure probability of basic component A1, A2, etc, 
respectively. 

Failure probability of basic components is derived 
from the fragility description of the component that 
are available in terms of median ground acceleration 
capacity Am and two associated random variables, εR 
and εU [6][7][8]. εR  is a random variable representing 
the inherent randomness or epistemic uncertainties 
about the median value and εU is a random variable 
representing the aleatory uncertainty in the median 
value. εR and εU are log-normally distributed with have 
unit median and logarithmic standard deviations of 
βR and βU. The fragility i.e., the probability of failure 
Pf at any non-exceedance probability level Q can be 
expressed as:
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failure, pf’, is less than pf for a given peak ground acceleration, “a”; and (.) is the 

standard Gaussian cumulative distribution function. From the (5), pf is determined for 

discrete values of non-exceedance probability level such as 5%, 50% and 95% etc for 

each structural element, which then result in a family of fragility curves.Fig 4 depicts 

typical family of fragility curves of a component for various non-exceedance 

probabilities. The family of fragility curves is represented by the three components, viz. 

the median ground acceleration capacity, the logarithmic standard deviations representing 

epistemic randomness and aleatory uncertainty. The solid curve in the center represents, 

median fragility curve at 50% non-exceedance probability level. The logarithmic 

standard deviation of the randomness component determines the curve slope. The 

logarithmic standard deviation of the uncertainty component is a measure of the spread 

from the median curve. The 95thpercentile and 5th percentile curves in the figure are the 

upper and lower bounds of the probability of failure for a given acceleration, 

corresponding to 95% and 5% non-exceedance probability levels, respectively. The 

composite fragility curve is also known as the mean fragility curve and is shown as the 

dashed line in Fig. 4 for illustration. This curve represents the best estimate fragility 

description.  
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where     .  
The HCLPF capacity of the component can also be determined from the fragility 

curve of that component. From the fragility curve, the PGA value corresponding to 95% 

confidence and having a probability of failure less than 5% is taken as the HCLPF 

capacity of the component. 

Generally, the number of structures and components of concern may be very large 

and evaluation of fragility for all these components may not be feasible. Hence it is 

necessary to categorize the components and fragility would be addressed in terms of 

categories rather than components. For example, heat generators may form one category, 

safety related piping be another. The next three sections describe the procedures for 

determining the component fragility curves by direct as well as indirect methods.  

4. Seismic Fragility of Component by Analytical Method 

There are four major steps in deriving the seismic fragility of any component by 

analytical method: 

Fig.4: Typical family of fragility curves

C. Senthil Kumar et al. / Life Cycle Reliability and Safety Engineering Vol.3 Issue 2 (2014) 25-31



28 © 2014 SRESA All rights reserved

where,

and εU is a random variable representing the aleatory uncertainty in the median value. εR 
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Eq.(8) assumesthat failure modes are independent. 
When failure modes are dependent, graded approach 
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can be adopted. An element will fail at ith mode if it 
survives all the previous modes [11]. Therefore, failure 
probability of the jth element in ith mode is,
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dependent, graded approach can be adopted. An element will fail at ith mode if it survives 

all the previous modes [11]. Therefore, failure probability of the jth element in ith mode is, 
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series system, all the elements should survive to ensure system success. If probability of 
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elements forming a series structural system, the probability of failure of thatparticular 
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draw upon generic data to estimate the threshold of 

failure and use the test level to establish the tails of 
the fragility curves. In instances where equipment is 
tested to a high level, it can conservatively be assumed 
without compromising risk analysis results that the 
functional failure capacity is some modest level (about 
25 percent) above the achieved test level with the test 
level defining the lower tail of the fragility curves [13]. 
The achieved test level is estimated to represent an 
acceleration level where there is 95% confidence that 
there is less than 5 percent probability of failure.

The estimation of median capacities from test 
results is almost always conservative, but in the 
absence of fragility data or analysis, it is the only 
reasonable method to establish fragility descriptions. 
Structural fragility of tested components will be 
estimated by using a factor of FT over the test response 
spectra (TRS) for those cases where no distress is noted 
during or subsequent to the seismic qualification 
test. The factor, FT includes the median factor which 
represents the ratio of test response to onset of distress, 
and the median of the ratio of response at the onset of 
distress to onset of failure. The value of FT will range 
from 1.6 – 2.0 [15]. The median factor of safety, 
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6. Seismic fragility of Component by Walkdown

A walk down screening evaluation is an in-plant 
appraisal of the key physical attributes. Items that 
pass the screen are considered to possess adequate 
capacity. Items not passing the screen are of concern 
and detailed review or upgrade is necessary for these 
items depending on the potential risk. Seismic walk 
down is primarily based on the documented generic 
implementation procedure of Department of Energy 
(DOE-GIP) [16]. According to this procedure, there 
are four seismic screening guidelines used to evaluate 
the seismic adequacy of an item of equipment. They 
are:
• Seismic capacity compared to seismic demand
• Anchorage
• Seismic interaction
• Equipment class evaluation 

Reference spectrum (RS) or generic equipment 
ruggedness spectrum (GERS) will be used to represent 
capacity while demand will be characterized by 
in-structure response spectrum. Components 
which satisfy the above four screening guidelines 
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table 1: list of SSC for PHEC

Component Qualification Methodology am βc Prob. of failure
Horton sphere (A9) Analysis 47.5 0.5 3.28E-27
Cooling Tower (A7) Analysis 7.33 0.46 1.33E-14
RCB (A4) Analysis 32.2 0.46 1.21E-27
Service Building (A5) Analysis 1.13 0.46 2.02E-04
Manually operated nitrogen valves  
(A2, A3, A12, A13, A14)

Analysis 1.88 0.49 6.24E-06

PHEC heat exchanger (T3,T4) Analysis 64.1 0.5 4.13E-30
Nitrogen Blowers VLni300,301 (in T1, T2) DOEGIP 1.87 0.45 1.04E-06
Service Water header  (in T3, T4) Analysis 1.04 0.61 5.56E-3
Nitrogen Supply valve for Hx (in T3, T4) DOEGIP 2.66 0.49 1.91E-07
Bus failure BTSB100A, 263B (in T1, T2) DOEGIP 0.37 0.43 1.15E-01
Nitrogen Pipeline (A8) Analysis 1 0.6 5.93E-03
Cable and cable penetrations (in T1, T2) Testing 3.69 0.41 3.29E-12
Turbine Building (A6) Analysis 1.75 0.46 3.37E-06
Service Water Pumps (in T3, T4) DOEGIP 1.87 0.45 1.02E-06
Relay Latch contact (in T1, T2) Testing 0.71 0.45 4.75E-03
Relays (in T1, T2) Testing 1.8 0.45 1.57E-06
Manually operated valves-service water (in T3, T4) Analysis 1.66 0.49 1.93E-05
Regulator  (A10, A11) DOEGIP 1.87 0.45 1.04E-06
Control and Limit Switches (AMrb14) (in T1, T2) DOEGIP 0.71 0.45 4.75E-03

are considered qualified for the considered RBGM 
level. Two approaches are identified for deriving the 
fragility curve for components [5]qualified by walk 
down viz., generic data approach and DOE-GIP based 
approach. 

6.1 Generic data approach

Seismic fragilities are expressed in terms of a 
global parameter to the plant such as PGA of the 
design/review basis ground motion or related to the 
appropriate local response, rather than to the free-field 
seismic intensity [4][9][14][15][17][18][19].

6.2 DoE-GiP based approach

In this approach, component fragility curves are 
derived using (6).The median ground acceleration 
capacity Am is obtained fromthe median factor 
of safety 
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represent an acceleration level where there is 95% confidence that there is less than 5 
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conservative, but in the absence of fragility data or analysis, it is the only reasonable 
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estimated by using a factor of FT over the test response spectra (TRS) for those cases 

where no distress is noted during or subsequent to the seismic qualification test. The 

factor, FT includes the median factor which represents the ratio of test response to onset 

of distress, and the median of the ratio of response at the onset of distress to onset of 
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system shown in Fig.3
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7. PHEC System fragility

For PHEC system, the list of components (SSC) 
obtained from Boolean expression given in (4), 
along with their qualification methodology, fragility 
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parameters and probability of failure is given in 
Table-1.

Using the fragility parameters (Table 1) in the 
Boolean expression, PHEC system failure probability 
is obtained. To illustrate the procedure, in Fig. 3, if 
we consider the event E3 that has seven components 
viz., Nitrogen pipeline, Horton sphere, regulators 
and manually operated nitrogen valves, probability 
of failure of all seven components are obtained from 
their respective fragility parameters using (6) and 
using the Boolean expression given in (4), probability 
of failure of the event E3 is obtained. 

The composite fragility curve of the components 
and event E3 is shown in Fig. 5. Following the same 
procedure for other events in the fault tree, failure 
probability of PHEC system is obtained. At PGA value 
of FBTR system failure probability is 3.09E-2 and high 
confidence low probability of failure (HCLPF) of the 
system as 0.23g (Fig. 6). Plant fragility can be estimated 
by substituting the system failure probability in the 
accident sequences of initiating events.

8. Conclusion

Determination of component fragilities and the 
seismic margin capacity by probabilistic approach is 
explained. The methodology developed for deriving 
fragility curves for components is presented which 
can be appropriately used in the event trees to obtain 
plant fragility. The probabilistic approach adopted 
for estimation of plant fragility can be considered 
complementary to the deterministic approach. The 
paper also describes the procedure to obtain the 
Boolean expression of the accident sequences of event 
trees, frontline systems associated with the sequences 
and finally the list of SSC. The method is demonstrated 
with one of the decay heat removal system of Indian 
Fast Breeder Test Reactor.

Fig.6: Fragility curves for PHEC system of FBTR
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1. introduction

Given a vector of random variables X with joint 
probability density function (jpdf) ( )Xp x  and a 
performance function ( )g X , the problem of reliability 
analysis consists of evaluation of the probability 

( )=P 0FP g X ≤    [1,2]. For the case of existing 
structures, when measurement data set D becomes 
available, the problem of reliability model updating 
consists of evaluation of the conditional probability 

( )=P 0F DP g X D ≤  [3-8]. In the application of first 
and second order reliability methods (FORM and 
SORM), the random vector X is transformed into the 
standard normal space U with associated performance 
function ( )G U  and one aims to obtain the reliability 
index 

( ) 0
min t

HL G u
u uβ

≤
= . Again, when the data D becomes 

available, one aims to find the posterior reliability 
index given by *| min

HL HL

t
HL D u u

β β
β

=
=  with the fundamental 

problem here being the solution of the problem of 
system and (or) force identification encapsulated in the 
posterior jpdf-s ( )X Dp x D  and equivalently, ( )U Dp u D
. In a recent paper [8] the present authors have 
outlined a procedure for the evaluation of ( )U Dp u D  
and HL Dβ . The approach here is based on application 
of Markov Chain Monte Carlo (MCMC) to sample 
from the posterior jpdf ( )U Dp u D  characterized via 
the application of Bayes’ theorem and subsequent 
development of an approximate model for ( )U Dp u D  
based on theory of Nataf’s transformation [1]. An 
alternative approach to reliability consists of seeking 
to characterize the safety margin against a specified 
target reliability index, *

HLβ , and this class of problems 

is termed as inverse reliability problems. Here, instead 
of aiming to estimate 

FP , one aims to find the available 
safety margin ( )

*
min
HL HL

M G u
β β=

=  [9-12]. In the present study 
we consider the problem of estimating the posterior 
safety margin ( )

*
min |

HLHL D
DM G u D

β β=
=  for existing structures 

when data D on measured responses become available. 
The solution strategy consists of the application 
of Bayes’ theorem, a modified version of subset 
simulations, and numerical optimization tools. The 
proposed method is exemplified by considering the 
analysis of an 11-member truss.

2. Problem Statement

Consider the finite element (FE) model for a 
statically loaded structure with n degrees of freedom 
(dofs) governed by the equilibrium equation

( ) ( ) ( ),K X Y Q X Y P X+ =                                        (1)

Here K  is the n n×  stiffness matrix, Q  is a 1n×  
vector of functions which encapsulates the nonlinear 
structural behavior, P is the 1n×  vector of nodal 
forces, and X  is 1p×  vector of system parameters 
which are modeled as a vector of random variables 
with prescribed jpdf ( )Xp x . Let the structure be 
instrumented with s number of sensors yielding 
measurement data set [ ]1 2 ND Z Z Z=   where 

kZ  is the 1s×  data vector resulting from the k-th 
episode of loading such that

( ) ( ) ( ) ( ),  with ,k k k k k k kZ H X Y K X Y Q X Y P Xν= + + =

                                                                                        (2)  
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Here kν  is a 1s×  random vector which models 

the measurement noise and uncertainties in relating 
the measurement kZ  with the system state kY . In the 
present study we take kν  to be Gaussian distributed 
with zero mean and covariance kΣ . It is also assumed 
that kν  and  j j kν ∀ ≠  are independent. Let 
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1

| , , ,
N

X i i i X
i

p x D C N Z H x Y p x
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Here C is the normalization constant, [ ], ,N µ• Σ  is a multi-dimensional 

normal pdf with mean vector µ  and covariance matrix Σ , and ( )Xp x  is the apriori 

jpdf of X . 
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Details concerning implementation steps 1-3 have been discussed in our recent 
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present work we focus on step 4.

4. Determination of Posterior Safety Margin

We employ three alternative schemes to determine 
( )

*
min |

HLHL D
DM G u D

β β=
= . The first of these schemes is 

based on a modification to the subset simulation 
strategy used in the solution of forward reliability 
analysis problems [16] and other two schemes outline 
numerical optimization procedures to tackle the 
problem on hand. 

4.1 inverse Subset Simulation (iSS)

Here we develop a modification to the subset 
simulation (SS) procedure developed earlier in the 
work of [16,17]. The steps involved are summarized 
as follows: 
1. Divide the target reliability index 
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3. Simulate 1n  samples ( )( ) 1

1

ni
D

i
u

=
 from ( )|Up u D . 

4. Calculate for ( )
1, 1,i

Du i n=   the value of performance function, ( )( )|i
DG u D  and 

distance from the origin ( ) ( )2

1

p
i i

D D
l

uβ
=

=  . 
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Fig. 1: Illustration of inverse subset simulation; dotted concentric circles denote the intermediate 
hyper-spheres; the arrow indicates the direction in which the simulated samples move. 
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13. Denote by *G  the absolute minimum value of 
the safety margin obtained after the program 
terminates and by *u  the corresponding sample. 

4.2 Gradient Projection Method (GPM) [18]
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( ) 2 *2

1
|

p

i HL
i

L G u D uλ β
=
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∑  with λ  being the Lagrangian 

multiplier and write the 
conditions for optimality a
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Fig. 1: Illustration of inverse subset simulation; dotted concentric 
circles denote the intermediate hyper-spheres; the arrow indicates 

the direction in which the simulated samples move.
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This set of 1p +  nonlinear equations is solved using 
the Newton-Raphson method with an initial guess 

1,  1, 2, ,iu i p= =   and 1λ =  and convergence 
parameter 61 10ε −= × . It may be noted that when 
the performance function is implicitly defined the 
first order gradients and Hessian matrix need to be 
evaluated numerically. 

4.3 Genetic algorithm based optimization (Gao) 
[19]

Here we use the ga toolbox available in MATLAB 
to solve the optimization problem on hand. Some of 
the algorithmic parameters used are as follows: initial 
population range: [-1, 1]; number of generations: 30; 
number of stall generations: 7; crossover fraction: 
0.75; mutation fraction: 0.2; migration interval: 5; 
fitness level: 0.00001. This method does not require the 
evaluation of the gradients and hence is advantageous 
when the performance function is defined implicitly 
though a FE code. The algorithm leads to a global 
optimal solution and hence is expected to perform 
better than GPM and ISS methods.

5. Example

For the purpose of illustration we consider the 
pin jointed truss structure loaded as shown in Fig. 
2. The structure is modeled using 14 dof FE method 
with linear axially deforming bar elements. The 

Fig. 2: Linear truss instrumented with 5 strain gauges ( )5 1i i
Z

=
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reliability analysis before assimilating measurements by using three methods, namely, 

FORM, brute force Monte Carlo simulations (MCS) and subset simulations (SS) is 

shown in Table 3. For the purpose of illustrations data on measurements are 

synthetically simulated using the FE model and seeded by noise; the details are as in 

Table 4. The measurement noise is taken to possess zero mean with standard 

deviation 5 5 6 54.6191 10 ,  4.8915 10 ,  4.4513 10 ,  5.9554 10− − − −× × × ×  and 52.2874 10−×  

respectively for the five sensors. The moments of the system parameters following the 

identification step are shown in Table 5. Part of Table 6 shows the results on 

reliability model updating based on the identified system. The problem of assessing 

posterior safety margin is solved with target reliability of * 3.7967HLβ =  and the 

corresponding results from alternative solution schemes are summarized in Table 6. In 

absence of measurements this target reliability index corresponds to a safety margin 

of zero.  

 

Fig. 2: Linear truss instrumented with 5 strain gauges ( )5

1i i
Z

=  

table 1: Random variables and their distributions

Random 
Variable

Distribution 
(Mean, Standard deviation)

1 1X w= Gumbel (49 kN, 4.9 kN)

2 2X w= Normal (130 kN, 13 kN)

3 3X w= Normal (130 kN, 13 kN)

4 yX f= Lognormal (250 MPa, 17.5 MPa)

5X E= Lognormal (210 GPa, 6.3 MPa)

6 bottomX A= Lognormal (1000 mm2, 30 mm2)

7 topX A= Lognormal (750 mm2, 22.5 mm2)

8 diagonalX A= Lognormal (750 mm2, 22.5 mm2)

9X L= Lognormal (3000 mm, 300 mm)

table 2: Correlation between the random variables

Random variables Correlation coefficient
1 2 and X X 0.20

1 3 and X X 0.10

7 8 and X X 0.10

6 7 and X X 0.15

Note: The other correlation coefficients are taken to be 0.

details of variables considered as being random are 
summarized in Tables 1 and 2, respectively. The 
performance function is defined with respect to 
initiation of yielding in member GF. The structure is 
taken to be instrumented by a set of five strain gauges, 
marked as 1 2 5, , ,Z Z Z  in figure 2. The reliability 
analysis before assimilating measurements by using 
three methods, namely, FORM, brute force Monte 
Carlo simulations (MCS) and subset simulations (SS) 
is shown in Table 3. For the purpose of illustrations 
data on measurements are synthetically simulated 
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table 3: Reliability analysis prior to the assimilation of measurements

Method HLβ FP *u *x HL iuβ∂ ∂ HL ixβ∂ ∂

FORM 3.7967 7.3327×10-5

1.6091

-0.6628

-2.8585

0.0000

0.6901

0.0000

0.7023

-0.7953

1.2701

4.8188 ×104

1.4911 ×105

1.4976 ×105

2.0421 ×108

 2.0991 ×1011

 9.6294 ×10-4

 7.4548 ×10-4

 7.4966 ×10-4

2.9851

0.4238

-0.1746

-0.7529

0.0000

0.1818

0.0000

0.1850

-0.2095

0.3345

0.0000

0.1157

-0.9919

0.0000

0.0000

-0.0006

0.0094

-0.0062

0.0514

MCS (with 106 samples) 
followed by inverse analysis 

using GPM. 
3.6350 13.9000×10-5

1.5297

-0.6197

-2.7611

0.0000

0.6452

0.0000

0.6671

-0.7436

1.2051

4.8180 ×104

1.4814 ×105

1.4877 ×105

2.0561 ×108

2.0991 ×1011

9.6528 ×10-4

7.4575 ×10-4

7.4966 ×10-4

2.9851

0.4208

-0.1705

-0.7596

0.0000

0.1775

0.0000

0.1835

-0.2046

0.3315

0.0000

0.1118

-0.9919

0.0000

0.0000

-0.0007

0.0108

-0.0070

0.0588
SS 3.6649 4.7500 × 10-5 - - - -

table 4: Measurements on strains 

Members 1 2 3
AB

BC

GC

FD

FE

9.3327 ×10-4

9.8610 ×10-4

-9.0282 ×10-5

-1.1396 ×10-3

-4.6646 ×10-4

8.9710 ×10-4

9.2969 ×10-4

-8.8672 ×10-5

1.2147 ×10-3

5.0874 ×10-4

9.3153 ×10-4

9.2054 ×10-4

-8.5202 ×10-5

-1.2280 ×10-3

-4.2425 ×10-4

using the FE model and seeded by noise; the details 
are as in Table 4. The measurement noise is taken 
to possess zero mean with standard deviation 

5 5 6 54.6191 10 ,  4.8915 10 ,  4.4513 10 ,  5.9554 10− − − −× × × ×  
and 52.2874 10−×  respectively for the five sensors. 
The moments of the system parameters following the 
identification step are shown in Table 5. Part of Table 6 
shows the results on reliability model updating based 
on the identified system. The problem of assessing 
posterior safety margin is solved with target reliability 
of 
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Here kν  is a 1s ×  random vector which models the measurement noise and 

uncertainties in relating the measurement kZ  with the system state kY . In the present 

study we take kν  to be Gaussian distributed with zero mean and covariance kΣ . It is 

also assumed that kν  and  j j kν ∀ ≠  are independent. Let *
HLβ  be the specified target 

reliability index and the problem on hand consists of determining the posterior safety 
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Here C is the normalization constant, [ ], ,N µ• Σ  is a multi-dimensional 

normal pdf with mean vector µ  and covariance matrix Σ , and ( )Xp x  is the apriori 

jpdf of X . 

2. MCMC sampling: use algorithms such as Metropolis-Hastings or Gibbs sampler 

[14-15] and obtain sN  samples of X drawn from ( )X Dp x D . 

3. Construct a Nataf’s model for X  based on the sN  samples of X  drawn from 

( )X Dp x D  and transform the performance function ( )|g X D  to the equivalent 

function in the standard normal space denoted by ( )|G U D . 

4. Determine *u  which minimizes ( )|DM G u D=  subject to the constraint 

*t
HLu u β= . The optimal value of DM  is the updated safety margin being sought. 

Details concerning implementation steps 1-3 have been discussed in our recent 

paper [8] and in the present work we focus on step 4. 

* 3.7967HLβ =  and the corresponding results from 

alternative solution schemes are summarized in Table 
6. In absence of measurements this target reliability 
index corresponds to a safety margin of zero. 

The time taken (on an Intel® Core ™ i5 650 @ 
3.20 GHz with 8 GB of RAM) for the three methods 
to update safety margin, namely, ISS, GPM, GAO, 
are 16763.0s, 330.2s and 1617.2s, respectively. The 
following observations can be made from the 
numerical results obtained:
1. The effect of measurements made is observed 

to increase the structural reliability. This is 
evident from the results of forward reliability 
analysis (from which it is observed that  
apriori 
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*t
HLu u β= . The optimal value of DM  is the updated safety margin being sought. 

Details concerning implementation steps 1-3 have been discussed in our recent 

paper [8] and in the present work we focus on step 4. 

| 3.8798HL Dβ = ) and from the assessment of safety 
margin from the inverse analysis (see from Table 
6, first row, that DM 0>  as per all the three 
methods of analysis).

2. The differences in values of DM  as per ISS, GPM 
and GAO (2.6893, 1.7795, 1.2349 respectively; 
Table 6) are attributed to basic differences in the 
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method computational approaches. It is expected 
that the results based on genetic algorithm are 
superior to other results given the inherent ability 
of genetic algorithms to produce global optimal 
solutions.

3. If the updated safety margin is positive, it is 
expected that the three methods (namely, ISS, 
GPM, and GAO) would lead to similar results. On 
the other hand, if the margin is negative, ISS and 
GAO typically lead to multiple solutions while 
GPM could lead to unique solutions. Figure 3 
illustrates this point. Here if, 3g  is the updated 
limit surface and 3β  is the target reliability, ISS 
and GAO are seen to lead to multiple solutions 
while GPM solution is unique.

Table 5: Results of system Identification

Parameter Mean Standard deviation
P1

P2

P3

fy

E

Abottom

Atop

Adiagonal

L

5.2592 ×104

1.3744 ×105

1.4742 ×105

2.5336 ×108

 2.0621 ×1011

 9.7780 ×10-4

7.4503 ×10-4

7.5399 ×10-4

2.9972

4.3366 ×103

4.5968 ×103

4.6926 ×103

1.6564 ×107

5.5611 ×109

2.3746 ×10-5

1.7966 ×10-5

1.4461 ×10-5

0.2546

table 6: Results of updating of reliability and safety margin

FORM
|

5
|

3.8798

5.2264 10
HL D

F DP

β
−

=

= ×

Inverse analysis using

iSS ( )2.6893DM =

inverse analysis using

GPM ( )1.7795DM =

inverse analysis using 
Gao ( )1.2349DM =

*u *x *u *x *u *x *u 0

0.3642

-0.5032

-0.8995

-0.6183

-1.0671

2.7780

1.5800

-1.4556

-0.0712

5.2504×104

1.4379×105

1.5311×105

2.1221×108

2.1393×1011

9.3148×10-4

7.4865×10-4

7.5775×10-4

2.9490

0.5098

-0.7756

0.2919

-0.9980

-0.8626

2.3662

1.8938

-1.0506

-1.6448

5.9360×104

1.4424×105

1.5925×105

2.1416×108

2.1419×1011

9.6930×10-4

7.3822×10-4

7.7419×10-4

2.8678

0.3468

-0.3879

-0.7558

-0.4090

-1.0217

2.7092

1.7183

-1.0754

-0.9556

5.7374×104

1.4169×105

1.5462×105

2.1292×108

2.1363×1011

9.4613×10-4

7.4234×10-4

7.6330×10-4

2.9470

0.3334

-0.7222

-0.6984

-0.6555

-1.0466

2.7790

1.6799

-1.1024

-0.0967

5.2725×104

1.4286×105

1.5268×105

2.1156×108

2.1246×1011

9.3663×10-4

7.4284×10-4

7.6011×10-4

2.9555
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Fig. 3: Geometric representation for safety margin and point of minimum safety margin  

6. Discussions and Conclusions 

This paper considers the problem of determining the updated value of safety 

margin for existing instrumented structures when data on measured response of the 

structure become available. The solution strategy consists of a two-step procedure 

involving a system identification step followed by a reliability analysis step. The tools 

employed for the solution include application of Bayes’ theorem, MCMC based 

sampling procedures, construction of non-Gaussian models for system parameters 

based on Nataf’s transformation, and inverse reliability analysis based on a modified 

subset simulation scheme and numerical optimization methods. Numerical 

illustrations on an 11-member linear truss are provided based on synthetically 

simulated measurement data. Further work to extend the formulations to cover 

nonlinear structures, dynamic loads, and genuine experimental data is currently being 

carried out by the present authors. 
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and numerical optimization methods. Numerical 
illustrations on an 11-member linear truss are provided 
based on synthetically simulated measurement data. 
Further work to extend the formulations to cover 
nonlinear structures, dynamic loads, and genuine 
experimental data is currently being carried out by 
the present authors.

acknowledgement

This work is supported by a grant from the 
Board of Research in Nuclear Sciences, Department 
of Atomic Energy, Government of India and this is 
gratefully acknowledged.

References
1. Melchers R.E., “Structural Reliability Analysis and 

Prediction”, Chichester, John Wiley & Sons, 1999.
2. Madsen H.O., Krenk S., and Lind N.C., “Methods of 

Structural Safety”, Prentice-Hall, New Jersey, 1986.
3. Yao J.T.P., “Safety and Reliability of Existing Structures”, 

Boston, Pitman, 1985.
4. Yao J.T.P., and Natke H.G., “Damage Detection and 

Reliability Evaluation of Existing Structures”, Structural 
Safety, Vol 15, pp. 3-16, 1994.

5. Ellingwood B.R., “Reliability-Based Condition Assessment 
and LRFD for Existing Structures”, Structural Safety, Vol 
18, pp. 67-80, 1996.

6. Melchers R.E., “Assessment of Existing Structures-
Approaches and Research Needs”, Journal of the 
Structural Engineering, ASCE, Vol 127, No. 4, pp. 406-411, 
2001.

7. Yao J.T.P., “Damage Assessment and Reliability Evaluation 
of Existing Structures”, Engineering Structures, Vol 1, pp. 
245-251, 1979.

8. Sundar V.S., and Manohar C.S., “First order and inverse 
reliability methods for updating reliability of existing 
structures using measured response”.

9. Winterstein S.R., “Environmental Parameters for Extreme 
Response: Inverse FORM with Omission Factors”, 
Structural Safety and Reliability, Vol 24, pp. 551-557, 
1994.

10. Kiureghian A.D., “Inverse Reliability Problem”, Journal 
of Engineering Mechanics. ASCE, Vol 120, pp. 1154-1159, 
1994.

11. Foschi L.H., “An Inverse Reliability Method and its 
Application”, Structural Safety, Vol 20, pp. 257-270, 1998.

12. Saha A., and Manohar C.S., “Inverse Reliability Based 
Structural Design for System Dependent Critical Earthquake 
Loads”, Probabilistic Engineering Mechanics, Vol 20, pp. 
19-31, 2005.

13. Beck J.L., and Au S.K., “Bayesian Updating of Structural 
Models and Reliability using Markov Chain Monte Carlo 
Simulation”, Journal of Engineering Mechanics. ASCE, Vol 
128, pp. 380-391, 2002.

14. Liu J.S., “Monte Carlo Strategies in Scientific Computing”, 
Springer, New York, 2001.

15. Gilks W.R., and Richardson S., “Markov Chain Monte 
Carlo in Practice: Interdisciplinary Statistics”, Chapman 
and Hall/CRC, 1996.

16. Au S.K., and Beck J.L., “Estimation of Small Failure 
Probabilities in High Dimensions by Subset Simulation”, 
Probabilistic Engineering Mechanics, Vol 16, pp. 263-277, 
2001.

17. Au S.K., and Beck J.L., “Subset Simulation and its 
Application to Seismic Risk Based on Dynamic Analysis”, 
Journal of Engineering Mechanics, ASCE, Vol 129, pp. 901-
917, 2003

18. Bertsekas D.P., “Constrained Optimization and Lagrange 
Multiplier Method”, Athena Scientific, Belmont, 
Massachusetts, 1996.

19. Gen M., and Cheng R., “Genetic Algorithms & Engineering 
Design”, first ed., Wiley-Interscience, New York, 1997.

V. S. Sundar et al. / Life Cycle Reliability and Safety Engineering Vol.3 Issue 2 (2014) 32-37 



38 © 2014 SRESA All rights reserved

Safety assessment of nuclear Power Plant Pipelines against  
thermo-mechanical fatigue in the Presence of Hybrid uncertainties

M.B. anoop, K. Balaji Rao 
CSIR-Structural Engineering Research Centre, CSIR Campus, Taramani Chennai 600 113, INDIA 

E-mail: anoop@serc.res.in

abstract

Power plant piping components are subjected to a variety of thermal and thermo-mechanical loads, 
which include loads during hot shut down and cold shut down, in addition to the normal or steady 
operating loads of the power plant. A large number of piping failures in Pressurized Heavy Water 
reactors in the form of cracks and leaks due to these thermo-mechanical loads have been reported. 
Thermomechanical fatigue is one of the primary life-limiting factors for piping components in high 
temperature applications. In this paper, a procedure for the safety assessment of a nuclear power 
plant piping component against thermomechanical fatigue, by treating the relevant uncertain 
variables as random or fuzzy depending upon the source of uncertainty, is proposed. The fuzzy 
failure probabilities are computed using the method developed at CSIR-SERC, combining the 
vertex method with Monte Carlo simulation technique. The strain-based approach, which is the 
general approach employed for continuum response in safe-life, finite-life region i.e., the low cycle 
fatigue region with stabilized cyclic stress-strain constants, is used in the safety assessment. An 
example of a main steam piping of an operating thermal power plant is considered for illustrating 
the safety assessment procedure. It is also noted that one can determine the bounds for failure 
probability from the resulting fuzzy set for failure probability with minimal computational effort. 
The proposed procedure will help in rationally taking into account various uncertainties while 
designing the components with known/acceptable levels of safety specified either in codes or by 
learned bodies (AERB codes/NUREG).

Keywords: Thermomechanical fatigue; Power Plant Pipelines; Safety Assessment; Hybrid 
Uncertainties; Fuzzy Failure Probability

  Life Cycle Reliability and Safety Engineering 
Vol.3 Issue 2 (2014) 38-44

1. introduction

Thermomechanical fatigue (TMF) is identified 
as a major degradation mechanism for engineering 
components such as nozzles, branch pipe connections, 
safe ends, welds, heat affected zone and base metal 
regions of high stress concentration, in many high-
temperature applications. Nuclear power plant pipes 
are subjected to a variety of thermal and thermo-
mechanical loads during their life cycle. These include 
loads during hot shut down and cold shut down, in 
addition to the normal or steady operating loads of 
the power plant. A large number of piping failures 
in Pressurized Heavy Water Reactors (PHWR) in the 
form of leaks and cracks due to these thermal loads 
have been reported (see Table 1).

A fundamental component of analysis of complex 
engineering facilities, such as nuclear power plants, 
is the appropriate incorporation and representation 
of uncertainty. The uncertainties in various factors 
such as variations in operating conditions inside the 

plant, material non-homogeneity, should be taken into 
account while assessing the safety of nuclear power 
plant pipelines against TMF. Probability theory has 
been traditionally used to represent both aleatory 
and epistemic of uncertainty. However, various 
researchers have pointed out that it may not be proper 
to use probability theory to represent the epistemic 
uncertainty in the presence of limited knowledge [1]. 
For instance, the safety assessment of nuclear power 
plant pipelines also involves information from expert 
judgment and/or data from in-service inspections. 
Fuzzy set theory will be more rational to represent the 
available data supplied by the experts. Hence, while 
the aleatory uncertainty can be modelled using the 
probability theory, it is more appropriate to represent 
the epistemic uncertainty using fuzzy set theory. In 
such circumstances, there is a need to develop special 
techniques, for carrying out the safety assessment, 
which can handle hybrid uncertainties (i.e. fuzzy and 
random).
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 table 1 Some of failures due to thermal fatigue in PHWR [17]

Details of the plant location of failure Reason for failure
feedwater Piping
Plant: Sequoyah 
Nuclear Power Plant, 
Units 1 and 2  

Nozzles in Feedwater piping Leaks, Crack growth induced by stresses 
from thermal stratification during cold, 
low-flow, feedwater injections.

Diablo Canyon 
Nuclear Plant Unit 
1,1992

Nozzles of Feedwater piping lines to steam 
generators

Intermittent through-wall cracks upto 
20 cm length in circumferential direction 
due to thermal fatigue.

Cracks sized at 8.9 mm deep resulting 
from thermal fatigue leading to leaks

Donald C. Cook Plant, 
1979

Feedwater lines to Steam Generators Leaks

Reactor Coolant Systems
Farley Nuclear Plant, 
Unit 2, 1987

Short unisolable section of a emergency core 
cooling system piping connected to the cold 
leg of a loop in RCS about 3 feet from the RCS 
cold leg nozzle 

Leakage due to a circumferential crack 
(resulting from high-cycle thermal 
fatigue) extending through the wall in the 
heat affected zone of the weld between 
the first elbow and the horizontal pipe

Tihange About 2 feet from the RCS hot leg nozzle. Crack
Obrigheim Weld between Nozzle to elbow closer to the 

RCS.
Crack

Dampierre, Unit 2 Weld between the check valve and straight 
pipe just upstream of the hot leg nozzle.

Crack

Dampierre, Unit 1 Base metal of the horizontal run between the 
hot leg and the check valve about 2 feet from 
the nozzle.

Leak

Biblis Tee that connects a hot and a cold injection 
line

Crack

Genkai plant Weld between the first elbow downstream of 
the hot leg nozzle and the horizontal run

Leak, Thermal stratification

Crystal River and 
Oconee 2

Centre of elbow extrados Turbulent mixing of hot RCS fluid with 
cold makeup fluid behind the loose 
thermal sleeve

Westington plant Tee between the Main pressurizer spray 
from the reactor coolant pumps and the cold 
auxiliary spray system.

Valve leakage, Thermal stratification

Loviisa Plant, Finland Z-type isolation valve in an auxiliary spray 
line vertically above the main spray tee.

Weld between reducer and tee that joins a hot 
leg and a cold leg drains 

Leak

Crack

Mihama Excess let down line Leak, crack located 15 inches from the 
reactor coolant loop inside the surface.

Three Mile Island Cold leg drain line in the weld between the 
first elbow downstream of the loop nozzle 
and the horizontal run

Leak
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Safety assessment of austenitic steel nuclear 
power plant pipelines against TMF in the presence 
of probabilistic and fuzzy uncertainties is presented 
in this paper.  The relevant uncertain variables are 
treated as random or fuzzy depending upon the 
source of uncertainty. The fuzzy failure probabilities 
are computed using the procedure developed at 
CSIR-SERC, combining the vertex method with 
Monte Carlo simulation technique. The strain-based 
approach, which is the general approach employed 
for continuum response in safe-life, finite-life region 
i.e., the low cycle fatigue region with stabilized cyclic 
stress-strain constants, is used in the safety assessment 
for determining the thermo-mechanical fatigue life.

The paper is organized as follows. A brief 
description of TMF and the strain range partitioning 
model for TMF life prediction are presented in Section 
2. The proposed approach for safety assessment of 
austenitic steel nuclear power plant pipelines against 
TMF in the presence of probabilistic and fuzzy 
uncertainties is presented in Section 3, followed 
by example in Section 4. The summary is given in  
section 5.

2. thermo-mechanical fatigue 

TMF is a low-cycle fatigue occurring under 
simultaneous changes in temperature and mechanical 
strain. The major factors affecting the TMF life of a 
component are: 
• Type of material
• Maximum and minimum temperatures: There is 

a substantial decrease in TMF life with increase 
in temperature or thermal loads [2].

• Strain ratio: TMF life decreases with increase 
in strain ratio (ratio of minimum strain to the 
maximum strain). However, in the plastic strain 
region the effects of strain ratio are considered 
negligible [3].

• Strain: Fatigue life decreases with increase in strain 
rate or strain range

The major difficulty in TMF life prediction is the 
interaction between fatigue and creep at varying 
temperatures. Numbers of models are proposed in 
literature for TMF life prediction [4]. Most of these 
models use damage-based criteria, stress-based 
criteria, strain-based criteria or energy-based criteria 
for TMF life prediction. The commonly used models 
for TMF life prediction are Damage Summation 
model, Frequency Separation model, Ductility 
Exhaustion model, Strain-Range Partitioning (SRP) 

model, Total Strain Version of SRP model, and Strain 
Energy Partitioning model. From a brief review of 
these models, it is noted that the modified strain 
range partitioning (SRP) method gives satisfactory 
predictions, especially for high temperature low-cycle 
fatigue. Hence, this method is chosen in the present 
study for predicting the TMF life of austenitic steel 
nuclear power plant pipelines. A brief description of 
the SRP model is given in the next section.

2.1 Strain-range partitioning model

The strain-range partitioning (SRP) model, 
proposed by Manson et al. [5] takes into account the 
time dependent portions of the fatigue cycle. In this 
model, the total inelastic strain-range is partitioned 
into time-independent plasticity and time-dependent 
creep. Each component contributes a certain fraction 
to the total damage. Thus, under cyclic reversed 
loading, there are four possible combination cycles 
of inelastic strain, namely, tensile plasticity reversed 
by compressive plasticity (PP), tensile creep reversed 
by compressive creep (CC), tensile creep reversed 
by compressive plasticity (CP), and tensile plasticity 
reversed by compressive creep (PC). In any stabilised 
combined cycle, a maximum of three cycle types are 
physically possible, PP, CC, and either PC or CP. 

The SRP model [5] originally proposed was based 
on the following simple linear damage rule.
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damage rule using (6)

The TMF life determined using the above steps 
is for a theoretical zero mean stress condition. 
Halford and Nachtigall [8] modified the SRP model 
to incorporate the effect of mean stress. Some of the 
limitations of the SRP model [4] are:
1. The SRP model is not applicable to non-ductile 

materials. This is because, in general, the inelastic 
strains in these materials are very small so that it 
is difficult to determine correctly.  

2. Since the SRP model does not consider the effect 
of oxidation, the TMF life may be over-predicted 
[9].

3. It is still difficult to partition the inelastic strain 
experimentally for TMF cycles. However, this 
can be overcome to an extent using the step-
stress method proposed by Halford and Manson 
[10] and simplified step-stress method and the 

loop inversion method proposed by Nitta and 
Kuwabara [11].

3. Proposed approach for Safety assessment 
against tMf in the Presence of Hybrid 
uncertainties

The variations in the operating conditions and 
the environmental conditions and variations in the 
micro-structural properties of the material of the 
piping component should be taken into account 
while assessing the safety of the piping component 
against TMF. This can be accomplished by treating the 
relevant variables as random or fuzzy depending upon 
the source of uncertainty. Different methods have been 
proposed by various researchers for handling fuzzy 
and random uncertainties together. In the present 
study, the approach proposed by Anoop et al. [12] that 
combines the vertex method with the Monte Carlo 
simulation (MCS) technique is used for determining 
the fatigue life. Vertex method, introduced by Dong 
and Shah [13], is a computationally efficient solution 
technique for computing functions of fuzzy variables. 
Suppose Iλ is the λ-cut interval, i.e., Iλ = [a, b], of 
fuzzy set  A.  If fuzzy set B is image of A given by the 
mapping B = f(A), then interval representing B at a 
particular value of λ, say Bλ, can be obtained by (7). 

Bλ = f(Iλ) = [min(f(a),f(b)), max(f(a), f(b))]               (7)

When the mapping is for n input variables, i.e.,  
y = f(x1, x2, …, xn), and each input variable is described 
by an interval, say Iiλ at a specific λ-cut, where  
Iiλ = [ai, bi], i = 1, 2, …, n, then values of interval function 
representing output fuzzy set B at a particular value 
of λ, is given by

 

Njcfcf

IIIfB

jjjj

n

,...,2,1,))](()),(([

),...,,(

maxmin

21

==

= λλλλ
            (8)

where N = 2n, and cj represents all possible 
combinations of input interval variables, i.e., they are 
vertices of input space in the n-dimensional Cartesian 
region. 

Kandil [14] reported that the ambiguities in the 
determination of plastic strain ranges in TMF can cause 
variations up to 30% in the estimated plastic strain 
range. A rational approach would be to treat the strain 
range as a fuzzy variable. Therefore the partitioned 
inelastic strain-ranges (namely, 
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) are also fuzzy sets. In the present 
study, a triangular membership function with 30% 
variation in either side is assumed for the fuzzy 
sets for the partitioned inelastic strain-ranges. The 
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fatigue coefficients Aij and the fatigue exponents 
Cij are considered as random variables to consider 
the variations in the micro-structural properties of 
the material of the piping component. The fatigue 
coefficients are assumed to follow a lognormal 
distribution with a coefficient of variation of 0.05 and 
the fatigue exponents are assumed to follow a normal 
distribution with a coefficient of variation of 0.05 [16]. 
The limit state function used is Nf – N, where Nf is 
the number of load cycles to failure (a fuzzy-random 
variable) obtained using the proposed approach and N 
is the applied load cycles (considered as deterministic 
in the present study). The λ-cut levels are taken as 0+, 
0.2, 0.4, 0.6, 0.8 and 1.0. For each λ-cut level, there are 
two values for each partitioned inelastic strain-range. 

For different combination of values of the strain range 
for a given λ-cut level, probabilistic analysis of the 
fatigue life is carried out using Monte Carlo simulation 
(MCS) technique with one million simulation cycles, 
and the λ-cut of fuzzy set for failure probability (PF) 
is determined. 
4. Example

The main steam pipe of a thermal power plant that 
had been operating for about 130000 hrs at a temperature 
of 538oC and a pressure of 148 atm is considered [16]. 
The material of the pipe is 2.25Cr-1 Mo steel. The 
values of material fatigue coefficients, material fatigue 
exponents, strain ranges and the experimentally 
determined TMF life (( )

tfN
exp

 in load cycles) are taken 
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load cycle ratio (defined as the ratio of applied load cycles to experimentally observed 

load cycles to failure) for the test specimens considered are shown in Fig. 1. From this 

figure, it is noted that interval lengths of fuzzy sets of PF at a given l-cut level increase 

with increase in loading cycles, resulting in increase in uncertainty about PF. The 

defuzzified values of failure probability for different specimens considered are shown 

in Fig. 2. It is noted that the failure probabilities for different specimens shows the 

same ordering as one would have inferred from the results of deterministic study. By 

carrying out a complete probabilistic analysis, while it is possible to obtain the bounds 

on failure probability, it may be computationally expensive to obtain the probability 

distribution for the failure probability. But from the resulting fuzzy set for failure 

probability obtained from a fuzzy-probabilistic analysis, the bounds of failure 

probability for different λ-cut levels can be identified. This will be more useful in 

decision-making since one can set parametric confidence limits on failure probability 

by considering an appropriate λ-cut level. The proposed procedure will help in 

rationally taking into account various uncertainties while designing the components 

with known/acceptable levels of safety specified either in codes or by learned bodies 

(AERB codes/NUREG). 
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Fig. 1 Fuzzy sets of failure probability for different values of load cycle ratio (applied load cycles/ 

experimentally observed load cycles to failure) for the test specimens considered 
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Fig. 2 Defuzzified values of failure probability for different test specimens made of 2.25Cr-1Mo steel 

(load cycle ratio = applied load cycles/ experimentally observed load cycles to failure) 

5. Summary 

The safety assessment of a nuclear power plant piping component against 

thermo-mechanical fatigue with number of cycles, by treating the relevant uncertain 

variables as random or fuzzy depending upon the source of uncertainty, is presented. 

The fuzzy failure probabilities are computed using the procedure developed at CSIR-

Fig. 1 Fuzzy sets of failure probability for different values of load cycle ratio (applied load cycles/ experimentally observed  
load cycles to failure) for the test specimens considered

M.B. Anoop et al. / Life Cycle Reliability and Safety Engineering Vol.3 Issue 2 (2014) 38-44



43 © 2014 SRESA All rights reserved

from [16]. The TMF lives, deterministically determined 
using the SRP model (( )

SRPfN ) for these specimens 
are given in Table 2, along with the experimental 
values. The value of ( ) ( )

SRPftf NN
exp

 is different for the 
different test specimens considered (see Table 2), and 
the variations in the values of ( ) ( )

SRPftf NN
exp

 suggests 
that there is a need to consider the modeling error as 
a random variable. However, the modeling error is 
not considered in the present study. 

The fuzzy sets for failure probability (PF) are 
determined for different applied load cycles. The 
fuzzy sets for failure probability corresponding to 
different values of load cycle ratio (defined as the ratio 
of applied load cycles to experimentally observed load 
cycles to failure) for the test specimens considered 
are shown in Fig. 1. From this figure, it is noted that 
interval lengths of fuzzy sets of PF at a given l-cut level 
increase with increase in loading cycles, resulting 
in increase in uncertainty about PF. The defuzzified 
values of failure probability for different specimens 
considered are shown in Fig. 2. It is noted that the 
failure probabilities for different specimens shows 
the same ordering as one would have inferred from 
the results of deterministic study. By carrying out a 
complete probabilistic analysis, while it is possible to 

table 2 Elastic- and inelastic- strain ranges and the number of load cycles to failure from  
experimental investigations [16] and using SRP model for different specimens of the 2.25Cr-1Mo  

Steel steam pipe considered

specimen (
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obtain the bounds on failure probability, it may be 
computationally expensive to obtain the probability 
distribution for the failure probability. But from the 
resulting fuzzy set for failure probability obtained 
from a fuzzy-probabilistic analysis, the bounds of 
failure probability for different λ-cut levels can be 
identified. This will be more useful in decision-making 
since one can set parametric confidence limits on 
failure probability by considering an appropriate λ-cut 
level. The proposed procedure will help in rationally 
taking into account various uncertainties while 
designing the components with known/acceptable 
levels of safety specified either in codes or by learned 
bodies (AERB codes/NUREG).

5. Summary

The safety assessment of a nuclear power plant 
piping component against thermo-mechanical fatigue 
with number of cycles, by treating the relevant 
uncertain variables as random or fuzzy depending 
upon the source of uncertainty, is presented. The fuzzy 
failure probabilities are computed using the procedure 
developed at CSIR-SERC, combining the vertex 
method with Monte Carlo simulation technique. 
The strain range partitioning approach, which is the 
general approach employed for continuum response 
in safe-life, finite-life region i.e., the low cycle fatigue 
region with stabilized cyclic stress-strain constants, 
is used in the safety assessment for determining the 
thermo-mechanical fatigue life. An example of a main 
steam piping of an operating thermal power plant is 
considered for safety assessment. From the results 
obtained, it is noted that the fuzzy-probabilistic 
approach presented shows promise for safety 
assessment of nuclear power plant pipelines, and will 
be useful for making decisions regarding in-service 
inspections.
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