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Guest Editorial
This is the special issue on reliability analysis using soft computing. Reliability analysis in the probabilistic 

framework is very common and standard. Monte carlo simulation technique in various configurations such 
as  static, dynamic and Bayesian can be used to estimate the reliability of a model. However, if model contains 
only imprecise uncertain parameters or if uncertainty of the model parameters is subjective, traditional Monte 
Carlo method fails. Soft computing based reliability analysis overcomes this situation. In fact,  imprecise based 
model uncertainty rather reliability is evaluated using soft computing methods such as fuzzy set theory, 
evidence theory etc. Reliability analysis using such soft computing techniques is challenging and some of these 
challenges are addressed in this issue.

The first paper of this issue is by C. Corey Fischer and Ramana V. Grandhi on ‘A Comparison of Model-Form 
Uncertainty Quantification Techniques for Thermal-Structural Modeling’. This paper addresses the model form 
uncertainty as the uncertainty that arises as a result of the lack of confidence in knowing which model within a 
model set used to predict a system response is the best approximating model. Basically, the work in this paper 
presents a design scenario in which multiple computer models, defining the physical behavior of one single 
configuration, are used for predicting the same system response, and thus representing the presence of model-
form uncertainty. Four different model-form uncertainty quantification (UQ) techniques are presented through 
an application of prediction of transient temperature response at different locations within a corrugated-core 
sandwich panel. It is worth to mention that as far as model form uncertainty quantification is concerned, the 
effectiveness of each technique presented in this work is an innovative concept and each one is weighted against 
those of the other techniques in conjunction with the applicability of each model-form UQ technique.

The second paper is by Abhirup Bandyopadhyay and Samarjit Kar on ‘Long-term assessment of Health 
Risk under Uncertain Environment of Contaminated Sites using Spatiotemporal Modelling’. The authors have 
proposed a novel system dynamics model that particularly addresses the presence of multi-compound non 
aqueous phase liquids in porous media and estimates the current and future risks from water-body, soil and 
groundwater contamination. Stochastic and partial dynamic modelling technique have been adopted to estimate 
the spatiotemporal risk in presence of both probabilistic and possibilistic uncertain environment.  The paper 
provides a probabilistic as well as a possibilistic framework for long term assessment of human health risk of 
being infected by contamination

The third paper in this issue is by D. Datta and Debanshee Datta on ‘Reliability Evaluation of Weibull and 
Exponentiated Weibull Distribution Estimates for Wind Speed Data through Uncertainty Analysis’. In this paper, 
authors have introduced a modified Weibull distribution named as Exponentiated Weibull distribution in fitting 
wind speed data. It may be mentioned that modified Weibull distribution is a better fit compared to the fitting 
of traditional or classical Weibull distribution. Authors have proved this with reference to a standard data set 
by QQ-plot. As far as reliability of both the models is concerned with respect to fitting the wind speed data, a 
new measure ‘Akaike Information Criterion (AKC)’ has been applied. Mean and variance of the wind speed 
data with respect to the best fitted Exponentiated Weibull distribution are estimated and a comparison of the 
representative estimates is also presented in this study. Shannon entropy of classical Weibull distribution and 
Exponentiated Weibull distribution has been computed to account the uncertainty associated with the random 
variable sampled from these two distributions.

The paper by S.V. Shrikhande, P.V. Varde and D. Datta is on ‘Review on Prognostics and Health Management 
of Digital Systems and its Application to Nuclear Plants’. The thrust of this paper is on review of prognostics of 
electronic component, its related issues and mathematical techniques useful for prognostic algorithms. Review 
on modelling of accumulated damage based on measured life-cycle loads is presented in this paper. The paper 
introduces use of fuses and canary devices and presents the current state-of-research in the area of prognostic and 
health management for electronics and its implementation challenges. This paper mentions various applications 
where prognostics are successfully deployed. It covers different approaches and methodologies for prognostics 
and RUL estimation. It describes data reduction and simplification techniques, various techniques for intelligent 
algorithms including Machine Learning and also sensors for Prognostics and Health Management (PHM) of 
Complementary Metal Oxide Semiconductor (CMOS) Integrated Circuits (ICs).  



v © 2013 SRESA All rights reserved

	 ‘Fuzzy Arithmetic form Credibility Theory’, by Rituparna Chutia and Tapan Kumar Chutia deals 
with the credibility distribution of triangular fuzzy variable. The work is focused on a very simple alternative 
method of finding the membership function for functions of triangular fuzzy variable by credibility theory. 
Authors study prove that this concept of credibility theory also facilititate in finding an alternative method of 
computing basic arithmetic operations of triangular fuzzy variables and generalised membership function for 
the root of triangular fuzzy variable.

Guest editor, Dr. D. Datta is very thankful to his all colleagues associated with Society for Reliability and 
Safety. The guest editor is very thankful to the Chief-editors in general and, Dr. Varde and Dr. Gopika Vinod 
in particular. I am very thankful to all the authors who have responded to my invitation, some of them at a 
short notice, and the publishers who have done a good job of bringing out this special issue.

Dr. D. Datta completed his M.Sc. (Nuclear Physics), M. Phil (High Energy Nuclear Physics) from 
University of Kolkata and Saha Institute of Nuclear Physics, Kolkata in the year 1983 and 1984. He 
joined in the orientation course of nuclear engineering in 28th batch of BARC Training School in Physics 
discipline in the year 1984-85. After his graduation from BARC training school, he joined in the Health 
Physics Division of BARC at Tarapur. He worked for a period of 17 years over there at various health 
physics units at Tarapur. During this long period he has developed software for use at different facilities 
of radiation protection including waste immobilization, fuel reprocessing for radiation shielding and 
criticality safety for safe handling of fissile material, advanced fuel fabrication, radiation dose database 
management laser based communication system for radiological data transfer and Tarapur Atomic 
Power Station for radiological emergency. He has completed his Ph D from Mumbai University in the 
year 2000. Currently he is a senior scientist, Professor of Homi Bhabha National Institute and heading the 
“Computational Radiation Physics Section” of Health Physics Division at BARC. His research interests 
include mathematical & statistical modeling, artificial intelligence, soft computing, sensitivity analysis, 
uncertainty analysis, Data mining and radiological risk analysis. He has contributed in uncertainty 
and sensitivity analysis in the field of atmospheric dispersion and groundwater modeling using fuzzy 
mathematics, interval mathematics and evidence theory as principal collaborator of BRNS sponsored 
R&D projects. He has published four book chapters, a number of research papers in the peer-reviewed 
journal and in the international/national conferences. He was deputed to IAEA, Vienna in the year 
2004 by the department of atomic energy to validate the software developed by the agency on radiation 
protection.  He is the recipient of “Millennium Plaques of Honour”, an eminent scientist award from the 
Indian Science Congress Association, in the year 2010.  He is the guest faculty of following Institutes: 
IIT- BHU, IIT-Rajasthan, IISC-Bangalore, NIT-Durgapur (W.B), NIT-Rourkela, Kolkata University, 
Dibrugarh University and Guwahati University. He has guided a number of B.Tech / M.Tech students 
of various Engineering Institutes including Homi Bhabha National Institute. Presently he is guiding 
four PhD candidates of Homi Bhabha National Institute. He is a member of the Editorial board of the 
following journals: International Journal of Energy, Information and Communication, International 
journal of Fuzzy Computation and Modelling, International Journal of Environmental Modelling 
and Software. He is currently working in the field of uncertainty modelling using evidence theory, 
exploratory data analysis using wavelets and data mining. 
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A Comparison of Model-Form Uncertainty Quantification 
Techniques for Thermal-Structural Modeling

C. Corey Fischer1 and Ramana V. Grandhi2 
1Graduate Research Assistant, Department of Mechanical and Materials Engineering, Wright State University,  

Russ Engineering Center 212, 3640 Colonel Glenn Hwy. Dayton, OH 45435, USA. 
2Distinguished Professor, Department of Mechanical and Materials Engineering, Wright State University,  

Russ Engineering Center 210, 3640 Colonel Glenn Hwy. Dayton, OH 45435, USA. 
email: fischer.36@wright.edu

Abstract
Work in the field of uncertainty quantification has, in the past, focused primarily on parametric 
uncertainties naturally inherent in the design parameters of most engineering problems. 
However, current work has begun to incorporate model-form uncertainties into the uncertainty 
quantification process. Model-form uncertainty is the uncertainty that arises as a result of the 
lack of confidence in knowing which model within a model set used to predict a system response 
is the best approximating model. Thus, fostering the necessity to develop and utilize techniques 
for quantifying this uncertainty. This work presents a design scenario in which multiple computer 
models, defining the physical behavior of one single configuration, are used for predicting the same 
system response, and thus representing the presence of model-form uncertainty. Four different 
model-form uncertainty quantification (UQ) techniques are presented and applied to the physical 
problem, consisting of three mathematical models, each of which are used for predicting the 
transient temperature response at different locations within a corrugated-core sandwich panel used 
in thermal protection systems subject to thermal loading and boundary conditions, to demonstrate 
the challenges inherent in each of the quantification techniques. The effectiveness of each technique 
is weighted against those of the other techniques in conjunction with the applicability of each 
model-form UQ technique.

Keywords -Uncertainty Quantification; Model-Form Uncertainty; Bayesian Model Averaging; 
Adjustment Factor Approach; Structural Design
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1. Introduction

Any prediction of a system response obtained 
through the use of modeling processes can assume 
some type of uncertainty thought of taking on one 
or more of three forms: parametric, predictive, and 
model-form uncertainty [1]. The first of these three 
forms, parametric uncertainty, refers to the natural 
variability present within the input parameters 
the model of interest is dependent upon, while the 
latter two, predictive and model-form uncertainty, 
refer to the variability present within the modeling 
process itself. Uncertainty quantification work in the 
literature has primarily focused on the quantification 
of parametric uncertainty through the exploration, 
adaptation, and application of multiple approaches 
and methodologies. However, the majority of these 
approaches and methodologies fail to account for the 
presence of uncertainties that arise as a result of the 
modeling process itself.

When the solution approach for solving an 
engineering problem utilizes physics-based simula-
tions, multiple models often arise as possibilities 
for representing the same physical situation. The 
presence of multiple models being available to 
simulate the same given situation can result from the 
use of different modeling packages utilizing various 
fidelities or even operating on differing assumptions 
of governing physics within the same level of fidelity 
as well as varying applications of boundary conditions 
and mesh sizes. In very rare situations, the phenomena 
being modeled has been explored extensively and 
is well enough understood that a “best” model can 
emerge from the set of possible models where in this 
work, the term “best” model refers to the model that 
most accurately represents the true physical scenario 
being modeled. However, in most physical scenarios 
multiple sets of differing physics can couple in 
different ways, there exists uncertainty in the selection 
of the “best” model as a result of a lack of knowledge 
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of the true physics governing the physical scenario. 
As a result of this uncertainty, a single “best” model 
will not emerge from the model set, and thus multiple 
models operating on assumptions of differing physics 
can produce different results for the prediction of 
the same physical problem. Therefore, in order to 
completely quantify the uncertainty present in the 
modeling process, it is necessary to not only quantify 
parametric uncertainties, but also the uncertainty 
inherent in selecting the “best” model– the model-
form uncertainty.

In this work, multiple approaches for the 
quantification of model-form uncertainties are 
presented, discussed and applied to a nonlinear 
transient heat transfer problem. This work presents 
the application bounds of each approach such as 
requirements on the availability of experimental 
data and whether or not the approach can account 
for probabilistic model predictions–predictions 
including the quantification of parametric and/
or predictive uncertainties. These approaches in-
clude the traditional adjustment factor approaches, 
probabilistic adjustment factor approach which is 
an adaptation of the prior, and the Bayesian model 
averaging (BMA) approach.

2. Uncertainty in Modeling Process

The process involved in modeling a physical 
scenario requires the construction of a mathematical 
model which entails discretization of the physical 
scenario as well as making assumptions on the physics 
governing the true scenario. It is however, often beyond 
the capability of the designer to fully understand the 
true engineering problem at hand and thus capture the 
full complexity and all aspects of the physical scenario. 
Therefore, as a result of the assumptions made during 
development of physics-based models, discrepancy 
inevitably exists between the physical scenario being 
modeled and the prediction of the response by the 
computational model. This discrepancy is referred to 
as the predictive uncertainty of a particular model [2], 
and is unique to each individual model within a set of 
models considered for predicting a system response.

As mentioned previously, in the solution of 
an engineering problem, it is common practice for 
multiple models to be constructed for the purpose 
of representing the same physical scenario. Such 
examples include models of varying fidelities, such as 
assumptions on linear, quasi-linear, or non-linearity 
within a model, or models that account for complex 
phenomenon or boundary conditions in different 

manners, using different simplification techniques. As 
a result, the predictions of each of these models, for 
the particular output of interest, can be different from 
one another. Guedes-Soares states that in situations 
where multiple models yield different responses, that 
there can exist only one correct model [3]. However, 
as stated earlier, it is often beyond the capability of the 
designer to select the “best” model within the design 
space, or even a subset of the design space, and arises 
as a result of the inability to completely understand 
the full complexity of the physics governing the 
problem. As is the case in many engineering problems, 
due to the physical complexity and multidisciplinary 
interactions, a correct model will often not exist, 
instead one merely seeks to identify the “best” model 
among the model set. For reasons mentioned above, 
there exists uncertainty in the selection of this “best 
model. This uncertainty in the identification of the 
model most accurately predicting the correct outcome 
is referred to as model-form uncertainty [4].

The definition of input parameters to each model 
within a model set, such as dimensions, material 
properties, environmental conditions, or modeling 
constants, are often defined as being deterministic. 
However, in nature, the parameters are rarely 
deterministic, or seldom able to be accurately 
represented as deterministic values, within the 
true physical scenario. As a result of this fact, there 
exists a third type of uncertainty in the modeling 
process–parametric uncertainty– which refers to the 
natural variability present in the values of parameters 
that a mathematical model is dependent upon [2]. 
Parametric uncertainties are often classified as either 
aleatory or epistemic uncertainty, dependent upon 
the degree of information known in regards to the 
form of their uncertainty [5]. Aleatory uncertainty 
refers to the form of uncertainty that arises from the 
natural unpredictable variation in the performance 
of a system [6], and can often be represented through 
distribution functions of a parameters variability. 
Epistemic uncertainty, on the other hand, is defined 
as uncertainty due to a lack of knowledge regarding 
the performance of a system that can, in theory, be 
reduced through the introduction of additional data 
or information [7].

All of the aforementioned uncertainties are present 
in nearly every physics-based modeling problem. A 
general representation for the modeling of an output 
of interest, y, is given in Eq. (1). As can be seen, 
this output of interest is a function of three terms: 
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of input parameters, x̄i, is representative of parametric uncertainty. Finally, the determination of a
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interest, ε̂k, is representative of the predictive uncertainty present in model k. The breakdown of

these three distinct types of uncertainty is demonstrated in Figure 1.
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K
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Pr(Mk) = 1, k = 1, 2, . . . ,K (2)

In the event that experimental data is available, Bayes’ theorem can then be used to update

these original (prior) probabilities into posterior probabilities. Applying Eq. (3) updates the model

probability of model k.

Pr(Mk|D) =
Pr(D|Mk)(Mk)K

k=1 Pr(D|Mk)Pr(Mk)
(3)

In Eq. (3), Pr(D|Mk), which is broadly known as L(Mk|D), is called the likelihood of model Mk

given experimental data D, or the likeliness that model Mk will predict the known data D, because

the first argument D is known, while the second argument Mk is not held fixed [9]. The numerical
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Pr(D|Mk) = (
1

2π(σ̂)2
mle

)N/2exp(−N
2

) (4)

Model likelihood then becomes a function of the maximum likelihood estimator, (σ̂)2
mle, a mea-

sure of the variation within model k, as calculated in Eq. (5), where N in Eqs. (4-5) represents

the number of experimental data points available for calculating the error term, . This maximum

likelihood estimator provides an estimate for the model’s variance based upon given experimental

data in which the error term is the difference between the given experimental data point i and the

prediction for that data point from model k. In Eq. (5) this error term is squared so as to eliminate

the possibility of a positive and negative error canceling each other out.

(σ̂)2
mle =

N
i=1 2

k,i

N
(5)

2.2. Model-Form Uncertainty Quantification Techniques

Many methods for the quantification of model-form uncertainty have recently arisen within the

literature, each one with its own pros and cons. Original work in model-form uncertainty quantifi-

cation gave birth to methods requiring the presence of experimental data, such as Bayesian model

averaging which requires the presence of experimental data in order to develop a maximum like-

lihood estimator of variance within a model prediction as is used in updating model probabilities

through Bayes’ theorem. Riley and Grandhi quantified the model-form and predictive uncertainty
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each one with its own pros and cons. Original work in 
model-form uncertainty quantification gave birth to 
methods requiring the presence of experimental data, 
such as Bayesian model averaging which requires the 
presence of experimental data in order to develop a 
maximum likelihood estimator of variance within 
a model prediction as is used in updating model 
probabilities through Bayes’ theorem. Riley and 
Grandhi quantified the model-form and predictive 
uncertainty in the calculation of the flutter velocity 
of the AGARD 445.6 wing using BMA in [10]. Other 
methods requiring the availability of experimental 
data include the methods of Continuous Model 
Expansion explored by Drapert, which showed a 
reliance on experimental data points, as well as 
difficulty in handling asymmetric distributions of 
parametric uncertainties [11], and work done recently 
by Allaire and Willcox, which require a maximum 
entropy representation of the modeling uncertainty, 
an extra step that could be cost-intensive for a high 
simulation-cost model [12]. As previously mentioned, 
the common thread among these three methods is 
the dependence on the availability of experimental 
data. The adjustment actor approach, however, was 
demonstrated by Mosleh and Apostolakis as a possible 
method for model-form uncertainty quantification 
which operates on the utilization of expert opinion to 
assign model probabilities in the absence of empirical 
data [13]. Riley and Grandhi present an adaptation of 
this approach for use with non-deterministic model 
predictions, called the probabilistic adjustment actor 
approach [14]. This work will explore the adjustment 
factor approaches, probabilistic adjustment factor 
approach, and the Bayesian Model Averaging 
approach and apply these methods to a multi-physics 
problem.

2.2.1 Adjustment Factor Approach

As mentioned previously, the adjustment factor 
approach was first demonstrated by Mosleh and 
Apostolakis as a method for quantifying model-form 
uncertainty in the absence of experimental data by 
using an adaptation of Bayes’ Theorem. This approach 
modifies the result of the “best” model–model within 
the model set being considered for use in solving the 
problem that obtains the highest model probability–by 
applying an adjustment factor to account for the 
uncertainty that exist in selection of the “best” model. 
The applicability of this approach to engineering 
problems has been well demonstrated in the literature. 
Zio and Apostolakis utilized an adjustment factor 
approach to quantify the uncertainty present in the 

selection of a “best”radioactive waste repository 
model in [15]. Reinert and Apostolakis also used this 
approach in the assessment of risk for decision-making 
processes in [16].

Multiple derivations of the adjustment factor 
approach exist in the literature. These derivatives 
all employ a similar technique of quantifying the 
model-form uncertainty through the use of expert 
opinion regarding a model’s accuracy with respect 
to other models in the model set by assigning model 
probabilities, and updating those probabilities through 
the use of Bayes’ theorem upon the availability of 
experimental data. In this approach, Pr(Mk) represents 
the model probability assigned to model k. Recall 
that this model probability is the probability that 
model k is the “best” model among model set M being 
considered, where Eq. (6) defines the model set M.
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Note that model probabilities for each of the K 
individual models within the model set M remain 
bounded by the laws of probability theory. Thus, 
constraints are applied to the model probability 
values, as shown in Eq. 7.
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The various derivations of the adjustment factor approach differ here, in the form of the ad-

justment factor being applied–used to adjust–the “best” model. In the additive adjustment factor

approach, the adjusted model, y, is formed by adding an additive adjustment factor, E∗a, to the

“best” model from the model set being considered, as shown in Eq. (8).
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It is important to note that use of the adjustment factor approach is reliant on models within

the model set to be deterministic; this is to say that the models cannot incorporate parametric

uncertainty. Therefore, the expected value of the adjusted model, E[y], is calculated as shown in

Eq. (11), as the sum of the prediction of the “best” model and the expected value of the additive

adjustment factor, E[E∗
a], found using Eq. (9).

E[y] = y∗ + E[E∗
a] (11)

Similarly, due to each individual model being deterministic, the variance of the adjusted model,

Var[y], assumes only the variance of the additive adjustment factor, Var[E∗
a], as shown in Eq. (12).

Var[y] = Var[E∗
a] (12)
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The first and second moments–expected value 
and variance–of the adjusted prediction, y, are 
calculated by Eqs. (11-12) which fully define a normal 
distribution representing the uncertainty inherent 
in the prediction of a system response as a result of 
model-form uncertainty.

Another derivative of the adjustment factor 
approach is that of a multiplicative adjustment factor. 
In the multiplicative adjustment factor approach, 
the adjusted model, y, is formed by multiplying the 
prediction of the “best” model, y*� from the model 
set being considered by a multiplicative adjustment 
factor, E�*

m , as shown in Eq. (13).

y =  y*�   * E*m                                                                                                         (13)

This multiplicative adjustment factor, E�*
m , is 

assumed to be a log normally distributed factor 
representing the uncertainty present in the selection 
of the “best” model as being most accurate at 
predicting the true physical response. In assuming a 
log normally distributed form for this factor, the first 
and second moments–expected value and variance– 
of the adjustment factor are calculated as shown in 
Eqs. (14-15).
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As was the case with the additive adjustment factor approach, it is important to note that use

of the adjustment factor approach is reliant on models within the model set to be deterministic.

Therefore, the expected value of the adjusted model, E[ln(y)], is calculated as shown in Eq. (16),

as the sum of the natural logarithm of the prediction of the “best” model and the expected value of
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As was the case with the additive adjustment 
factor approach, it is important to note that use of 
the adjustment factor approach is reliant on models 
within the model set to be deterministic. Therefore, 
the expected value of the adjusted model, E[ln(y)], 
is calculated as shown in Eq. (16), as the sum of the 
natural logarithm of the prediction of the “best” 
model and the expected value of the multiplicative 
adjustment factor, E[ln(E�*

m)], from Eq. (14).

 

the multiplicative adjustment factor, E[ln(E∗m)], from Eq. (14).

E[ln(y)] = ln(y∗) + E[ln(E∗m)] (16)

Much like the additive adjustment factor approach, due to each individual model being deter-

ministic, the variance of the adjusted model, Var[ln(y)], assumes only the variance of the multi-

plicative adjustment factor, Var[ln(E∗m)], as shown in Eq. (17).

Var[ln(y)] = Var[ln(E∗m)] (17)

While these adjustment factor approaches have the benefit of being able to quantify model-form

uncertainty in the absence of experimental data, they lack the ability to handle probabilistic model

predictions, this is to say that the adjustment factor approach cannot quantify the model-form un-

certainty present in the selection of a “best” model, from a model set, when the models within said

model set contain quantified parametric uncertainty. This is a result of the assumption made during

derivation of the approach that individual models are deterministic. Therefore, a rederivation of the

approach, working on the assumption that individual models are probabilistic/stochastic in nature,

would allow for the approach to be adapted to handle parametric uncertainty.

2.2.2. Probabilistic Adjustment Factor Approach

The probabilistic adjustment factor approach is an adaptation of the traditional adjustment fac-

tor approach in that it is capable of handling stochastic model, and thus parametric uncertainty.

Note that this approach does not quantify the parametric uncertainty within each model of a model

set, but it can handle parametrically uncertain models in its analysis [14]. As with the traditional
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general there is no restriction on the on the form of 
this distribution; however, as was the case with the 
additive adjustment factor approach, this work will 
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focus on the approach derived from assumption of a 
normal distribution.

The first step to quantifying model-form 
uncertainty through the use of the probabilistic 
adjustment factor approach is the same as that of 
the traditional adjustment factor approach. Model 
probabilities are applied to each individual model 
within the model set using either expert opinion or 
uniformly distributed probabilities, and then updating 
through the application of Bayes’ theorem given the 
availability of experimental data, such that constraints 
of Eq. (7) are satisfied. The adjusted model for the 
probabilistic adjustment factor approach can then be 
computed as shown in Eq. (18)
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rem given the availability of experimental data, such that constraints of Eq. (7) are satisfied. The

adjusted model for the probabilistic adjustment factor approach can then be computed as shown in

Eq. (18).

y = E[y∗] + E∗
pa f a (18)

Eq. (18) is similar to Eq. (8) from the additive adjustment factor approach with the slight differ-

ence in the utilization of the expected value of the “best” model, E[y∗], rather than the deterministic

“best” model prediction. Calculating the first and second moments–expected value and variance–

of the probabilistic adjustment factor is also different for this new approach, as the approach had

to be re-derived to handle the stochastic model set. The calculation of these two moments can be

performed using Eqs. (19-20).

E[E∗
pa f a] =

K
k=1

Pr(Mk)(E[yk] − E[y∗]) (19)
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pa f a] =
K

k=1

Pr(Mk)(E[yk] − E[y])2 (20)

After calculating the first and second moments of the probabilistic adjustment factor, the ex-

pected value and variance of the adjusted model can then be calculated using Eqs. (21-22).

E[y] = E[y∗] + E[E∗
pa f a] (21)

Var[y] = Var[E∗
pa f a] +

K
k=1

Pr(mk)(Var[yk])2 (22)

As can be seen, there is only a slight difference in the formulations of the expected value

equations for the traditional adjustment factor approach and the probabilistic adjustment factor

approach, only in that of operating on the expected value of the “best” model prediction rather than

the deterministic model prediction, as is the case for the traditional approach. The key difference

in the two derivations comes in the formulation of the variance equation. The variance, shown in

Eq. (22), includes the addition of the summation of weighted individual model variances–weighted

by model predictions–to the variance of the adjustment factor calculated using Eq. (20), known

as the between-model variance. The second term in the equation represents the variance in the

adjusted model due to variances within each of the individual models–the within-model variance.

Therefore, the first term in Eq. (22) can be thought of as representing the model-form uncertainty

within the problem, whereas the second term represents the parametric uncertainty inherent to each

model within the model set, and quantified using parametric uncertainty quantification techniques.

In the event that individual models within the model set are deterministic, do not account for

parametric uncertainties, and experimental data is available, the probabilistic adjustment factor
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The key difference in the two derivations comes in the 
formulation of the variance equation. The variance, 
shown in Eq. (22), includes the addition of the 
summation of weighted individual model variances–
weighted by model predictions–to the variance of the 
adjustment factor calculated using Eq. (20), known 
as the between-model variance. The second term in 
the equation represents the variance in the adjusted 
model due to variances within each of the individual 
models–the within-model variance. Therefore, the first 
term in Eq. (22) can be thought of as representing the 
model-form uncertainty within the problem, whereas 
the second term represents the parametric uncertainty 
inherent to each model within the model set, and 
quantified using parametric uncertainty quantification 
techniques. In the event that individual models within 
the model set are deterministic, do not account for 
parametric uncertainties, and experimental data is 
available, the probabilistic adjustment factor approach 
can still be utilized by assuming the maximum 
likelihood estimator of variance for each individual 
model to be said model’s variance in the evaluation 
of Eq. (22).

2.2.3 Bayesian Model Averaging (BMA)

The Bayesian model averaging technique is one 
that requires the availability of experimental data as 
mentioned previously; however, this technique can 
handle both stochastic and deterministic models. BMA 
is a technique for quantifying model-form uncertainty 
by averaging the predictions of each individual model 
within a model set using each model’s corresponding 
model probability as a weighting factor. As is the 
case with the previous approaches, a distribution 
must be assumed for the averaged model, and the 
individual models, if stochastic, must follow this 
same distribution. For the purpose of this work, 
each model, if stochastic, must follow a normal 
distribution–defined by an expected value and 
variance–thus the averaged model assumes the form 
of a Gaussian distribution. The expected value of the 
averaged model, E[y|D], is calculated by Eq. (23) as 
the summation of the model probabilities, Pr (Mk|D), 
multiplied by the corresponding model’s expected 
value, E[y|MkD].

 

approach can still be utilized by assuming the maximum likelihood estimator of variance for each

individual model to be said model’s variance in the evaluation of Eq. (22).

2.2.3. Bayesian Model Averaging (BMA)
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by an expected value and variance–thus the averaged model assumes the form of a Gaussian distri-

bution. The expected value of the averaged model, E[y|D], is calculated by Eq. (23) as the summa-

tion of the model probabilities, Pr(Mk|D), multiplied by the corresponding model’s expected value,

E[y|Mk,D].

E[y|D] =
K

k=1

Pr(Mk|D)E[y|Mk,D] (23)

Similarly, the equation for calculating the variance of the averaged model is shown in Eq. (24).

This equation states that the variance of the averaged model, Var[y|D], is the summation of the

model probabilities, Pr(Mk|D), multiplied by the corresponding model’s variance, Var[y|Mk,D],

plus the summation of the model probabilities multiplied by the squared difference between the cor-

responding model’s expected value, E[y|Mk,D], and the averaged model’s expected value, E[y|D].
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Similarly, the equation for calculating the variance 
of the averaged model is shown in Eq. (24). This 
equation states that the variance of the averaged model, 
Var[y|D], is the summation of the model probabilities 
Pr(Mk|D), multiplied by the corresponding model’s 
variance, Var[y|D], plus the summation of the model 
probabilities multiplied by the squared difference 
between the corresponding model’s expected value, 
E [y|D].

 
Var[y|D] =

K
k=1

Pr(Mk|D)Var[y|Mk,D] +
K

k=1

Pr(Mk|D)(E[y|Mk,D] − E[y|D])2 (24)

In the event that BMA is being applied to a deterministic model set, case in which uncertainties

due to input parameters are not included, Eqs. (25-26) are used to calculate the averaged model

expected value and variance. The difference in the formulation between Eq. (23) and Eq. (25) is

that the latter used the individual model deterministic predictions, yk, rather than their expected

values. The key difference in these two derivations is seen in the formulation of the equation

for calculation of averaged model variance, where the first term of Eq. (24) changes by using

the maximum likelihood estimator of variance, (σ̂)2
mle calculated using Eq. (5), in place of the

individual stochastic model variances as well as substituting the individual deterministic model

predictions, yk, for the stochastic model expected values in the first term of Eq. (26), corresponding

to the second term of Eq. (24) [17].

E[y|D] =
K

k=1

Pr(Mk|D)yk (25)

Var[y|D] =
K

k=1

Pr(Mk|D)(yk − E[y|D])2 +

K
k=1

Pr(Mk|D)(σ̂k)2
mle (26)

3. Thermal-Structural Modeling Demonstration

The model-form uncertainty inherent in the calculation of maximum temperature at various

locations within an idealized thermal protection system (TPS) panel, using three different com-

putational models, will be quantified using each of the model-form UQ techniques presented in

this paper. This idealized TPS panel is taken to represent a corrugated-core sandwich panel from
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3. Thermal-Structural Modeling Demonstration

The model-form uncertainty inherent in the 
calculation of maximum temperature at various 
locations within an idealized thermal protection system 
(TPS) panel, using three different computational 

models, will be quantified using each of the model-
form UQ techniques presented in this paper. This 
idealized TPS panel is taken to represent a corrugated-
core sandwich panel from a space shuttle thermal 
protection system. Each of these computational models 
were constructed on differing assumptions of the 
geometric and material properties as well as differing 
approaches on capturing the true physics of the 
transient thermal problem subject to time dependent 
heat flux and boundary conditions. The problem of 
interest has been explored by Bapanapalli et al from an 
optimization point of view on geometry and material 
configurations [18]. This problem serves as a good 
baseline for exploring model-form uncertainty due 
to the modeling possibilities as well as the validity 
to different system responses. This work will focus 
on quantifying only model-form uncertainty present 
in selection of the “best” model among the following 
three models, used for the purpose described above:
1.	 Full geometric-material model (2-D heat 

transfer)
2.	 Homogenized core-material model (1-D heat 

transfer)
3.	 Thermal resistance network (TRN) model

The simplified geometry of the idealized TPS 
panel is shown in Figure 2, and can be completely 
described using 6 geometric variables: thickness of 
top face sheet (TFS), tt , thickness of bottom face sheet 
(BFS), tb , thickness of webs, tw , angle of webs to BFS,  
q , height of sandwich panel (center-to-center distance 
between TFS and BFS), d, and length of a unit-cell of 
the sandwich panel, 2p.

 

Figure 2. Simplified Geometry of Corrugated-Core Sandwich 
Panel for Thermal Protection System.

Note that the geometry is simplified due to an 
assumption that the corrugated-core structure is made 
of discrete web components which are not attached to 
each other by horizontal sections, as is the case in some 
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corrugated-core sandwich panels. These horizontal 
sections are typically included within the geometry of 
the system for the purpose of attaching the core to the 
top and bottom face sheets; however, from a design 
point of view, these sections are redundant.

3.1 Transient Loading and Boundary Conditions

Loading and boundary conditions are taken to 
simulate the operating conditions incident on a TPS 
panel located approximately 827 inches from the tip 
of a space shuttle during a reentry period. The initial 
temperature of the entire structure is assumed to be 
295 K, while a linearly varying heat flux is incident 
on the top surface of the TFS of the TPS Panel. Heat is 
conducted through the structure as well as radiated 
to the ambient by the top surface during the entire 
transient process while convection occurs during the 
final reentry stage of the shuttle–while the shuttle sits 
on a landing pad–and is taken to be free convection. 
The bottom surface of the BFS is assumed to be 
perfectly insulated to represent a worst-case scenario 
where the BFS temperature would rise to a maximum 
as it cannot dissipate the heat.

During the initial reentry period–time period of 
0 to 450 seconds–ambient temperatures are assumed 
to be 213 K. Radiation and conduction dissipate heat 
during this step, while heat flux is incident on the tops 
surface of the top face sheet. This incident heat flux 
ramps linearly during the 450 second time span from 0 
to 3.0 

within the geometry of the system for the purpose of attaching the core to the top and bottom face

sheets; however, from a design point of view, these sections are redundant.

3.1. Transient Loading and Boundary Conditions

Loading and boundary conditions are taken to simulate the operating conditions incident on a

TPS panel located approximately 827 inches from the tip of a space shuttle during a reentry period.

The initial temperature of the entire structure is assumed to be 295 K, while a linearly varying heat

flux is incident on the top surface of the TFS of the TPS Panel. Heat is conducted through the

structure as well as radiated to the ambient by the top surfaceduring the entire transient process

while convection occurs during the final reentry stage of the shuttle–while the shuttle sits on a

landing pad–and is taken to be free convection. The bottom surface of the BFS is assumed to be

perfectly insulated to represent a worst-case scenario where the BFS temperature would rise to a

maximum as it cannot dissipate the heat.

During the initial reentry period–time period of 0 to 450 seconds–ambient temperatures are

assumed to be 213 K. Radiation and conduction dissipate heat during this step, while heat flux is

incident on the tops surface of the top face sheet. This incident heat flux ramps linearly during the

450 second time span from 0 to 3.0 Btu/ft2s. The second step of the analysis represents the second

phase of reentry–time period of 450 to 1575 seconds–during which the ambient temperatures are

assumed to be 243 K. While radiation to the ambient and conduction throughout the structure occur

during this phase, heat flux is also incident on the top surface of the top face sheet. This heat flux

is also ramped linearly during the 1125 second time span from 3.0 to 3.5 Btu/ft2s. The final phase

of reentry–time period of 1575 to 2175 second–is represented by the third stage of this analysis

in which ambient temperature is assumed to be 273 K. As with the first two phases, this phase
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.  The second step of the analysis represents 
the second phase of reentry–time period of 450 to 1575 
seconds–during which the ambient temperatures are 
assumed to be 243 K. While radiation to the ambient 
and conduction throughout the structure occur during 
this phase, heat flux is also incident on the top surface 
of the top face sheet. This heat flux is also ramped 
linearly during the 1125 second time span from 3.0 
to 3.5 

within the geometry of the system for the purpose of attaching the core to the top and bottom face

sheets; however, from a design point of view, these sections are redundant.
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. The final phase of reentry–time period 
of 1575 to 2175 second–is represented by the third 
stage of this analysis in which ambient temperature 
is assumed to be 273 K. As with the first two phases, 
this phase consists of radiation to the ambient, 
conduction throughout the structure, and an incident 
heat flux. Heat flux decreases linearly from 3.5 to 0 

within the geometry of the system for the purpose of attaching the core to the top and bottom face

sheets; however, from a design point of view, these sections are redundant.
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 during this final reentry phase. The fourth and 
final stage of this transient analysis represents the 
period after touchdown–time period of 2175 to 5175 
seconds–during which time the ambient temperature 
is assumed to be 295 K. During this period, along 
with radiation to ambient and conduction throughout 

the structure, convective heat transfer boundary 
conditions are imposed on the top surface to simulate 
the heat transfer to the surroundings while the vehicle 
is sitting on the runway. The value of the convective 
heat transfer coefficient, h, is taken to be 6.5 

consists of radiation to the ambient, conduction throughout the structure, and an incident heat flux.

Heat flux decreases linearly from 3.5 to 0 Btu/ft2s during this final reentry phase. The fourth and

final stage of this transient analysis represents the period after touchdown–time period of 2175 to

5175 seconds–during which time the ambient temperature is assumed to be 295 K. During this

period, along with radiation to ambient and conduction throughout the structure, convective heat

transfer boundary conditions are imposed on the top surface to simulate the heat transfer to the

surroundings while the vehicle is sitting on the runway. The value of the convective heat transfer

coeffcient, h, is taken to be 6.5 W/m2K and the top surface of the top face sheet is assumed to have an

emissivity, e, of 0.8. Another assumption to note is an assumption of a perfect conduction interface

between the face sheets and webs, face sheets and insulation, and between the webs and insulation

materials as illustrated in Figure 2, that is, there is no thermal contact resistance at the interface.

3.2. Analysis Models

As mentioned previously, the model set being considered for predicting temperature through-

out the TPS panel consists of three models. The first of these three models is a full geometric

representation of the cross-section of the corrugated-core sandwich panel as shown in Figure 3(a).

Heat transfer in this model is two dimensional due to the geometry of the webs. As can be seen

in Figure 3(a), the top face sheet of this model is composed of Inconel, the bottom face sheet is

composed of aluminum, web constructed of titanium, and the core is an insulation material, typ-

ically Saffil but for the purposes of these models, the core takes on general material properties of

insulation similar to that of Saffil. Figure 3(b) depicts the geometry and material composition of

the homogenized core model in which heat transfer is considered to be one dimensional. The top

and bottom face sheets are still composed of inconel and aluminum respectively; however, the core
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and the top surface of the top face sheet is assumed 
to have an emissivity, e, of 0.8. Another assumption 
to note is an assumption of a perfect conduction 
interface between the face sheets and webs, face sheets 
and insulation, and between the webs and insulation 
materials as illustrated in Figure 2, that is, there is no 
thermal contact resistance at the interface.

3.2 Analysis Models

As mentioned previously, the model set being 
considered for predicting temperature throughout the 
TPS panel consists of three models. The first of these 
three models is a full geometric representation of the 
cross-section of the corrugated-core sandwich panel 
as shown in Figure 3(a). Heat transfer in this model 
is two dimensional due to the geometry of the webs. 
As can be seen in Figure 3(a), the top face sheet of this 
model is composed of Inconel, the bottom face sheet is 
composed of aluminum, web constructed of titanium, 
and the core is an insulation material, typically Saffil 
but for the purposes of these models, the core takes on 
general material properties of insulation similar to that 
of Saffil. Figure 3(b) depicts the geometry and material 
composition of the homogenized core model in which 
heat transfer is considered to be one dimensional. 
The top and bottom face sheets are still composed 
of inconel and aluminum respectively; however, the 
core is modeled as one homogenized material having 
material properties calculated using Eqs. (27-29).

 

is modeled as one homogenized material having material properties calculated using Eqs. (27-29).

ρ∗ =
ρ1V1 + ρ2V2

V∗
(27)

C∗ =
C1ρ1V1 +C2ρ2V2

ρ∗V∗
(28)

k∗ =
k1A1 + k2A2

A∗
(29)

(a) Full geometric-material model (b) Homogenized core-material model(c) Thermal resistance network model

Figure 3. Analysis Models

In these equations, r stands for density, C denotes specific heat, and k represents thermal con-

ductivity. The subscripts 1 and 2 represent titanium (web) and insulation respectively, while the

superscript ‘∗’ represents the homogenized core. Area of cross-section perpendicular to the flow of

heat is given by A, where A1 is determined using Eq. (30), which takes into account the angle of the

web corrugations, θ. The geometry of the 2-D as well as the 1-D models were defined within the

Abaqus software package along with all loading and boundary condition steps in order to perform

a nonlinear transient heat transfer analysis in which a 15 second time step was used for the first

three stages and a 40 second time step for the final stage.

A1 =
2tw

sin(θ)
2p (30)

The values of the 6 geometric variables used to fully define the geometry of the idealized TPS

panel are tabulated in Table 1, and are used to define the geometry of the first two Abaqus models
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In these equations, r stands for density, C denotes 
specific heat, and k represents thermal conductivity. 
The subscripts 1 and 2 represent titanium (web) 
and insulation respectively, while the superscript 
‘*‘ represents the homogenized core. Area of cross-
section perpendicular to the flow of heat is given by 
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Figure 3. Analysis Models

A, where A1 is determined using Eq. (30), which takes 
into account the angle of the web corrugations, q. The 
geometry of the 2-D as well as the 1-D models were 
defined within the Abaqus software package along 
with all loading and boundary condition steps in 
order to perform a nonlinear transient heat transfer 
analysis in which a 15 second time step was used for 
the first three stages and a 40 second time step for the 
final stage.
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The values of the 6 geometric variables used to 
fully define the geometry of the idealized TPS panel 
are tabulated in Table 1, and are used to define the 
geometry of the first two Abaqus models within the 
model set, as well as used in determining thermal 
resistances for use within the thermal resistance 
network analysis. This thermal resistance network 
analysis was carried out following general heat 
transfer analysis of a thermal resistance network for 
the thermal resistance network of Figure 3(c). RRAD, 
RCONV, RTFS , RINS , RWEB, and RBFS in Figure 3(c) represent 

Table 1. Corrugated-Core Sandwich Panel Geometric Values

the thermal resistance due to radiation, convection, 
conduction in the top face sheet, insulation, web and 
bottom face sheet respectively, q̇             in represents the rate 
of heat flow into the structure incident on the TFS. 
These calculations, solving for temperatures, T1, T2, T3, 
and T4, were performed using implicit methods and 
automated for each time step using Matlab.

This work focused on four different system 
responses corresponding to the maximum temperature 
during the transient response at four distinct locations 
within the geometry of the TPS panel, which are depicted 
in Figure 4. Note that the physical positions of these four 
locations remain the same for the homogenized core 
model; however, these locations are lost when it comes 
to the TRN model, rather they correspond to T1, T2, T3, 
and T4 in Figure 3(c) representing the temperatures on 
the top surface of the TFS, intersection of the TFS with 
the insulation and the web, intersection of the insulation 
and the web with the BFS, and the bottom surface of 
the BFS, respectively.

4. Model-Form UQ Results

The three models contained within the model set 
described previously and depicted in Figure 3, were 

(a) Full geometric-material model (b) Homogenized core-material model (c) Thermal resistance network model

tw(mm) tt(mm) tb(mm) θ(degrees) d(mm) p(mm)

3.0 2.0 6.0 82 140.0 75.0
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performed using the transient analysis with loading 
and boundary conditions mentioned above for the 
temperature at the four locations shown in Figure 
4. The results of these analyses, temperature with 
respect to time, can be seen in Figure 5, where Figure 
5(a) corresponds to predicted temperature at location 
1 within the TPS panel for the entire reentry period of 
a shuttle, and likewise for Figure 5(b) corresponding 
to location 2, etc. As can be seen in this figure, upon 
comparing the transient temperature response at 
location 1 to that at location 2, the 2-D Full Geometric 
model predicts higher temperatures than the TRN 
model. However, for most of the transient response, 
the TRN model predicts higher temperatures than 
the 1-D Homogenized Core model at location 1; 
whereas, this is only partially true at location 2. 
The TRN model still predicts higher temperatures 
than the 1-D Homogenized Core model; however, 
both predict higher temperatures than the 2-D Full 
Geometric model. Nevertheless, it can be noted that 
the temperature profiles for each of the three models 
have the same shape envelopes at all locations of 
interest. The maximum temperatures for each location, 
as predicted by each of the three models within the 
model set, are tabulated in Table 2.

Model-form uncertainty present in the selection of 
the “best” model from the model set was quantified 

Table 2. Maximum Temperature. Experimental data points are fabricated for demonstration purposes only.

Experimenta 2-D Model 1-D Model Thermal Resistance

Location Data (K) Prediction (K) Prediction (K) Network Prediction (K)

1 961 963.942 951.353 956.393

2 931 929.049 950.905 956.393

3 418 415.044 425.946 434.256

4 417 415.039 425.946 434.256

(a) Location 1

using the additive adjustment factor, multiplicative 
adjustment factor, probabilistic adjustment factor, 
and Bayesian model averaging approaches for 
predicting the maximum temperature at each of the 
four locations described above. For this problem, the 
prior probabilities of the three models are assumed to 
be uniform, and then updated using Bayes’ theorem, 
shown in Eq. (3). The experimental data points 
used in the calculation of the maximum likelihood 
estimator of variance, calculated using Eq. (5), are 
tabulated in Table 2. Note that these data points are 
not actual experimental results; they were fabricated 
for the sole purpose of demonstrating these model-
form uncertainty quantification techniques, and 
should in no way be taken as experimental results 
for the configuration described–albeit not needed 
for quantification of model-form uncertainty in 
the adjustment factor approaches are utilized to 
demonstrate application of Bayes’ theorem and 
consequently yield identical model probabilities for 
each of the UQ techniques. Upon updating model 
probabilities, and obtaining the maximum likelihood 
estimator needed for both quantification of model 
likelihood and applying probabilistic adjustment 

Figure 4. Locations for the Response of Interest for Each Model.

C. Corey Fischer et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 4 (2013) 01-14



11 © 2013 SRESA All rights reserved

(b) Location 2

(c) Location 3

(d) Location 4

Figure 5. Transient Temperature Response  
of Three models in Model Set.

factor approach and Bayesian model averaging to 
quantify model-form uncertainty, the model-form 
uncertainty techniques were applied to the model 
set for each problem, maximum temperature at four 
different locations.

Table 3 and Figure 6 show the distribution of the 
prediction for maximum temperature at location 1, 
within the TPS panel, obtained using the four different 
model-form uncertainty quantification techniques 
discussed earlier. As can be seen, all four approaches 
generated the same mean value for the normal 
distribution of predicted maximum temperature 
at location 1. The difference between these four 
approaches is found in the standard deviation of 
the prediction distribution, it can be noted that the 
three adjustment factor approaches yielded standard 
deviations much closer in value, in comparison to the 
BMA approach. This can be attributed to the fact that 
the BMA approach inherently quantifies the average 
degree of uncertainty in each model prediction of the 
response, whereas the adjustment factor approaches 
do not, thus illustrating the necessity of the BMA 
approach on the availability of experimental data. 
From the point of view of size of confidence interval, 
it can be seen that the additive and multiplicative 
adjustment factor approaches yield nearly identical 
results being the least conservative prediction 
distributions, while the probabilistic adjustment 
factor approach yields the most conservative 
prediction distribution of the three adjustment factor 
approaches. This can be attributed to the fact that 
the maximum likelihood estimators were used as 
model variances in the quantification of model-form 
uncertainty using the probabilistic adjustment factor 
approach in this problem. 

Figure 6. Combined Model Prediction Distribution for 
Maximum Temperature at Location 1.

C. Corey Fischer et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 4 (2013) 01-14
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Technique Mean (K) Standard Deviation (K)

Additive Adjustment Factor 959.486 4.872

Multiplicative Adjustment Factor 959.486 4.878

Probabilistic Adjustment Factor 959.486 5.692

Bayesian Model Averaging 959.486 7.055

Table 3. Combined Model Prediction Parameters for Location 1.

Table 4. Combined Model Prediction Parameters for Location 2.

Likewise, Table 4 and Figure 7 show the 
distribution of the prediction for maximum 
temperature at location 2, within the TPS panel. As 
was the case before, all four approaches generated 
identical mean values for the normal distribution 
of predicted maximum temperatures at location 2. 
The difference between these four approaches at 
this location is also found in the standard deviation 
of the prediction distributions. It can be noted that 
the three adjustment factor approaches once again 
yielded standard deviations much closer in value, 
in comparison to the BMA approach. It can be seen 
that the additive and multiplicative adjustment factor 
approaches, as with the quantification of maximum 
temperature at location 1, yielded nearly identical 

Technique Mean (K) Standard Deviation (K)

Additive Adjustment Factor 932.659 8.669

Multiplicative Adjustment Factor 932.659 8.589

Probabilistic Adjustment Factor 932.659 8.885

Bayesian Model Averaging 932.659 12.371

Figure 7. Combined Model Prediction Distribution for 
Maximum Temperature at Location 2.

distributions that are less conservative predictions 
than the probabilistic adjustment factor approach, 
as was the case at location 1.

Finally, Table 5 and Figure 8 show the distribution 
of the prediction for maximum temperature at location 
3, while Table 6 and Figure 9 show the prediction 
distribution for maximum temperature at location 
4. As was the case with the previous two locations, 
all four approaches generated nearly identical mean 
values for the normal distribution of predicted 
maximum temperatures for each of the respective 
two remaining locations; whereas the difference, as 
before, lies in the standard deviation of the prediction 
distribution. It can be noted that the three adjustment 
factor approaches once again yielded standard 
deviations much closer in value, in comparison to the 
BMA approach. It can be seen that the additive and 
multiplicative adjustment factor approaches, as with 
the quantification of maximum temperature at location 
1 and 2, yield nearly identical prediction distributions 
for locations 3 and 4, while the probabilistic adjustment 
factor approach yielded a slightly more conservative 
prediction distribution for both locations, as was the 
case at the previous two locations.

5. Conclusions

In this work, four methodologies were presented 
for the quantification of model-form uncertainty in 
physics-based simulations. These methodologies 
were the additive adjustment factor, multiplicative 
adjustment factor, probabilistic adjustment factor, and 

C. Corey Fischer et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 4 (2013) 01-14
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Technique Mean (K) Standard Deviation (K)

Additive Adjustment Factor 419.902 6.931

Multiplicative Adjustment Factor 419.902 6.878

Probabilistic Adjustment Factor 419.902 7.535

Bayesian Model Averaging 419.902 9.985

Table 5. Combined Model Prediction Parameters for Location 3.

Technique Mean (K) Standard Deviation (K)

Additive Adjustment Factor 418.471 6.267

Multiplicative Adjustment Factor 418.471 6.198

Probabilistic Adjustment Factor 418.471 6.566

Bayesian Model Averaging 418.471 8.984

Table 6. Combined Model Prediction Parameters for Location 4.

Figure 8. Combined Model Prediction Distribution for 
Maximum Temperature at Location 3.

Figure 9. Combined Model Prediction Distribution for 
Maximum Temperature at Location 4.

Bayesian model averaging approaches. Limitations 
on these techniques include a constraint that 
experimental data points be available for Bayesian 
model averaging and that model predictions be 
deterministic for the additive and multiplicative 
adjustment factor approaches. The probabilistic 
adjustment factor approach, a novel derivation of 
the additive adjustment factor approach, can handle 
stochastic model predictions in contrast to that from 
which it was derived. It has been shown that in the 
presence of experimental data and deterministic 
model predictions, this probabilistic adjustment factor 
approach can be utilized by assuming each model’s 
maximum likelihood estimator of variance be used 

as the model’s variance. This results in a slightly 
more conservative prediction distribution than that 
of the additive or multiplicative adjustment factor 
approach.

The methodologies in this work were demonstrated 
on a transient heat transfer analysis of a corrugated-
core sandwich panel for use in thermal protection 
systems, specifically use on a space shuttle. For this 
problem, three different heat transfer models, each 
with varying assumptions and complexity, were 
considered. Results concluded that the adjustment 
factor approaches yielded similar normal distribution 
parameters whereas Bayesian model averaging 
yielded more conservative distribution parameters as 

C. Corey Fischer et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 4 (2013) 01-14
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a result of quantifying the average degree of predictive 
uncertainty in each model along with model-form 
uncertainty.

Recommendations on the best methodology to 
use for quantification of model-form uncertainty are 
dependent upon the nature of the problem. In the 
event that experimental data is available, it seems 
that Bayesian model averaging is the best technique in 
regards to most conservative prediction distribution, 
and is no more computational intensive than the other 
approaches. However, studies were not performed 
on quantifying the predictive and/or parametric 
uncertainty in combination with model-form 
uncertainty. Note that Bayesian model averaging does 
however inherently quantify the average degree of 
uncertainty in each model prediction of the response, 
whereas the adjustment factor approaches do not. In 
the absence of experimental data, and deterministic 
models, either the additive or the multiplicative 
adjustment factor approaches can be used due to the 
fact that they yield nearly identical results. Finally, 
given stochastic models and no experimental data, 
the probabilistic adjustment factor approach remains 
as the only viable option for quantifying model-form 
uncertainty from among the techniques presented in 
this work.
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Abstract

For the design of sustainable and cost-effective management strategies for contaminated sites, decision 
makers need appropriate tools, i.e. environmental decision support systems to assist them in the planning, 
assessment, selection and optimisation of possible alternatives. We propose a novel system dynamics model 
which provides estimates of current and future risks originating from water-body, soil and groundwater 
contamination. The model particularly addresses the presence of multi-compound non aqueous phase 
liquids in porous media, which have been identified as major sources of groundwater and surface water 
contamination at many of these sites. Advection-Diffusion Equation is considered to describe the flow of 
concentration of the contaminant through space and model the system as an epidemic condition induced by 
the contaminant concentration. The spread of a disease through a population is inherently uncertain due to 
the unpredictability of person-to-person contacts. It is particularly important to include this randomness in 
models for emerging diseases, as in the early stages of an outbreak case numbers will be very small and so 
random variations alone can cause an epidemic to die out. Thus, through stochastic and partial dynamical 
modelling we estimate spatiotemporal risk of being infected by the contamination. Also the parameters of 
the model system are imprecise in nature, so the uncertainties of the input parameters were captured with 
fuzzy membership functions and simulate the model with vague parameters. Thus this paper provides a 
probabilistic as well as a possibilistic framework for long term assessment of human health risk of being 
infected by contamination.

Key words: Spatiotemporal, health risk, advection, diffusion, ground water
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1. Introduction

The human health risk assessment models are 
widely used in the decision-making process for 
industrial release of waste to soil, water or air. The 
complex nature of real life information used for risk 
assessment has guided the researchers to develop 
new approaches for better representation of human 
health risk. The risk assessment models consider 
parameters that are generally prone to uncertainty 
because of simplification and imprecise nature of 
the available information [1]. Uncertainty can be 
divided into two categories: (i) type A uncertainty, 
induced from natural variability, which cannot be 
reduced and (ii) type B uncertainty that resulted 
from lack of proper knowledge or partial ignorance 
of information [2]. Many techniques including 
probabilistic approach, mathematical and numerical 
modelling, interval analysis, convex modelling, fuzzy 
set theory, possibility theory and evidence theory 
are available to characterize the uncertainties in the 
natural processes [3,4]. There is no single method 

that offers comprehensive solutions to all the types 
of uncertainties. Each approach has its own set of 
advantages and disadvantages [5].

The environmental problems like risk assessment 
from contaminant discharges is associated with several 
parameters that is naturally variable and difficult 
to characterize by available statistical approaches 
[6]. Evaluation of parameter values in such cases 
is not precise. Moreover, health risk is evaluated 
on the basis of many simplified assumptions and 
extrapolations. These factors inherit uncertainties; thus 
an environmental evaluation is somewhat skewed 
from the exact solutions. Other than the mathematical 
precision-based exactness, fuzzy set theory is capable 
of describing uncertainties through the incorporation 
of possible parameter values. Fuzzy set theory can 
produce results with moderate acceptability [4,5,7].

Here in this paper we consider the problem of 
assessing risk of human health hazards from naturally 
or industrially produced contaminant; chemical, 
biological, radiological etc. waste create different 
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human health hazards for our consideration. When a 
new disease emerges and begins to cause infections 
and fatalities it is desirable for health authorities to 
be able to make predictions concerning the future 
behaviour of the epidemic. Since the disease is 
emerging, there is unlikely to be a previous outbreak 
or other existing data on which to base predictions. 
Also, if there is no immunity in the population to this 
new pathogen or contaminant there is a risk that a 
very large outbreak will occur, causing a large number 
of deaths. Mathematical modelling is one of the few 
available tools for predicting possible outcomes, 
and assessing the effectiveness of proposed control 
strategies.

For example we could consider the case of 
radioactive waste and human health risk of cancer and 
other infections from it. Produced water is the largest 
source of natural radioactive waste contamination. 
Produced water, discharged from offshore oil and gas 
operations, contains chemicals from formation water, 
condensed water, and any chemical added down hole 
or during the oil/water separation process. Although, 
most of the contaminants fall below the detection 
limits within a short distance from the discharge 
port, a few of the remaining contaminants including 
naturally occurring radioactive materials (NORM) 
are of concern due to their bioavailability in the 
media and bioaccumulation characteristics in finfish 
and shellfish species used for human consumption. 
In the past, several initiatives have been taken to 
model human health risk from NORM in produced 
water. Four different radioisotopes of radium (223Ra, 
224Ra, 226Ra and 228Ra) exist in nature. The half-
lives of 223Ra, 224Ra, 226Ra and 228Ra are 11.4 days, 
3.7 days, 1600 years and 5.75 years, respectively [8]. 
Due to their short half-lives, 223Ra and 224Ra do not 
play significant role in risk assessment. Two isotopes 
of radium, 226Ra and 228Ra are of most concern as 
they are leachable and mobile because of their high 
solubility in water [9] and they may bio accumulate 
in marine organisms [10]. Stephenson [40] reported 
226Ra and 228Ra in the ranges of 4 -- 584 pCi/l and 18 
-- 586 pCi/l with the mean values of 262 and 277 pCi/l, 
respectively, for produced water outfalls in the Gulf 
of Mexico. Produced water in the Gulf of Mexico has 
a higher radium activity than that present in produced 
water from any known offshore oil platform [11]; thus 
higher risk to human health is expected from these 
produced waters [6]. Although few studies including 
in [9] demonstrated co-precipitation of radium with 
barium sulphate in seawater, all the produced waters 

may not contain barium and radium simultaneously. 
Vegueria [9] collected the sediment samples from 
varying distances of 250 -- 1000 m around the port and 
these samples contained radium as well. The presence 
of radium with barium sulphate in sediments might be 
an indication of radium’s presence in the water column 
beyond the port. Moreover, the co-existence of barium 
and radium is necessary for co-precipitation. The 
probability of this co-existence is significantly reduced 
due to instantaneous dispersion of produced water 
upon discharge and also reported high concentrations 
of radium at the vicinity of produced water outfall. 
Chowdhury [6] performed human health cancer risk 
assessment through the ingestion of marine fish, in 
which they reported radium’s presence in the water 
column. 

We implement the developed computational 
approach to the specific case of a susceptible-infected- 
susceptible (SIS) infection dynamics. We show how it 
is possible to obtain a detailed study of the quantities 
customarily tracked in epidemiological studies and 
provide an analysis of the spatiotemporal evolution 
of the epidemic pattern. The rather heterogeneous 
spatiotemporal pattern emerging during the epidemic 
evolution might find its origin in one or more features 
of the underlying network as well as in the inherent 
stochastic dynamics of the disease transmission. We 
put forward a deterministic as well as a stochastic 
computational framework for the modelling of the 
spreading of infection by contaminant. The model is 
analyzed by using an information theory approach 
that allows the quantitative characterization of 
the heterogeneity level and the predictability of 
the spreading pattern in presence of stochastic 
fluctuations. In particular we are able to assess 
the reliability of numerical forecast with respect 
to the intrinsic stochastic nature of the disease 
(contamination) transmission. The epidemic pattern 
predictability is quantitatively determined and 
traced back to the occurrence of epidemic pathways 
defining a backbone of dominant connections for the 
disease spreading. The presented results provide a 
general computational framework for the analysis of 
containment policies and risk forecast of global human 
health risk from contaminants. The contamination 
spread appears to have a major effect in driving the 
epidemic evolution, therefore allowing the possibility 
of predicting an overall epidemic pattern on top of the 
stochastic fluctuations. Motivated by these findings, 
we investigate the predictability of the epidemic spread 
through the analysis of the statistical overlap of risk 
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pattern of outbreak of epidemic generated in different 
stochastic realizations of the spreading process. 
This overlap is quantitatively defined by using a 
statistical similarity analysis of the global distribution 
of infected individuals and spatiotemporal spread 
of concentration of contaminant. The assessment of 
human health risk is evaluated in terms of probability 
of being infected by contamination. The spatiotemporal 
distribution of risk probability provide a frame work 
for decision makers to identify equiprobable risk 
zones and employ heterogeneous plane for different 
zones.  The imprecision of system parameter is 
introduced in terms of interval valued fuzzy number 
and we extend the model into a fuzzy boundary value 
problem (FBVP) under the same considerations. Fuzzy 
extension of the model provides a possibility; that is 
a fuzzy probability value and a frame work for risk 
assessment under uncertainty and natural fluctuations 
of parameter values.

1.1 The Basic SIS Model for Infection from 
Contaminant

In the basic standard compartmentalization of the 
SIS, each individual can only exist in one of the discrete 
states such as susceptible (S) and infected (I). The total 
population N is given by N =S (t) + I (t), where S(t) and 
I (t) represent the number of susceptible and infected 
individuals at time t, respectively (in the following 
we replace for simplicity the general notation X[m] 
by S , I ). The epidemic evolution is governed by the 
basic dynamical evolution of the SIR model where 
the probability of a susceptible individual acquiring 
the infection from any given infected individual 
in the time interval dt is proportional to βdt. Here 
β is the transmission parameter that captures the 
aetiology of the infection process. At the same time, 
infected individuals recover with a probability rdt, 
where r−1 is the average duration of the infection. The 
relevant parameter describing the epidemic is the 
basic reproduction number R0 = β/r [12] given by the 
average number of secondary cases that each infected 
individual generates in a susceptible population. If R0 
> 1 and the initial density of susceptible are larger than 
R0

−1, then an epidemic will develop. 

In this paper we assume the human health 
hazard from contaminant spreads like an epidemic 
mainly induced by the present concentration of the 
contaminant in the environment and also by infectious 
individuals in lesser quantity. The contaminant is 
assumed to decay in a constant rate per unit mass and 
to be deposited in constant rate by some industrial 

or natural process. Thus we model the spread of 
contaminant induced health hazards by the epidemic 
Langevin equation for each class and obtain the 
following SIS model:

[ ]

1

0

(1 )

( )

1
( )

dS S C
AS eS eiSI mS rI

dt k N C

dI C
eS eiSI m r v I

dt N C
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g m C l S I C
dt V

 = − − − − + +
 = + − + + +
 = − − +


                                                                   

                                                                                        (1)

Where S and I are the volume of susceptible and 
infected respectively and C is the concentration of the 
contaminant. Also A is the intrinsic growth rate of S, 
e is the rate of infection spread to S by contaminant 
C, ei is the rate of infection spread to S by infectious 
I, m is the natural mortality rate, r is the recovery rate 
of infectious, v is the infection induced death rate, 
g is the rate of deposition of contaminant, m0 is the 
natural decay rate of contaminant, l is the average 
rate of intake of contaminant by S and I and V is the 
constant volume of the environment.

Theorem 1.1. Let ( ) ( ) ( )( ), ,S t I t C t
 
be the solution 
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3
+� .

Proof: Consider the following Lyapunov function 
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 (1.1)

From Eq. (2) we have 0
dW

dt
≤  which implies that 

Ω  is a positively invariant set. We also note that by 
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solving (2) we have,

where ( )0HW  
and ( )0CW are respectively the initial 

condition of ( )HW t and ( )CW t . Thus as t → ∞    
 

( ) 1

0 1

4
0 , ,

4 4H C

Ak mg
W W

mm Alk

 
≤ ≤  + 

 and hence Ω  is an  
 
attractive set. The proof is complete.

1.2 Endemic equilibrium local and global 
stability

Since there is a constant rate of deposition of the 
contaminant there is no disease free equilibrium state 
for the model of contaminated site if g>0. However 
the endemic equilibrium could be determined as 
follows:  
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The local dynamics of (1.4) around zero are totally 
governed by a and b.
(i)	 a>0, b>0, when 0φ < with 1,φ << 0 is locally 

asymptotically stable, and there exists a positive 
unstable equilibrium; when 0 1φ< << , 0 is 
unstable and there exists a negative and locally 
asymptotically stable equilibrium.

(ii)	 a<0, b<0, when 0φ < with 1,φ << 0 is unstable; 
when 0 1φ< << , 0 is asymptotically stable and 
there exists a positive unstable equilibrium.

(iii)	 a>0, b<0, when 0φ < with 1,φ << 0 is unstable 
and there exists a locally asymptotically stable 
negative equilibrium; when 0 1φ< << , 0 is 
stable, and a positive unstable equilibrium 
appears.

(iv)	 a<0, b>0, when φ changes from negative to 
positive, 0 changes it’s stability from stable to 
unstable. Correspondingly a negative equilibrium 
becomes positive and locally asymptotically 
stable.

If e is taken as a bifurcation parameter at e=e* so 
that the linearized system has a simple zero eigenvalue. 
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that the Jacobian (1.3) at e=e* ( )*J ε  has a right 
eigenvector associated with zero eigenvalue denoted 
by ( )1 2 3, ,

T
u u u u= and a left eigenvector associated 

with zero eigenvalue given by ( )1 2 3, ,
T

v v v v= .

Computation of a and b: from model system (1) 
the associated non-zero partial derivatives of f at 
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For sufficient condition for global stability 
d

dt

Γ
 

will be negative definite, showing Γ  isa Lyapunov 
function with respect to *ε  whose domain is contained 
in φ .

2. Stochastic Extension of the Model

Early modelling contributions for infectious disease 
spread were often for specific diseases. For example 
Bernoulli aimed at evaluating the effectiveness a 
certain technique of variolation against smallpox, and 
Ross modelled the transmission of malaria. One of 
the first more general and rigorous studies was made 
by Kermack and McKendrick [13]. Later important 
contributions were for example by Bartlett [14] and 
Kendall [15], both also considering stochastic models. 
Early models were often deterministic and the type 
of questions that were addressed were for example: 
Is it possible that there is a big outbreak infecting a 
positive fraction of the community?, How many will 
get infected if the epidemic takes off?, What are the 

effects of vaccinating a given community fraction prior 
to the arrival of the disease?, What is the endemic 
level? As problems were resolved, the simple models 
were generalised in several ways towards making 
them more realistic. Some such extensions were for 
example to allow for a community where there are 
different types of individual, allowing for non-uniform 
mixing between individuals (i.e. infectious individuals 
don’t infect all individuals equally likely), for example 
due to social or spatial aspects, and to allow seasonal 
variations. A stochastic model is of course preferable 
when studying a small community. But, even when 
considering a large community, which deterministic 
models primarily are aimed for, some additional 
questions can be raised when considering stochastic 
epidemic models. For example: What is the probability 
of a major outbreak? and for models describing an 
endemic situation: How long is the disease likely to 
persist (with or without intervention)? Later stochastic 
models have also shown to be advantageous when 
the contact structure in the community contains small 
complete graphs; households and other local social 
networks being common examples. Needless to say, 
both deterministic and stochastic epidemic models 
have their important roles to play.

Here we consider two compartments corresponding 
to susceptible and infective individuals. We will use the 
letters S and I respectively to refer to the compartments 
and also, without confusion we hope, to the number 
of individuals in each class. It is assumed that the 
total number of individuals is constant and equal to 
N, that is, S+I = N. An individual who belongs to the 
class S may be contacted by an individual in I, who can 
transfer the infection. If that is the case, the susceptible 
individual changes his classification and belongs 
now to the class I, where he will remain indefinitely. 
Assume that individuals in each compartment are 
interchangeable, that the classes are homogeneously 
mixed, and that contacts between susceptible and 
infective individuals, or equivalently the movement 
of individuals from the class S to the class I, occur at 
random times. If β is the average number of contacts 
made by an average infective per unit of time that 
leads to an infection, the probability of a susceptible 
individual moving from class S to class I in the time 
interval [t; t +Δt], that is,

1, , 1S S and I I→ − → +  is ( )SI
t O t

N
β ∆ + ∆ .

This stochastic infection rate has come to be 
widely used, with various possible interpretations 
of the N in the denominator. One can think of each 
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susceptible contacting everyone in the population 
with a rate b and encountering a proportion I=N 
of infectives. Or one may think of each infective 
contacting everyone in the population with a rate β 
and encountering a proportion S=N of susceptibles. 
Or one may think of the N in the denominator as 
a reduction of the infection rate due to incomplete 
mixing in population. From this last point of view, 
the denominator might be a different power of N or 
some other function of N [16]. The process (St ; It ), 
will represent the number of susceptible and infective 
individuals at time t. The probability of an infection 
during the time interval   

t ; t+ Δt] is :  

( ) ( ) ( )( ) ( ), ; 1,1
t

t t
t t t t t

S I
P S I S I t O t

N
β+∆ +∆ − = − = ∆ + ∆

 
with the complementary probability 

 
( ) ( ) ( )( ) ( ), ; 0,0 1

t

t t
t t t t t

S I
P S I S I t O t

N
β+∆ +∆ − = = − ∆ + ∆

taking the limit 0t∆ → and applying the extension 
on deterministic model (1) we get the continuous 
stochastic SIS model with probabilities of susceptible, 
infectious and concentration as:
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Here we apply Gaussian additive white noise 
to incorporate randomness of the infection spread. 
Where ( )i tη , i =1, 2, 3, are additive Gaussian 
white noise characterize by ( )i tη  = 1, and 

( )1 1( ), ( ) 2i j ijt t t tη η ξδ= − for ; i, j = 1, 2, 3.Where ξ 
is the intensity or strength of the random perturbation, 
δij is the Dirac delta function with t and t1 being the 
distinct times, and the bracket  represents the 
ensemble average. 

Further more realistic model with randomness 
is obtained by adding independent noise terms each 
proportional to square root of corresponding terms in 
the differential equation; that is each interaction term 
is assumed to fluctuate randomly and the fluctuation 
is proportional to the square root of the interaction, 
as follows:
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Where ( )i tη , i =1, 2,....., 8 are statistically 
independent Gaussian random variables with zero 
mean and unit variance and the stochastic term is 
proportional to the square root of each term.

3. Spatiotemporal SIS Model with Advection-
Diffusion Equation

Advection-dispersion equation with reaction is 
applicable various disciplines of engineering such as 
chemical engineering, petroleum engineering, civil 
engineering, etc to describe the behaviour of solute 
concentration. Warrick [17,18] shown the miscible 
displacement processes with time-varying velocity 
and dispersion coefficients and solutions are used in 
the analysis of experimental data. Van Genuchten [19] 
had obtained the solutions for Advection Dispersion 
equation with reaction analytically. Ataie-Ashtiani 
[20] examined an explicit finite difference scheme for 
the truncation errors on the solution of an advection 
– dispersion with a first order reaction term. Consider 
the one-dimensional flow of underground water 
through fixed soil or rock matrix. In this work, the fixed 
soil through which water is flowing is represented as 
saturated homogeneous porous medium. Porosity of 
the porous medium is ‘ω’, considering as a constant. 
Let C(x, t) be the concentration of a chemical, 
radiological or biological tracer dissolved in the water; 
S(x, t) and I(x, t) are the biomass of susceptible and 
infectious individuals respectively. The concentration 
is measured as mass of tracer present per unit volume 
of water or soil. The movement of tracer particles in 
soil by the bulk motion of water signifies [21,22]. The 
spreading of tracer in water due to the variability of 
macroscopic velocities through the pores of the soil 
is mentioning the Dispersion. Let D be the dispersion 
coefficient of the dispersion [21]. The tracer created 
or destroyed with rate k, measured in mass per unit 
volume of soil per unit time, referred as Reaction term 
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[21]. Using reaction term we can measure the decay 
rate, the rate of consumption in a chemical reaction 
and even growth or death rate can obtain if the tracer 
is biological. The specific discharge of water through 
the soil is denoted as U, which is the Darcy velocity. 
Assume U is a constant [21]. The velocity ‘u ’of the 
tracer in water is expressed as U

u
ω

=  known as average 
velocity. The basic physical law for the flow of fluid 
through a porous medium is derived from the mass 
balance of the tracer. By using the Mass Balance Law, 
we get the equation for one-dimensional advection 
–dispersion with reaction and expressed as follows:

 2
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With boundary condition S(0,t)=0, I(0,t)=0 and 
C(0,0)=c0 and
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0

S L t I L t C L t

x x x

∂ ∂ ∂= = =
∂ ∂ ∂

Where u is the water velocity, (LT-1), D is the 
dispersion coefficient, (L2T-1), k is the first order 
reaction rate coefficient, (T-1), x is the distance from 
the centre of contamination (L)

4. Spatiotemporal SIS Model with Fuzzy 
Parameters

Physical models often have some uncertainty 
in their parameters and estimates are usually based 
on statistical methods and experimental data. Since 
Zadeh [23] introduced the concept of fuzzy sets, there 
has been a great deal of research in this area, including 
studies of fuzzy partial differential equations (PDEs). 
The concept of fuzzy derivative was first introduced 
by S.L. Chang [24]. It was followed by D.Durbis [25]. 
Other methods have been discussed by O. Kaleva [26, 
27] and by S.Seikkala [28]. The numerical methods for 
solving fuzzy differential equations were introduced 
using standard Euler method[29]. J. Buckley [30]
proposed a procedure to examine solutions of fuzzy 
partial equation. They checked to see if the Buckley-
Feuring solution exists. If the Buckley-Feuring solution 
fails to exist they check if the Seikkala solution exists.
In this paper we consider the parameters for the fuzzy 
partial differential model system are considered as 
fuzzy numbers taking into account the lack of precise 

knowledge [31]. From a theoretical point of view, we 
show the continuity of the deterministic solution with 
respect to the parameters. This provides a method for 
building numerical simulations to obtain qualitative 
properties of the fuzzy solution. Some studies 
considered application of PDEs with fuzzy parameters 
obtained through fuzzy rule-based systems Jafelice 
[32]. Oberguggenberger [33] described weak and fuzzy 
solutions for PDEs and Chen et al. [34] presented a new 
inference method with applications to PDEs. More 
recently Cecconello et. al. [35] used Zadeh’s extension 
principle to determine a fuzzy solution for a PDE with 
initial fuzzy conditions.

Definition 4.1: Let  x be a nonempty set. A fuzzy 
set u in x is characterized by its membership function 
u: x→[0,1]. Then (𝑥) is interpreted as the degree of 
membership of a element x in the fuzzy set u for each 
𝑥∈x. Let us denote by ℝF the class of fuzzy subsets of 
the real axes i.e. u: ℝ→[0,1] satisfying the following 
properties: 
(i)	 ∀𝑢∈ℝF, u is normal, i.e. ∃𝑥0∈ℝ with u(𝑥0) = 1; 
(ii)	 ∀𝑢∈ℝF, 𝑢 is convex fuzzy set(i.e. 𝑢(𝑡𝑥+(1−𝑡)𝑦) ≥ 

min{𝑢(𝑥) ,𝑢(𝑦)} ,∀ 𝑡 ∈[0, 1], 𝑥, 𝑦∈ℝ; 

(iii)	 ∀𝑢∈ℝF, 𝑢 is upper semi-continuous on ℝ; 

(iv)	 cl{𝑥∈ℝ; u(𝑥) > 0} is compact, where 𝑐𝑙(𝐴) denotes 
the closure of subset A. 

Then ℝF is called the space of fuzzy numbers. 
Obviously ℝ⊂ℝF. For 0 < 𝛼 ≤ 1 denote 

[𝑢]α ={𝑥∈ℝ; 𝑢(𝑥) ≥ α} and[𝑢]0 = 𝑐𝑙{𝑥 ∈ ℝ; 𝑢(𝑥) > 0}. 
Then it is well-known that for each α ∈ [0, 1], [𝑢]α is a 
bounded closed interval. 

For 𝑢,𝑣 ∈ ℝF, 𝜆∈ℝ, the sum 𝑢 + 𝑣 and 𝜆.𝑢 are defined 
by [𝑢 + 𝑣]α  = [𝑢]α + [𝑣]α, [𝜆.𝑢]α = 𝜆[𝑢]α, ∀ α ∈ [0, 1], where 
[𝑢]α + [𝑣]α  means the usual addition of two intervals 
of ℝ and 𝜆[𝑢] α means the usual product between 
a scalar and a subset of ℝ. The metric structure is 
given by the Hausdorff distance 𝐷: ℝ𝐹×ℝ𝐹 → ℝ + ∪{0}  
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, (ℝ𝐹,𝐷)is a 
complete space and the following properties are well-
known: 𝐷(𝑢+𝑤,𝑣+𝑤) =𝐷(𝑢,𝑣) ,∀𝑢,𝑣,𝑤∈ℝ𝐹,

𝐷(𝑘.𝑢,𝑘.𝑣) = |𝑘|𝐷(𝑢,𝑣) ,∀𝑘∈ℝ,𝑢,𝑣∈ℝ𝐹, , (𝑢+𝑣,𝑤+𝑒) 
≤ (𝑢,) + (𝑣,) , ∀𝑢, 𝑣 , 𝑤, e ∈ ℝ𝐹. 

Definition 4.2: Let 𝑥∈ℝ𝐹. If there exists 𝑧∈ ℝ𝐹 such 
that 𝑥 =  𝑦+𝑧, then 𝑧 is called the H-difference of 𝑥 from 
y and it is denoted by 𝑥⊝𝑦. 
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•	 Note that 𝑥⊝𝑦 ≠ 𝑥+ (−1). 𝑦   =𝑥−𝑦. 

Bede [36] introduced a more general definition of a 
derivative for a fuzzy-number-valued function. In this 
paper we consider the following definition [37]. 

The extension of a map between fuzzy sets, the so-
called fuzzification of the map ,is defined by Zadeh’s 
extension principle as follows:

Definition 4.3: The Zadeh extension of a function 
:f X Z→  where X and Z are nonempty metric 

spaces, is a function f̂  that, when applied to a 
fuzzy set D X⊂ , returns a fuzzy set ( )f̂ D  in Z, the 
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As a consequence of Zadeh’s extension principle, 
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Theorem 4.1: Let 𝐹:𝐼→ℝ𝐹 and put [F(𝑡)] α =[𝑓α (𝑡), 
𝑔 

α (𝑡)] for each α∈[0,1]. 
(i)	 If 𝐹 is 1-differentiable then 𝑓α and 𝑔α are 

differentiable functions and 
	 [𝐷1F(𝑡)]α = [𝑓α′(𝑡),  𝑔α′(𝑡)]. ]

(ii)	 If 𝐹 is 2-differentiable then 𝑓α and 𝑔α are 
differentiable functions and

[𝐷2F(𝑡)]α = [𝑔α′(𝑡),  𝑓α′(𝑡)]. 

Proof. See [37].

Definition 4.5. Generalized Characterization 
Theorem

Let us consider the FDE with initial value 
condition:

𝑥′(𝑡) =𝑓(𝑡,𝑥) , 𝑥(𝑡0) = 𝑥0                                                  (4.1)

Where 𝑓: [𝑡0,𝑇]×ℝ𝐹→ℝ𝐹 is a continuous fuzzy 
mapping and 𝑥0 ∈ℝ𝐹 and 𝑇 is positive number or 
infinity with x0 fuzzy initial condition defined on the 
n-dimensional domain Y. We interpret this notation 
as a fuzzy extension of an ordinary differential 
equation. We consider a fuzzy differential equation 
as a deterministic differential equation where some 
coefficients or initial condition are uncertain and 
represented in a possibilistic form: its solution is then 
the time evolution of a fuzzy region of uncertainty 
which Corresponds to the possibility distribution in 
the phase space. 

Theorem 4.2: Let 𝑓: [𝑡0,]×ℝ𝐹 → ℝ𝐹 is a continuous 
fuzzy function. If there exists 𝑘 > 0 such that 𝐷(𝑓(𝑡,𝑥), 
𝑓(𝑡,𝑧)) ≤ 𝑘𝐷(𝑥,𝑧) ,∀𝑡 ∈  𝐼, 𝑥,𝑦 ∈  ℝ𝐹. Then the problem (1) 
has two solutions on I. One is 1-differentiable solution 
and the other one is 2-differentiable solution.

 Proof. See [37].

Definition 4.6: Let 𝑦:𝐼→ℝ𝐹 be a fuzzy function such 
that 𝐷1𝑦 or 𝐷2𝑦 exists. If 𝑦 and 𝐷1𝑦 satisfy problem (1), 
we say 𝑦 is a 1-solution of problem (1). Similarly, if 𝑦 
and 𝐷2𝑦 satisfy problem (1), we say 𝑦 is a 2-solution 
of problem (1). 

By using theorem 4.1 we can state useful approach 
for solving FBVP for partial differential system:  Let 
us suppose α-cut of functions u(𝑡,x),  𝑓(𝑡,𝑥,u) , u(0, x), 
u(t, L), u(0,x) are the following form: 
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u t x u t x u t x u x u x u x

u t x u t x u t x u t x u t x u t x

f t x u t x f t x u t x u t x f t x u t x u t x

αα
α α α α

αα

α α α α
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   = =    
      = =       


 =  
                                                                              (4.2)

Then we have two following cases: 

Case (I): if u(𝑡, x) is 1-differentiable then solving 
FBVP (1) translates into the following algorithm:

Step (i) Solving the following system of PDEs: 

Abhirup Bandyopadhyay et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 4 (2013) 15-27



23 © 2013 SRESA All rights reserved

Table 1. Estimated model parameters and their interpretation:

Parameters `Temporal Model 
(1), (2), (2.1)

Spatiotemporal 
Model (3)

Fuzzy Spatiotemporal 
Model (4.5) Units

Intrinsic growth rate (A) A=1.3; A=1.3; A=[0.91,1.3]; T-1

Rate of infection spread by contaminant 
(e) e=0.62; e=0.62; e=[0.053,0.62]; T-1

Rate of infection spread by infectious 
(ei) ei=0.045; ei=0.045; ei=[0.045,0.078]; T-1

Natural mortality rate (m) m=0.2; m=0.2; m=[0.2,0.4]; T-1

Recovery rate of infectious (r) r=0.28; r=0.28; r=[0.28,0.36]; T-1

Infection induced death rate (v) v=0.52; v=0.52; v=[0.24,0.52]; T-1

Average rate of intake of contaminant 
by others (l) l=0.02; l=0.0002; l=[0.0002,0.0005]; T-1

Half saturation constant for infection by 
contaminant (N) N=12.77; N=12.77; N=[12.77,18.66]; M L-1

Decay rate of contaminant (m0) m0=0.05; m0=0.05; m0=[0.05,0.07]; M T-1

Initial concentration (c0) c0=0.0887; c0=0.0887; c0=[0.0887,0.11]; M L-1

Volume of the environment (V) V=50; V=65; V=[65,85]; L3

Rate of deposition of contaminant (g) g=0.4215; g=0.42; g=[0.33;0.42]; M T-1

First order reaction rate coefficient (k) k=0; k=0.1; k=[0.1,0.3]; T-1

Dispersion coefficient (D) D=0; D=1; D=[1,2.11]; L2T-1

Medium velocity (u) u=0; u=1.71; u=[1.71,2.33]; LT-1

Half saturation constant for logistic 
growth (k1)

k1=18.66 k1=18.66 k1=[14.46,20.66] unit 
less

Figure 1. Deterministic (left) and Stochastic (with additive noise) (right) time evaluation of the model system --  
susceptible (S) in blue, Infectious (I) in red and Concentration (C) in green.
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                                                                                     (4.3)

Step (ii) Ensure that the solution [ ]( , ), ( , )u t x u t xα α  
and [ ]( , ), ( , )u t x u t xα α′ ′ are valid level sets.

Step (iii) by using the representation theorem 
again, we construct a 1-solution (𝑡) such that

[ ] [ ]( , ) ( , ), ( , )u t x u t x u t x
α

α α= , for all α∈[0,1].
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Figure 4. Deterministic spatiotemporal evaluation of the model system for probability of being infected (left). Spatiotemporal 
evaluation of the model system with fuzzy parameters concentration (right)

Figure 2. Stochastic (with white noise proportional to the square root of each term) time evaluation (left) of the model system and 
probability of infection (right) -- susceptible (S) in blue, Infectious (I) in red and Concentration (C) in green.

Figure 3. Deterministic spatiotemporal evaluation of the model system concentration (left) Infectious (right).
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Figure 5. Spatiotemporal evaluation of the model system with fuzzy parameters for possibility of being infected;  
maximum (left) and minimum (right) possibility of infection.

Case (II): if u(𝑡, x) is 2-differentiable then solving 
FBVP (1) translates into the following algorithm: 

Step (i) Solving the following system of ODEs:
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Step (ii) Ensure that the solution [ ]( , ), ( , )u t x u t xα α  
and [ ]( , ), ( , )u t x u t xα α′ ′ are valid level sets.

Step (iii) by using the representation theorem 
again, we construct a 1-solution (𝑡) such that

[ ] [ ]( , ) ( , ), ( , )u t x u t x u t x
α

α α= , for all α∈[0,1].

Thus we extend our previous model to FBVP 
by considering fuzzy parameters to capture natural 
fluctuation in real system. Here the model is same 
with (1) but all the parameters and the state variables 
are fuzzy and indicated by ‘bar’ at the top.
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Where u  is the water velocity, (LT-1), D  is the 
dispersion coefficient, (L2T-1), k  is the first order 
reaction rate coefficient, (T-1),are fuzzy parameters and 
x is the distance from the centre of contamination (L).

5. Numerical simulation

Numerical simulations of model systems are 
carried out using a set of parameter values given in 
the table 1. A fourth ordered Runge-Kutta numerical 
scheme coded in C++ programming language, 
Mathematica 9.0 and Matlab R2012a is used in 
numerical simulation. The result of the simulation is 
presented in graphically in the next section.

6. Result and Discussion

In this section we present the solution of 
our model systems with an estimated set of 
deterministic and interval valued fuzzy parameters. 
The spatiotemporal distribution of concentration, 
infectious, susceptible and risk in term of probability 
and possibility of being infected by a contamination 
induced diseases or health hazards, are evaluated 
and shown graphically.

The deterministic simulation of model (1) shows 
the existence of endemic steady state; however the 
model doesn’t have any disease free equilibrium. 
Hence if the rate of deposition of contaminant be 
positive, there is always a risk of human health hazard 
to spread.

However the stochastic models with Gaussian 
noise are found to fluctuate around the same average 
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value of the state variables. From this simulation stable 
nature of the steady state could be reviled. Also the 
probability of being infected is calculated at each time 
instance, which gives a probabilistic assessment of 
health hazard risk in temporal scale.

In model (3) the spatiotemporal description of the 
system allows to analyze the spatiotemporal behaviour 
of the health hazard spread. The simulation of the 
model shows how the state variables changes with 
time and the distance from the centre of deposition. In 
figure (3), (4), (5) the surfaces denotes the distribution 
of the state variables and the probability in two 
dimensional spatiotemporal framework.

Simulations of model (3) and (4.5) allow to assess 
the probability of occurring human health hazard in 
broader aspect. From the assessment of spatiotemporal 
distribution of that probability; the decision makers 
could sketch a danger zone; that is a region around 
the centre of deposition of the contaminant, were 
the probability of occurring human health hazard 
is above some desired threshold. Special strategy 
waste treatment and supervise the health condition 
of the habitat should be employed for this zone. 
However simulation of the model (4.5) with fuzzy 
parameters, here we consider interval valued fuzzy 
parameters; results a spatiotemporal distribution of 
the fuzzy valued state variables. The spatiotemporal 
distribution of the maximum and minimum value of 
the interval valued fuzzy state variables is found.  In 
figure (4) the two surfaces, representing maximum and 
minimum values, of  the spatiotemporal distribution 
of concentration of the contaminant.

Simulation of model (4.5) with fuzzy parameters 
allows to assess the possibility of occurring human 
health hazard under the imprecise parameter value. 
Thus in this framework we assess the maximum and 
minimum possibility of occurring human health 
hazard from contamination. Here the possibility of 
occurring human health hazard is a fuzzy number 
between 0 and 1. This minimum and maximum 
possibility could be assign as belief and plausibility 
function and carry out risk assessment through 
Evidence theory in case of lack of knowledge about 
the effect of some new type of contaminant. Thus 
maximum (plausibility) and minimum (belief) 
possibility of occurring human health hazard provides 
a base to assess risk in uncertain environment.

7. Conclusion

A mathematical model for assessing human 
health risk from biological, radiological, chemical 

etc. contamination incorporating spatial spread of the 
concentration of contaminant is presented as system 
of ordinary, stochastic, partial and fuzzy differential 
equations. The endemic equilibrium is obtained. The 
local stability of endemic is analyzed and shown to be 
locally asymptotically stable using central manifold 
theory and also supported by numerical results. 
The conditions for global stability are derived using 
a suitable Lyapunov function. By incorporating 
randomness (stochastic) fluctuation we have show 
the effect of natural perturbation to the model 
system and assess the probability of human health 
hazard risk caused by contaminant. This allows us 
to estimate the system average state and a deviation 
around it and provide a risk assessment framework 
under random perturbation. Also we consider the 
dynamics of spatiotemporal spread of concentration 
of contaminant as advection diffusion equation and 
analyzed numerically the spatiotemporal distribution 
of state variables and probability of human health 
hazard risk. This work could be a model for future to 
sketch different zone with same distribution of risk 
probability and employ same type of restoration 
strategy for them. In this paper the imprecise nature 
of the parameters in real system is incorporated by 
considering interval valued fuzzy parameters and 
thus provide a fuzzy possibility; that is an upper 
value and a lower value of possibility under the 
uncertainty of imprecision. This possibility could 
further be difuzzified by any standard method. Like 
any model development, our model is not without 
limitation. One limitation to the model simulation is 
with regard to the sensitivity analysis of parameters. 
This clearly compromises the conclusion of the 
simulation and the conclusion drawn. Also, the 
model that we proposed does not include many 
features of the complex spatiotemporal spread 
of contaminant and diseases causes by it and 
the complexity of heterogeneity of genotype. 
Nonetheless, the study highlights some important 
aspect of the dynamics of contaminant deposition 
and diseases caused by it. The model system is liable 
to apply and verify it’s risk assessment at some real 
contaminated site by means of appropriate data 
collection, interpretation and parameter estimation. 
However, the model system shows that there is no 
disease free equilibrium state and alert about the 
necessity of employing suitable waste treatment 
and public health treatment plane. This model 
will be useful for public health planning and cost-
effectiveness analysis.
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Abstract

Literature study reveals that the probability distribution of wind speed can be fitted by Weibull 
distribution and it has been accepted blindly without any statistical investigations. Uncertainty 
always presents in  any curve fitting which should be taken into account prior to establish any 
distribution through any dataset. Similar to Weibull distribution, a better fitting of wind speed 
data is possible by Exponentiated Weibull distribution. Maximum likelihood method is adopted 
to estimate the parameters of the probable distribution prior its usage in any uncertainty analysis. 
Akaike information criterion has been applied to justify the best fit. Shannon entropy of Weibull 
and Exponentiated Weibull distribution has been computed to account the uncertainty associated 
with the random variable sampled from these two distributions. Mean and variance of wind speed 
data are computed by fitting through both Weibull and Exponentiated Weibull distributions. A 
comparison of the representative estimates through respective probability distributions is also 
presented in this study.  The mail goal of this paper is to point out the better performance of 
the Exponentiated Weibull distribution compared to Weibull distribution in uncertainty and 
reliability analysis. 

Keywords: Weibull distribution, Exponentiated Weibull distribution, Maximum likelihood

1. Introduction

There are two types of uncertainty, viz. (1) 
Aleatory uncertainty which is due to randomness 
of the parameters of any model, and (2) Epistemic 
uncertainty, which is due to fuzziness, vagueness of 
the model parameters. Measurement uncertainty falls 
into the category of epistemic type, which is alternately 
called as type-II uncertainty. Aleatory uncertainty 
cannot be reduced but epistemic uncertainty can 
be reduced by gaining sufficient knowledge of the 
parameters of interest. Therefore, uncertainty analysis 
of any system consisting of parameters which are 
random in nature and characterized by the probability 
distribution such as normal, lognormal, etc. can 
be quantified by propagation of their parametric 
uncertainty. Very often a model/system may not be 
possible to define in a closed form, especially in case of 
defining a system or any model through any data set. 
However, common practice is to fit a model through 
the defined data set. Therefore, it is very essential to 
evaluate the reliability of that fit assuming that the data 
is of good quality and highly reliable. At this point it 
can be easily stated that if the inherent uncertainty 

of the probability distribution selected for fitting the 
given data set is very large then the model defined 
by that data set through fitting is not reliable. That is 
to point out that uncertainty of the surrogate model 
should be as small as possible to declare it as highly 
reliable. So, evaluation of reliability of any surrogate 
model can be done through uncertainty analysis of the 
estimates of the relevant distribution parameter. 

Environmental impact assessment (EIA) models 
depend on field or experimental data. As an example, 
EIA of any industry is always carried out with respect 
to the estimated concentration of the toxic pollutant 
at any instant of time and at any spatial location 
in the environment. Impact of the toxic effluent on 
the atmospheric environment if released into the 
atmosphere depends not only on the quantity released 
but also on the wind speed, wind direction, wind 
stability class, surface roughness, etc.  Basic notion is 
here to notify that wind speed is one of the parameter 
required to know very accurately for assessing 
environmental impact. For example, according to 
Gaussian plume model, if wind speed increases then 
the concentration of the toxic effluent decreases at 
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any spatio-temporal location. Amount of radioactive 
or any other toxic materials released into the 
environment due to mal-operation of any industry can 
be obtained from the plant operation; however, due to 
the fluctuation of wind speed for a specified span of 
time, knowledge related to the crisp value of the wind 
speed is an uncertain quantity. Therefore, knowledge 
of the wind speed is very important component for 
safety analysis of the specified industry. Evidence 
based on a large number of literature study indicates 
that wind speed is always characterized by a variety 
of standard parametric probability density functions 
(PDF) [1]. Weibull distribution with two parameters 
is usually applied for probability distribution of wind 
speeds. It is generally accepted that measured wind 
data can be best characterized by Weibull distribution 
[1, 2]. But in most studies of fitting of data set to 
Weibull distribution was not examined. In order to 
obtain a fitting of the wind speed data through Weibull 
distribution it is essential to estimate the parameter 
Weibull distribution [3, 4]. However, from the point 
of improvement in wind data fitting, similar to the 
Weibull family, a new family of distributions, namely 
Exponentiated Weibull distribution [5] is being 
proposed; in this context it is customary to say that a 
typical two parameter Weibull distribution does not 
accurately represent the entire wind regime in nature 
[6]. The Exponentiated Weibull distribution has been 
compared with the two parameter Weibull distribution. 
Parameters of the Exponentiated Weibull distribution 
and classical Weibull distribution are estimated using 
maximum likelihood method algorithm [8]. Shannon 
entropy of each distribution have been computed to 
provide the amount of uncertainty associated with 
the corresponding random variable sampled from the 
respective distributions. Akaike information criterion 
(AIC) and the logarithm of the maximized likelihood 
for each fit have been calculated.

In this paper, we have fitted both Weibull 
distribution and Exponentiated Weibull distribution 
through a set of yearly maximum wind speed data. 
Uncertainty analysis of the fitting parameters examines 
the better suitability of the Weibull and Exponentiated 
Weibull distribution for this kind of fitting. We 
described the Exponentiated Weibull distribution 
with its many properties. Maximum likelihood based 
estimation of the parameters of this new distribution 
and that of Weibull distribution has been presented 
in detail. Akaike information criterion has been 
evaluated to assess the best fit. Shannon entropy of 
the fitted distributions is computed to evaluate the 

uncertainty of the fitted model. Quantile-Quantile 
plots are made to compare the fitting. 

2. Mathematics of Weibull and Exponentiated 
Weibull distribution

2.1 Weibull distribution 

The Weibull probability density function (PDF) 
and its cumulative distribution function (CDF) for a 
random variable V having the value of v possessing 
the wind speed is defined by
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respectively, where γ > 0 is a shape parameter and 
β > 0 is a scale parameter. The parameter β depends on 
γ and is related to the mean value of the wind speed. 
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2.2 Exponentiated Weibull distribution 

Exponentiated Weibull distribution (EW) has a 
scale parameter and two shape parameters. The PDF 
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and CDF of a random variable v described by the EW 
distribution in [7] is given by

                                                                (7) 

respectively, where γ > 0 is a shape parameter and β > 0 is a scale parameter. The parameter 
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respectively; where γ > 0 is a shape parameter related to the wind speed, and β > 0 is a scale 
parameter, that depends on γ and is related to the mean wind speed as in the precedent case. 
The additional parameter, compared with Eq. (2), α > 0 is an extra shape parameter that gives 
more versatility to the EW distribution in the shape of the tails. Figure 1 shows that the 
density function of EW is unimodal and for fixed value of β and γ it becomes more and more 
symmetric as α increases. It can be easily noted that for α = 1 Eq.(7) reduces to the Weibull 
distribution (e.g. Eq.(2)). If we calculate the nth moment of the EW PDF, it can be easily 
mention that the analytical derivation of the EW parameters is rather a complete task. 
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that gives more versatility to the EW distribution in 
the shape of the tails. Figure 1 shows that the density 
function of EW is unimodal and for fixed value of 
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increases. It can be easily noted that for α = 1 Eq.(7) 
reduces to the Weibull distribution (e.g. Eq.(2)). If we 
calculate the nth moment of the EW PDF, it can be 
easily mention that the analytical derivation of the 
EW parameters is rather a complete task. Therefore, a 
heuristic approach, based on simulation data was used 
to obtain first approximation to the EW parameters. 

The shape parameter γ can be related with the 
random variable v as 

 

Therefore, a heuristic approach, based on simulation data was used to obtain first 
approximation to the EW parameters.  
 

 
Figure 1. PDF of Exponentiated Weibull distribution with =2, =2 when  =0.5, 1, 2, 4  
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It can be easily verified that for fixed values of the shape parameter γ and the scale 

parameter, β, the shape parameter α controls the steepness of the lower-tail of the distribution 
if data is visualized in a logarithmic scale. This is an attractive property of the EW 
distribution.  Some of the fundamental statistical properties of the Exponentiated Weibull 
distribution are quoted from the reference [7]. As per the reference [7] we define the 
moments of the EW distribution.  
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where,  aPi  =  a(a - 1)(a – 2) ……. (a – i + 1) and N is the set of natural numbers. Since Eqs. 
(11a and 11b) are a convergent series for all k ≥ 0, all moments exist. 

The expectation value of the EW random variable v can be written as by using Eqs. (11a) 
and (11b) as 
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where σv
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It can be easily verified that for fixed values of 
the shape parameter γ and the scale parameter, β, 
the shape parameter α controls the steepness of the 
lower-tail of the distribution if data is visualized in a 
logarithmic scale. This is an attractive property of the 
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Figure 1. PDF of Exponentiated Weibull distribution with =2, =2 when  =0.5, 1, 2, 4  
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3.0 Maximum Likelihood Estimation   
3.1   Weibull Distribution Parameters 

Maximum likelihood is a method of estimation of parameters of a distribution. Maximum 
likelihood technique [9-11] with many required features is the most widely used technique 
among parameter estimation techniques. The abbreviation MLE may refer to maximum 
likelihood estimation (the method), to the estimate, or to the estimator. The method finds a 
value of the parameter that maximizes the likelihood function.  The MLE method has many 
large sample properties that make it attractive for use. It is asymptotically consistent, which 
means that as the sample size gets larger, the estimates converge to the true values. It is 
asymptotically efficient, which means that for large samples, it produces the most precise 
estimates. It is asymptotically unbiased, which means that for large samples, one expects to 
get the true value on average. The estimate themselves are normally distributed if the sample 
is large enough. These are all excellent large sample properties. 

 Let         be a random sample of size   drawn from a probability density 
function   where  is an unknown parameter. The likelihood function of this random 
sample is the joint density of the   random variables and is a function of the unknown 
parameter. Thus, 
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among parameter estimation techniques. The abbreviation MLE may refer to maximum 
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Maximum likelihood is a method of estimation of parameters of a distribution. Maximum 
likelihood technique [9-11] with many required features is the most widely used technique 
among parameter estimation techniques. The abbreviation MLE may refer to maximum 
likelihood estimation (the method), to the estimate, or to the estimator. The method finds a 
value of the parameter that maximizes the likelihood function.  The MLE method has many 
large sample properties that make it attractive for use. It is asymptotically consistent, which 
means that as the sample size gets larger, the estimates converge to the true values. It is 
asymptotically efficient, which means that for large samples, it produces the most precise 
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is the likelihood function. The maximum likelihood estimator (MLE) of   , say  is the 
value of   that maximizes L or, equivalently, the logarithm of L. Often, but not always, the 
MLE of   is a solution of 
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admissible, nor are solutions which are not in the parameter space. Now, we are going to 
apply MLE to estimate the Weibull parameters, namely the shape and the scale parameters. 
Consider the Weibull PDF given in (1), then the likelihood function will be 
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Subtracting  ln(1/ β ) times Eq. (27) from Eq. (25) we have 
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Table 1. Yearly Maximum Wind Speed Data

Serial No Wind Speed (miles per hour)
1 22.64 22.80 23.75 24.01 24.04
2 24.24 24.74 25.45 25.55 25.66
3 25.99 26.63 26.69 26.88 26.89
4 27.12 27.43 27.69 27.71 28.12
5 28.58 28.88 29.12 29.45 29.48
6 30.18 31.31 31.55 31.57 32.54
7 32.98 33.83 33.86 34.64 35.21
8 36.82 37.23 38.09 38.26 38.82
9 38.96 38.90 42.99 43.66 44.61
10 45.24 47.91 54.75 69.40 98.16

Table 2. Parameters of the Fitted Distributions 
with Uncertainty

Distribution Parameters

Shape 
(uncertainty)

Scale 
(uncertainty)

Weibull (β, α) β=2.57 (0.23) α=38.09 (2.2)

Exponentiated 
Weibull (α,β, γ)

α= 91.27 (71.69),  
γ = 0.90 (0.15)

β= 5.50 (2.46)

Table 3. AIC and Entropy 

Distribution AIC and Entropy
AIC Entropy

Weibull (β, α) 398.7 High
Exponentiated Weibull (α,β, γ) 363.4 Low

Figure 1. PDF of Exponentiated Weibull distribution with β=2, 
γ=2 when α =0.5, 1, 2, 4 The shape parameter γ can be related 

with the random variable v as 

Figure 2. Fitted Weibull density Distribution of  
wind speed data 

           Figure 3. Fitted Exponentiated Weibull density 
distribution of wind speed data

Figure 4. QQ plot of Weibull Distribution of   wind speed data

D. Datta et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 4 (2013) 28-34



34 © 2013 SRESA All rights reserved

distribution through a set of relevant data is nothing 
but the estimation of the parameters of the respective 
probability distributions, maximum likelihood based 
estimated value of the parameters of the corresponding 
probability distributions with their standard error are 
presented in Table 2. Mean value of the wind speed 
and the corresponding variance of the wind speed 
on the basis of Weibull distribution are estimated as 
33.82 and 198.64 respectively. Further, the mean and 
variance of the wind speed based on the exponentiated 
Weibull distribution are estimated as 31.16 and 32.92 
respectively. Table 3 presents the results of AIC and 
Shannon entropy.  Lower value of the AIC decides that 
fitting the distribution through the given data set is the 
best fit.  Thus it shows very clearly that Exponentiated 
Weibull distribution for the wind speed data is the 
better model compared to Weibull model. Moreover, 
entropy provides the knowledge of the uncertainty 
and since Shannon entropy of EW distribution is low 
compared to the Weibull, the EW distribution has less 
uncertainty and more reliable compared to Weibull 
distribution for fitting wind speed data. 

It also follows by the standard likelihood ratio 
test that the exponentiated Weibull distribution is 

Figure 5. QQ plot of Exponentiated Weibull Distribution of 
wind speed data

a much better fitted distribution than the classical 
Weibull distribution for fitting of the wind speed 
data.  This observation has been confirmed further by 
the probability plots corresponding to the two fits as 
shown in Figure 4 and Figure 5. 
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1. Introduction

Electronics components have increasingly critical 
role in avionics systems and nuclear power plant. 
Prognostics of these components is becoming a very 
important field of research for providing system 
level health information. For electronic components, 
predicting RUL is the most challenging task of 
Prognostic and Health Management systems.

Digital systems are employed in nuclear plants for 
protection, control and monitoring purposes. Computer 
Based Systems (CBS) used for protection function like 
Reactor Trip Logic System, Emergency Core Cooling 
System and  Programmable Digital Comparator 
System have been deployed in nuclear reactors. CBS 
for regulation function include important primary and 
secondary side process control systems and reactor 
regulating systems which have been deployed in 
various Nuclear Power Plants (NPPs).  Safety critical 
systems  are designed with triplicate channels. Each 
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channel is configured using microcomputer boards 
which are the basic building blocks. It has CPU card, 
Ethernet communication card, VME (Versa Module 
Eurocard) bus to proprietary I/O bus interface card, 
intelligent I/O cards, signal conditioning cards and 
bus extender cards.  

Reliability prediction of these safety critical and 
safety related systems is a mandatory requirement 
of the regulatory authorities. Failure rate estimation 
of these boards is carried out using ‘Part Stress’ 
methodology of RIAC-HDBK-217Plus.  Channel 
failure rate is predicated based on these boards failure 
rates, using Fault Tree Analysis technique.  For system 
level reliability metrics like Probability of failure on 
Demand (PFD), Spurious Failure Probability (SFP), 
availability, etc. Markov modelling technique is used.   
Shortcomings of handbook-based reliability analysis 
method is discussed in one of the sections below and 
compared with Physics of Failure (PoF) method.
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Safety systems of nuclear plants are built on the 
principles of simplicity, redundancy, diversity and 
single failure criterion. These  aspects do reduce 
probability of failure of a system.  However, the latest 
design of computer based systems largely employ 
programmable devices like Field Programmable Gate 
Array (FPGA)/ Complex Programmable Logic Devices 
(CPLD), and failure of these can impair  functionality 
of the systems.  Therefore on-line monitoring of the 
critical components is required for health monitoring 
of these systems.. 

Diagnostics identify sources of malfunctions, 
post-failure within the system.  Diagnostics reports a 
fault without telling the cause, and causes the system 
to reconfigure. An extension of fault diagnosis is 
prognosis which anticipates impending failure by 
identification of degrading components prior to a 
catastrophic failure [1]. 

Offline and online diagnostics also termed as 
Built-In-Test (BIT) have been implemented in current 
digital systems in Indian and also outside systems 
e.g. Motorola systems [2]. Current BIT techniques are 
capable of detecting a hard fault and do not provide 
any prognosis of impending hardware failure. Failures 
are treated as unpredictable events or random failures 
and planning is done based on estimated MTBF. The 
approach to  maintenance is to replace on failure, i.e. 
unscheduled maintenance.

BIT is defined as an on-board hardware-software 
diagnostic means to identify and locate faults, and 
includes error detection circuits.  Diagnostic tests 
are provided to check integrity of software using 
Cyclic Redundancy Check (CRC) checks.  Checks are 
provided on digital channels using Finite-Impulse-
Testing (FIT). Analog to Digital Converter (ADC) 
check is carried out by having a constant reference 
voltage connected to one channel of multiplexer.  
Relay output is checked by reading back the status of 
the energizing coil of relay.  Analog outputs of 4-20mA 
are checked by reading back as an input.  The above 
checks are carried out periodically during operation 
as background tasks.  However during system start-
up i.e. after powering, some checks are performed.  
These are called Power-On Self-Test (POST).  In POST 
additional tests are carried out like Watch-Dog Timer 
(WDT) tests which cannot be  performed once system 
starts its operation.  The system is started only after 
it undergoes POST checks successfully, else it halts. 
There is extra circuitry and additional software for 
BIT. Some off-line tests are also carried out to identify 

system faults for debugging, troubleshooting, and 
performing preventive maintenance.

Board-level diagnostics are performed to identify 
board failure. The replaceable unit during system 
maintenance is board.  A board after testing in an 
offline test unit is used for replacement of a faulty 
board in a system.  The board failure, especially 
I/O board failure is diagnosed by on-line diagnostic 
programs. WDT is provided to take care of some 
failures of the processor board and improper execution 
of the software.  Long cycle WDT trip takes care of 
the software getting into an improper execution and 
thereby not able to reset the WDT before the timeout 
period.  Short cycle WDT trip is provided to cater to 
the software getting into the loop where it resets the 
WDT. 

Literature survey of diagnostics in Motorola 
systems was carried out [2]. A board-level BIT 
implemented by Motorola (MBIT), consists of 
hardware diagnostics and an API to control operation 
of the test driver suite. Examples of tested devices are 
the processor, L2 cache, VME bus ASIC, ECC RAM, 
serial EPROM, Flash, NVRAM and real-time clock. 
Internal operation tests include checking register 
stuck-at conditions, register manipulations, and device 
setup instructions. The system-level MBIT, connects 
to all board-level versions to enable system-wide 
testing.

Various levels of BIT include: 1) circuit-level BIT 
for fault logging and diagnostics of individual circuits 
2) module level BIT that supports one or more circuit 
card assemblies, 3) system-level BIT that performs 
diagnostics and operational testing of entire electronic 
system.

The AI-ESTATE standard provides a foundation for 
diagnostic assessment and includes four alternatives 
for diagnosis—static fault trees (or decision trees), 
D-matrix-based systems (e.g., dependency models), 
logic-based models (e.g., rule-based expert systems) 
and Bayesian  networks.  All four alternatives have 
been demonstrated to provide effective and accurate 
diagnostics.

2. Prognostics

Prognostics is prediction of future state of health 
based on current and historic health condition. 
Prognostics helps in predicting onset of system 
degradation and time to system failure giving 
improved health information of the product [3]. It 
uses parameters which are correlated to progression of 
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faults which are caused due to accumulated damage, 
for prediction RUL. Prognostics capability to give 
RUL has become a requirement for a system sold to 
U.S. Department of Defense [4].  NASA is interested 
in predicting failures even a few seconds in advance 
for certain safety critical electronic systems [5]. 

Reliability is defined as the probability of a product 
to perform the intended function (without failure and 
within specified performance limits) for a specified 
time, in its (life cycle) application environment. The 
accuracy of any reliability prediction depends upon 
both the prediction methodology used, accurate 
knowledge of the product, system architecture, material 
properties, fabrication process and product life cycle 
conditions [6]. The life cycle conditions consist of the 
assembly, storage, handling, and use of the product. 
The life cycle loads include environmental conditions 
(e.g. temperature, humidity, vibration, shock, etc.) and 
operational parameters (e.g. voltage, current, power 
dissipation, etc.) [7]. The severity and duration of such 
loads are influenced by product usage profile (e.g., 
utilization duration and frequency, transportation and 
storage) [8].There may be difference between expected 
and actual conditions, and this provides a strong 
motivation for monitoring actual product application 
environments. Temperature, in terms of either spatial 
or temporal gradients, or absolute temperature, is a 
parameter that influences the reliability of electronic 
products [6]. Though semiconductor die circuit 
electrical performance can be operating temperature 
dependent, many integrated circuit (IC) packaging 
failure mechanisms, have been found to have multiple 
life cycle temperature dependencies.

Prognostics can be implemented using various 
techniques by sensing and interpreting the parameters 
in following ways:
1)	 Performance degradation, such as deviation 

of operating parameters from their expected 
values;

2)	 Physical or electrical degradation, such as material 
cracking, corrosion, interfacial delamination, 
increase in electrical resistance or threshold 
voltage;

3)	 Changes in a life cycle environment, such as usage 
duration and frequency, ambient temperature 
and humidity, vibration, and shock.

	 The problem in the domain of prognosis is 
to identify appropriate ‘monitoring index’ 
characterizing the system condition, both in type 
and in level of faults. The proposed monitoring 

indices include time domain features, frequency 
spectrum, wavelet amplitude pattern of residual 
signal and signal energy, etc. Various statistically 
derived metrics can also be useful e.g. for 
monitoring gear pitting [9], the index used was 
normalized kurtosis of overall residual signal 
for the faulty gear with an hourly time step.

	 Diagnostic system model, a simple low order 
formulation that requires less computation power 
of a single device, in an distributed architecture, 
to track the measured variable indicative of 
component health and then trigger the prognostic 
routine when certain predetermined thresholds 
are crossed [10]. The prognostic model is more 
complex in order to handle the increased 
uncertainty of health prediction.

	 The use of PHM promises to enable significant 
economics to be made in the support infrastructure 
by relieving the need for rapid reaction to failures.  
The benefits come at the cost of additional 
hardware and software carried within the 
electronics.  But the cost benefit is also achieved 
by saving upon the loss of useful life arising from 
replacement before failure. Employing prognosis 
for complex systems will definitely give cost 
benefit.

2.1	 Possible applications of Prognosis in NPPs 

Prognostics has begun from medical applications 
but has also been applied for digital Instrumentation 
and Control (I&C) systems. In control room 
operations, the idea is to characterize the behaviour 
for the set of critical performance characteristics 
and promote the ability to take either human 
initiated or system initiated action at earlier time t1 
instead of time t2. Prognosis can be employed for 
analysis of controls systems and its failure modes. 
Hybrid prognostics techniques can be employed for 
overcoming, to some extent the human limitations 
during stress.  It is useful  in detecting material 
failure. Using traditional experimental methods, 
such critical scenarios can be constructed by either 
1) taking validated scenarios from the literature or 
2) designing new scenarios and then conduct pilot 
studies to validate it.

Development of a system model that can detect, 
assess, and classify operator’s cognitive and affective 
states; and developing a system model that can 
choose the best course of actions given the states of 
the operator. For this Artificial intelligence systems 
based on Bayesian Network can be used.
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Periodic surveillance (and inspections which 
typically occur during refuelling outages) cannot 
be adequate to help ensure fitness for service for 
critical safety systems and components. Developing 
methodology and designing systems for on-line 
continuous monitoring becomes a critical component 
in providing operators better plant situation awareness 
and reliable predictions of remaining life of critical 
systems and components. The monitoring technology 
needs to be expanded to include prognostics  in 
addition to the presently employed on-line monitoring 
and diagnostics for condition-based maintenance. 
Digital I&C with advanced diagnostics and prognostics 
are being developed in the wider high-technology 
industry communities and are now being considered 
for NPP deployment.

The advantage of adopting condition-based 
maintenance (CBM) and on-line diagnostics in  power 
plants is already accepted and seen from the current 
practices followed.  There is a need to move beyond 
current approaches into the realm of prognostics. 
Operators need enhanced situational awareness if 
unwanted outages need to be avoided [11]. 

The use of digital I&C can support addition 
of increased functionality and also addition of 
prognostics for key system elements. The adoption 
of advanced diagnostic and prognostic technologies 
for future generation nuclear power plants can 
significantly impact plant economics [12]. However, 
before the deployment of such systems is possible it is 
necessary to demonstrate methodologies, understand 
stressors, sensors, communication, analysis and 
quantify uncertainty in RUL prediction as well as 
to demonstrate long term monitoring of system 
reliability. 

2.2 Deployed applications of PHM 

PHM has been implemented by various companies-
Sun Microsystems, Schlumberger, General motors, 
Dell, etc. PHM is used in various fields like aerospace 
[76], automotive, electronic systems etc. as given 
below.

2.2.1 Aerospace

PHM for RUL estimation was done for the end 
effect for electronics unit (EEEU) inside the robotic arm 
of the space shuttle remote manipulator system [13]. 
A life-cycle loading profile for thermal and vibration 
loads was developed for the EEEU boards. A damage 
assessment was conducted using failure mechanical 
and thermo-mechanical damage models. 

RUL assessment of circuit cards inside a space 
shuttle solid rocket booster (SRB) was done [14]. 
Vibration time history recorded on the SRB from 
the pre-launch stage to splashdown was used in 
conjunction with physics-based models to assess the 
damage caused by vibration and shock loads. Using 
the entire life cycle loading profile of the SRBs, the 
remaining life of the components and structures on 
the circuit cards was predicted. 

2.2.2 Automotive

The test vehicle -‘Underhood Electronics’, was 
a circuit board assembly placed under the hood 
of an automobile and subjected to normal driving 
conditions [7], [8] and [15]. The test board incorporated 
eight surface-mount leadless components soldered 
onto a FR-4 substrate using eutectic tin-lead solder. 
Solder joint fatigue was identified as the dominant 
failure mechanism. Damage accumulated through 
solder joint fatigue was updated periodically using 
in-situ collected data on temperature and vibration. 
It was found that the predicted life of the solder joint 
based on PHM algorithm was within 8% of the actual 
experimental life.

2.2.3 Electronic Systems

2.2.3.1	 Computer Server  

Systems are based on current, voltage, and 
temperature, which are continuously monitored at 
various locations inside the system. Sun Microsystems 
[16] refers to this approach as continuous system 
telemetry harness. Along with sensor information, soft 
performance parameters such as loads, throughputs, 
queue lengths, and bit error rates were tracked. 
Multivariate state estimation technique using this data 
was used to predict the signal of a particular variable 
based on learned correlations among all variables. 
Based on the expected variability in the value of a 
particular variable during application, a sequential 
probability ratio test (SPRT) is constructed. During 
actual monitoring SPRT is used to detect the deviations 
of the actual signal from the expected signal based on 
distributions (and not on single threshold value). 

2.2.3.2 GPS system 

A commercial global positioning system (GPS) 
used a data precursor to failure approach [17]. The 
failure modes for the GPS system included precision 
failure due to an increase in position error and 
solution failure due to increased outage probability. 
These failure progressions were monitored in situ by 
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recording system-level features reported using the 
National Marine Electronics Association Protocol 
0183. The GPS system was characterized to collect 
the principal feature values for a range of operating 
conditions. The approach was validated by conducting 
accelerated thermal cycling of the GPS system with 
the offset of the principal feature value measured 
in-situ. Based on experimental results, parametric 
models were developed to correlate the offset in the 
principal feature value with solution failure. During 
the experiment the built-in-test (BIT) provided no 
indication of an impending solution failure.

2.2.3.3 Power Supply 

The power supply was subdivided into component 
elements based on material characteristics [18]. 
Degradation in any individual or combination of 
component elements was extrapolated into an overall 
reliability prediction for the entire power supply 
system. Their PHM technique consisted of four steps: 
(1) acquiring the temperature profile using sensors; (2) 
conducting finite element analysis to perform stress 
analysis; (3) conducting fatigue prediction for each 
solder joint; (4) predicting the probability of failure 
of the power supply system. A PoF-based prognostics 
assessment of failure of a gull-wing lead power supply 
chip was performed [21].

2.2.3.4 Home Appliances 

The European Union funded a project from 
September 2001 through February 2005 called 
Environmental Life Cycle Information Management 
and Acquisition (ELIMA) for consumer products to 
improve life cycles management of products [19]. The 
ELIMA technology included sensors and memory 
built into a product to record dynamic data such as 
operation time, temperature, and power consumption. 
This was added to static data about materials and 
manufacturing. As a case study, the member companies 
monitored the application conditions of a game console 
and a household refrigerator. These included not only 
the operational and maintenance environments, but 
also the pre-operational environment, where stresses 
imposed on the parts during manufacturing, assembly, 
inspection, testing, shipping, and installation might 
have a  significant impact on the eventual reliability 
of the equipment.

2.2.3.5 Circuit Board Components

 Life cycle vibration loads was used for RUL 
estimation of PCB [20]. A PCB with electronic 
components was mounted on a vibration shaker, 

which generated random vibration loading. The 
responses of the PCB to vibration loading in terms 
of bending curvature were monitored using strain 
gauges in situ. The interconnect strain values were 
then calculated from the measured PCB response and 
used in a vibration failure fatigue model for damage 
assessment. Damage estimates were accumulated 
using Miner’s rule and then used to predict the life 
consumed and RUL. Uncertainty analysis was also 
performed, which included measurement uncertainty, 
parameter uncertainty, model uncertainty, failure 
criteria uncertainty, and future usage uncertainty. 
Sensitivity analysis was used to identify the dominant 
input variables that influenced prediction results. Then 
uncertainty propagation was conducted to perform 
reliability assessment with confidence levels. 

2.2.4 Electronic Components

2.2.4.1 Battery 

Prototype battery health monitoring algorithms 
based on support vector machine, dynamic neural 
network, confidence prediction neural network, 
and usage pattern analysis are considered [22]. The 
batteries are important in back-up environments such 
as telecommunications and uninterruptible power 
supply (UPS). Various algorithms were tested on 
the battery data (voltage, current, temperature, etc.) 
collected from several lithium ion battery cells. The 
battery data was collected under different operating 
conditions (storage and charge /discharge cycling at 
room temperature and 50 oC). This was used to give 
the probability of battery failure with time.

2.2.4.2 Insulated Gate Bipolar Transistor (IGBT)

RUL estimation was done for IGBT by identifying 
failure precursor parameters and monitoring them 
[23]. In this study, IGBTs aged by thermal /electrical 
stresses were evaluated in comparison with new 
components to determine the electrical parameters 
that change with stressing. Three potential precursor 
parameters viz. threshold voltage, trans-conductance, 
and collector-emitter (ON) voltage, were evaluated by 
comparing aged and new IGBTs under temperatures 
ranging from 25 to 200 oC. The trends in the three 
electrical parameters with temperature were correlated 
to device degradation. Then these precursors were 
monitored in-situ and precursor trending data were 
input into PoF models to allow for anomaly detection 
and prediction of RUL of these devices. 

Prognostics application was deployed for 
electronics components within avionics systems, and in 
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particular its application to IGBT [24]. This application 
utilizes particle filter framework for RUL prediction, 
based on data from accelerated aging tests on IGBTs. 
The tests induced thermal-electrical over stresses by 
applying thermal cycling to the IGBT devices. In-situ 
state monitoring, including measurements of steady-
state voltages and currents, electrical transients, and 
thermal transients are recorded and used as potential 
precursors of failure.  For prognostic purposes the 
externally observable metrics of the device, such as 
collector current / voltage measurements during duty 
cycle on /off states of the IGBT showing degradation 
trends towards thermal runaway or latch-up, are 
correlated to PoF mechanisms like hot carrier injection, 
electromigration, etc., and used in a particle filtering 
(PF) framework to carry out RUL prediction

2.2.4.3 Capacitor 

Performance degradation of multilayer ceramic 
capacitors (MLCCs) under temperature-humidity-bias 
conditions and then prediction RUL is done [25]. In 
the tests, three performance parameters (capacitance, 
dissipation factor, and insulation resistance) were 
monitored in situ. A prognostics approach was 
developed to detect and predict failures using a 
multi-parameter regression, residual, detection, and 
prediction analysis on four types of MLCCs. For eight 
failed capacitors out of the 96 capacitors, all failures 
were detected with no missed alarms. Five out of the 
eight failed capacitors also gave advance warning of 
failure.

2.3 Challenges in Prognostics

Earlier only periodic inspection was carried out; 
which was later supplemented by on-line diagnostics 
or BITS for condition-based maintenance. This has 
to be eventually enhanced by prognostics; requiring 
advanced sensors; better understanding of what and 
how to measure parameters within the plant; enhanced 
data interrogation, communication and integration; 
predictive models for damage / aging; system 
integration for real world deployments; quantification 
of uncertainties of inherently random varying 
problems; and integration of enhanced condition-
based maintenance / prognostics philosophies into 
new plant designs. 

 Algorithm needs to have adaptive capability and 
needs to be robust. For Uncertainty handling, reference 
[27] present techniques of Dampster-Shafer theory and 
Bayesian framework which are given in later part of 
this paper.

3. Prognostics and Health Management (PHM)

3.1 Background

Systems heal th  management  s tarted in 
manufacturing, power generation and military 
systems. Rotating machinery were the first where it 
got implemented, because downtime or breakdown 
incurred significant costs. However PHM into the 
world of electrical and electronic devices is more 
recent and most of the work today has diagnostics 
i.e. fault detection, identification and isolation. 
The field of prognostics is still very much new, 
although Condition-based Maintenance (CBM) 
emphasizes on failure prediction and prevention. 
Initial efforts in machinery diagnostics were mostly 
data-driven techniques applied to vibration data. 
Integrated diagnostics and prognostics approaches 
have emerged in recent years. Health monitoring 
techniques are used to provide advance warning 
of failure, prevent catastrophic failure, assess 
reliability and reduce unscheduled maintenance 
[10]. 

3.2 Objectives of PHM

There are many related objectives, all of which 
converge to life cycle cost minimization. To provide 
continuous and real-time indication of the state of 
health of an electronic item as it is exposed to various 
life cycle loads during its normal operation. The 
state of health can also be given as the fraction of life 
consumed. PHM has the potential to mitigate the risks 
associated with new technology of Commercially Off 
The Shelf (COTS) components and assemblies with 
possibly short life, by providing a physics-based 
methodology to measure the degradation with time of 
electronic components and assemblies, and to forecast 
with some level of confidence the expected occurrence 
time of a failure.

3.3. Methods for PHM

3.3.1 Physics Model-Based Methods 

The most effective method is physics-of-failure 
(PoF) models to degradation and health monitoring 
systems. PoF methods focus on issues such as 
material deformation, fracture, fatigue, and material 
loss. Recent attempts at applying PoF methods to 
electronic prognosis have focused on the material 
degradation of interconnects and substrates. 
While highly accurate, PoF approaches tend to be 
computationally prohibitive for applying at the 
system level, alternative  approaches  are being  
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developed  and  applied, sometimes in combination 
with PoF methods.

3.3.2 Reliability-Based  Methods 

The  simplest approach to failure prediction is 
based on statistical reliability models of component 
failure. Usually, reliability predictions are used to 
estimate future failure, based on current test results 
by applying a probability distribution such as the 
exponential distribution i.e. R(t) = exp(–λt). One of 
the main shortcomings of exponential distribution 
is that it imposes a “Markov” assumption, i.e. the 
future prediction of a failure is independent of the 
history of the unit given the current measurement. 
Alternative reliability methods are applying the 
Weibull distribution for the predictions as it relaxes the 
assumption of constant failure rates and the Markov 
assumption [1].

3.3.3 Probability-Based Methods 

The dynamic  Bayesian network (DBN) 
architectures, hidden Markov models (HMM) and 
Kalman filters have been suggested as methods for 
using historical, sequential data to predict future 
failure. The concern with these models relates to the 
so-called “diffusion of context” phenomenon where, 
because of conditional independence, the effect of 
past experience diffuses the ability to predict. This 
is similar to the Markov assumption, also inherent 
in the reliability models discussed above. The use of 
“input-output HMM” has been suggested to overcome 
this problem.

3.3.4 Data-Driven Methods 

PoF and reliability based methods form extremes 
of techniques for prognostics. PoF methods depend 
on high-resolution models but do not scale well. 
Reliability methods rely on statistical characteristics 
of populations of systems and do not handle specifics 
of a chosen system. In recent years, several diagnostic 
and prognostic models based on statistical, artificial 
intelligence (AI) and soft computing (SC) techniques 
have been proposed [11]. The AI and SC techniques 
include Artificial Neural Network (ANN), Fuzzy 
Logic, Non-Fuzzy statistical learning theory and 
support vector machines (SVMs). SVM is gaining 
applications in the areas of machine learning, 
computer vision and pattern recognition because of 
its high accuracy and good generalization capability. 
Each offers an advantage of being able to learn models 
based on empirical data but also suffer from the 
inability to learn portions of the model where no such 

Table 1: Potential Failure Precursors For 
Electronics [2]

Electronic 
Subsystem

Failure Precursor Parameter

Switching 
power supply

-	 DC output (voltage and 
current levels) 

-	 Ripple 
-	 Pulse width duty cycle 
-	 Efficiency 
-	 Feedback (voltage and current 

levels) 
-	 Leakage current 
-	 RF noise

Cables and 
connectors

-	 Impedance changes 
-	 Physical damage 
-	 High-energy dielectric 

breakdown
CMOS IC -	 Supply leakage current 

-	 Supply current variation 
-	 Operating signature 
-	 Current noise 
-	 Logic level variations

Voltage 
controlled 
oscillators

-	 Output frequency 
-	 Power loss 
-	 Efficiency 
-	 Phase distortion 
-	 Noise 

FET -	 Gate leakage current/
resistance 

-	 Drain-source leakage current/
Resistance

Electrolytic & 
Ceramic chip 
capacitors  

-	 Leakage current/Resistance 
-	 Dissipation factor 
-	 RF noise

General 
purpose 
diodes

-	 Reverse leakage current 
-	 Forward voltage drop 
-	 Thermal resistance 
-	 Power dissipation 
-	 RF noise

RF power 
amplifier

-	 Voltage standing wave ratio 
(VSWR) 

-	 Power dissipation

data exists. The main drawbacks of the ANN-based 
predictors (against SVM) are a slow training speed and 
lack of transparency of the solution process, terming 
the ANNs as ‘blackboxes’. 
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3.4 Models of PHM

For electronic systems, system-level and major 
component failures are caused by a mixture of failure 
mechanisms [28]. These failure mechanisms result 
from defects, wearout, overstress conditions and 
random system interactions. These types of failures 
are a mixture of predictable and partially predictable 
events. Test results from accelerated testing of a CMOS 
device are presented as a basis to indicate the ability 
to capture fault indicators indicating impending 
failure and track the degradation of performance 
measurements [29].  

PHM are typically modelled in one of the following 
three broad categories [3]:
(1)	 Modelling of damage accumulation and 

deterioration in electronic parts and assemblies 
utilizing exposure conditions (temperature / 
vibration) to compute the accumulated damage 
to the electronic circuits and structures.  

(2)	 Monitoring or trending of parameters that are 
precursors to failure. 

(3)	 Use of expendable devices such as “canaries” 
and fuses. Physics of failure (PoF) models, data 
trending for precursors, and fusion approaches 
which combine both the data-trending and PoF 
methodologies can be used to predict reliability.

3.4.1 Damage accumulation

The basic philosophy is that damage is a function 
of the loads experienced by the system in its life cycle 
environment. Exposure to life cycle loads listed in 
Table 1, leads to an accumulation of damage and 
eventually leads to failure. This approach is most 
useful in assessing wearout type failure mechanisms 
such as fatigue, corrosion, electro-migration, etc. The 

monitored data is used along with PoF models for 
damage estimation and RUL prediction. This PHM 
methodology gives more accuracy in RUL prediction, 
than traditionally used electronics reliability prediction 
methods. A case study is done of electronic prognostics 
for Switched-Mode Power Supplies - SMPS based on 
damage accumulation and also for Global Positioning 
System-GPS receiver [17] [30].

A major challenge in PHM is environmental and 
usage load profiles, which need to be efficiently and 
accurately captured in the application environment, 
and utilized in real time or near real time health  
assessment and prognostics. Some generic strategies 
for load monitoring and conversion of the sensor 
data into a format that can be used in PoF models, for 
both damage estimation and RUL prediction (due to 
specific failure mechanisms) are given in [28]. 

For PHM, the following needs to be provided as 
a minimum [1]:
•	 Means for representing graded health information 

and not discrete outcomes as diagnostics.
•	 Given the ability to represent graded health 

information, a means to take up failure 
progression information to higher levels of system 
hierarchy.

•	 Relaxation approach as compared to diagnosis 
to support state estimation based on real-valued 
test results.

•	 The ability to support periodic measurements and 
correlation between time series.

•	 Incorporation of usage, operational, and environ-
mental data in performing state assessment and 
diagnostics.

•	 A framework for fusing information from multiple 
models and model types (e.g., physics-of-failure 
based, reliability-based, and data driven) to 
exploit the specific advantages of each type. 

Major features of PoF based PHM methodology 
is shown in Figure 1. The first step involves failure 
modes, mechanisms, and effects analysis (FMMEA), 
which includes design data, failure modes, failure 
mechanisms, failure models, life cycle profile, and 
possible maintenance records. FMMEA is based on an 
understanding of the relationships between product 
requirements and the physical characteristics of 
the products (and their variation in the production 
process); the interactions of product materials with 
loads (stresses at application conditions); and their 
influence on product failure susceptibility with respect Figure 1: PoF based PHM methodology [4]
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to use conditions [2]. The next step involves risk 
assessment to rank the risk priority, which includes the 
estimation for detection, severity, and occurrence of 
failure. Then the results for the virtual (reliability) life 
assessment can be given. Based on this information, 
the monitoring parameters relevant to key failure 
mechanisms are selected, and existing sensor data, bus 
monitor data, and built-in test results can be used to 
identify health status (e.g., abnormal conditions) and 
parameters.  Physics-based approaches (also known 
as model-based approaches) assume that accurate 
mathematical or physical models are available. It is 
a technically comprehensive approach dealing with 
failure mode progression, e.g. the crack propagation 
model. The drawback of this approach is inflexibility, 
which means it can only be applied to specific types 
of components.

PoF is an approach that utilizes knowledge of a 
product’s life cycle loading and failure mechanisms 
to perform reliability modelling and assessment [4]. 
The life–cycle loads (thermal, mechanical, chemical, 
electrical, and so on), in combinations leads to 
performance or physical degradation of the product 
and reduce its service life. The PoF approach is based 
on the identification of potential failure modes, failure 
mechanisms and failure sites for the product at a 
particular life cycle loading condition. The stress at 
each failure site is obtained as a function of both the 
loading conditions and the product geometry and 
material properties. Damage models are then used to 
determine fault generation and propagation. The use of 
PoF modelling approaches for electronic components 
and devices, like those used for mechanical systems, is 
also a powerful tool in support of electronic prognostic 
capabilities. PoF based PHM is being looked upon as 
a cost-effective solution to predict the reliability of 
electronic products and systems [31]. Current research 
is focused on building physics-based damage models 
for electronics, obtaining the life cycle data of product, 
and assessing uncertainty in RUL prediction in order 
to make the PHM more realistic. 

If the system reliability is predictable and very 
reliable, it would not make sense to implement a 
PHM solution. Return of investment from PHM 
implementation should consider advanced sensor 
technologies, communication technologies and 
decision making methods [32].

3.4.2 Trending of precursors to failure

This approach to PHM is focused on monitoring 
failure precursor indications for health monitoring. 

The system failures are non-deterministic in nature, but 
requires that the failure precursor have a deterministic 
link to the actual system failure. There is considerable 
existing work on failure precursors for mechanical 
systems, but only a few attempts have been made to 
apply health monitoring to electronics [5] [24].  The 
electronic PHM problem is characterized by imperfect  
and  partial  monitoring;  and  a  significant random 
/ overstress failure component must be considered 
in the decision process [28]. Wear and damage in 
electronics is comparatively more difficult to detect 
and inspect due to geometric scales and complex 
architecture [3]. 

Among the three main approaches to prognosis 
viz. statistical approaches, artificial intelligent 
approaches and model-based approaches, artificial 
intelligent approaches are most popular [33] [34].

Statistical approaches are usually applied to 
predict the chance that a machine operates without 
failure up to a future time given the current machine 
condition and past operational profile. These 
approaches requires plenty of previous data and 
information on historical data. 

Artificial intelligence approaches, also known 
as data-driven approaches, are derived directly 
from routine condition monitoring (CM) data of 
the monitored system (e.g. temperature, vibration, 
oil debris, current, etc.) [35]. These methods predict 
the selected features that correlate with the failure 
progression based on the learning or training process. 
The more prior data is used for the training process, 
the more accurate the model obtained. The example 
features of a vibration signal that indicates the failure 
progression are root mean square (RMS), kurtosis, crest 
factor, shape factor, etc. Several data-driven prognosis 
methods have been developed and published. 

3.4.3 Fuses and Canaries

Consumable devices such as fuses and canaries 
are a traditional method of protection. The word 
canary has come from the canary bird in coal mine 

Figure 2: Prognostic Cells [38]
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which gave warning of hazardous gas. Since the 
canary bird is more sensitive to hazardous gases 
than humans, the death or sickening of the canary 
was an indication to the miners to get out of the 
mine. Canary devices mounted on the actual product 
are used to provide advance warning of failure due 
to early occurrences of the specific wearout failure 
mechanisms on the canary devices [2]. Study of the 
applicability of semiconductor-level health monitors 
by using pre-calibrated cells (circuits) located on the 
chip along with the actual circuitry is given in [8]. 
The canary thus provides an effective early warning 
of catastrophic failure. The prognostics cell approach 
has been commercialized by Ridgetop Group (known 
as Sentinel Semiconductor technology) to provide an 
early-warning sentinel for upcoming device failures 
[36]. Prognostic cells made by the Ridgetop Group 
are able to provide precursor type information 
and are being embedded within custom ICs; but 
if implemented as a stand-alone component gives 
lower accuracy [6]. The prognostic cells are available 
for 0.35, 0.25, and 0.18 micron complementary metal 
oxide semiconductor (CMOS).  The cell size is typically 
800 micron at the 0.25 micron process size. Currently, 
prognostic cells are available for semiconductor failure 
mechanisms such as electrostatic discharge (ESD), hot 
carrier, metal migration, dielectric breakdown, and 
radiation effects. The time to failure of these prognostic 
cells can be pre-calibrated with respect to the time to 
failure of the actual product. Also a prognostic cell 
was used to monitor the time-dependent dielectric 
breakdown (TDDB) of the Metal Oxide Semiconductor 
Field Effect Transistor (MOSFET) on ICs [26].

Because of their co-existence, these cells experience 
substantially similar dependencies as does the actual 
product. The stresses that contribute to degradation 
of the circuit include voltage, current, temperature, 
humidity, and radiation. Since the operational stresses 
are the same, the damage rate is expected to be the 
same for both the circuits. However, the prognostic 

cell is designed to fail earlier through increased stress 
on the cell structure by virtue of scaling. 

Figure 2 illustrates the principle of operation of 
prognostic cells. The design of the cell is tuned to the 
particular application to give failure warning prior to 
failure of the host part. The warning provided by the 
prognostic cell has an inherent degree of uncertainty 
associated with it which is illustrated in Figure 3. Thus 
probabilistic techniques and reasoning are used to 
translate this warning period into a forecast of system 
failure. 

A similar approach based on the use of consumable 
devices (canaries) having circuits that include the same 
physical features as the main system is followed in [3]. 
Degradation of these canaries due to environmental 
condition is assessed using accelerated testing, and 
the degradation levels are calibrated and correlated 
to actual failure levels of the main system. Scaling 
can be achieved by say increasing the current density 
inside the cells. Further increase in current density 
can be done by increasing the voltage level applied 
to the cells. Both of these techniques together can also 
be used. Higher current density leads to increased 
internal (joule) heating, leading to greater stress on 
the cells; and consequently they are expected to fail 
earlier than the actual circuit.

Figure 3 shows failure density functions of the 
actual product and the canary health monitors. 
Canaries can be calibrated to give sufficient advance 
warning of failure called prognostic distance; which 
enables appropriate maintenance and replacement 
activities. This point can be adjusted to some other 
early indication level. Multiple cells evenly spaced 
over the bathtub curve can be used to give multiple 
trigger points. The extension of this approach can be 
applied for board-level failures as proposed in [2], 
wherein are created canary components located on the 
same PCB that include the same mechanisms leading 
to failure in actual components. 

3.5 Life-Cycle Loads

The life-cycle environment of a product is during 
its manufacturing, storage, handling, operating 
and non-operating conditions. The life-cycle loads 
(given in Table 2), either individually or in various 
combinations, may lead to performance or physical 
degradation of the product and reduce its service 
life [2]. The extent and rate of product degradation 
depends upon the magnitude and duration of 
exposure (usage rate, frequency, and severity) to Figure 3: Prognostic Cell Warning Period [38]
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such loads. If one can measure these loads in-situ, the 
load profiles can be used in conjunction with damage 
models to assess the degradation due to cumulative 
load exposures. The surface temperatures can be 
dynamically monitored using thin film RTD sensors. 
All data can be recorded at a rate of one sample per 
minute.  These data were applied in conjunction 
with PoF models for damage and RUL prediction. 
The health monitoring methodology was shown to 
effectively predict remaining life. Figure 9 shows 
measured absolute temperature profiles of CPU heat 
sink, hard disk drive, and external ambient air.

3.5.1 Radiation Risk

Data from CERN-LHC database showing radiation 
risk is given in [37].  Radiation induces Single event 
upsets (SEU) impact on system and the solution is 
mitigation by redundancy. SEU on ADC is acceptable, 
upset on data is acceptable, however upsets in Static 
Random Access Memory (SRAM) memory and 
FPGA used to store crucial information is an issue in 
control system.  Latch-up (SEL) is usually the most 
threatening risk but can be mitigated with latch-up 
protection circuits against SEU. Upset rate depends 
on neutron energy. Neutron-induces upsets on SRAM-
FPGA; wherein SEUs are susceptible to total dose. 
The measured cross section is 1 to 4 *10-15 cm2 / bit as 
against standard SRAM: 10 to 12 *10-14 cm2 / bit.

Table 2: Examples of Life-Cycle Loads [2]

Load Load Conditions

Thermal Steady-state  temperature, temperature 
ranges, temperature cycles, temperature 
gradients, ramp rates, heat dissipation 

Mechanical Pressure magnitude, pressure gradient, 
vibration, shock load, acoustic level, 
strain, stress

Chemical Aggressive versus inert environment, 
humidity level, contamination, ozone, 
pollution, fuel spills

Physical Radiation, electromagnetic interference, 
altitude

Electrical Current, voltage, power

 XC4010E, XC4010XL Xilinx SRAM-FPGAs were 
tested with neutron of 11, 14, 100 MeV energy and 
the results are surprisingly good, better than SRAM. 
Since FPGA-SRAM have low pull up resistance of 
5 kohms and showed no latch-up.  For neutrons of 
energy less than 14 MeV there were no upset upto 
fluence of 1011 n/cm2. But for neutrons of energy less 
than 100 MeV, 1 to 5 upsets for a fluence of 3 x 108 n/

cm2 was found.  XQR4013-36-62 XL, advanced FPGA 
in 0.35 µm CMOS, 30K-130K gates has much higher 
susceptibility, having threshold of equal or less than 
10 MeVcm2/mg, measured cross section 10-7cm2/bit 
with ions which was very expensive.

 For standard digital ICs (in majority CMOS), total 
dose qualification is not required for levels < 5krad 
for parts fabricated in modern technology but latch-
up risk should be clarified. FPGA has robustness for 
total dose 3 krad to 300 krad  but showed susceptibility 
to upset, even for “rad hard” version in peripheral 
circuits. 

For SRAM for total dose of 5 to 50 krad, large 
variability between suppliers and lots, and upset is 
the main risk, to be checked. 

4. Comparison of PoF and Statistical Handbook-
Based  Techniques 

Traditional handbook-based reliability prediction 
methods for electronic products include MIL-Hdbk-
217, Telcordia SR-332 (formerly Bellcore), PRISM, 
FIDES, CNET/RDF (European), Chinese GJB-299 
and lately RAIC-HDBK-217 Plus [39]. These methods 
rely on analysis of failure data collected from the 
field and assume that the components of a system 
have constant failure rates that are derived from 
the collected data. These methods assume that the 
constant failure rates can be adjusted by independent 
“modifiers” to account for various quality, operating, 
and environmental conditions; despite the fact that 
most of the failure mechanisms are wear-out and 
not constant failure rate type. Therefore for COTS 
systems or components model-based techniques 
have more relevance. Furthermore, none of these 
handbook prediction methods consider failure modes 
or mechanisms, nor do they involve any uncertainty 
analysis. Thus they offer limited insight into practical 
reliability issues.

The bad thing of statistical-based preventative 
replacement is that limited failures continue to occur 
in the field and, more often, components are removed 
with significant useful life remaining due to extremely 
high reliability requirements. Premature component 
removal leads to lost component usage and increased 
cost. Maintenance planning is thus provisioning the 
fielded system with spares, supporting test equipment, 
personnel and facilities so that the probability of 
the system completing the next operating period 
successfully can be maintained at some pre-assigned 
level.
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Prognostics and health management (PHM) is 
a practical and advanced way of looking at product 
reliability and life cycles conditions [40]. In PHM 
systems, the prediction is characterized as estimating 
RUL of a component or system. The benefits of PHM 
include: (1) providing advance warning of failures; 
(2) minimizing unscheduled maintenance, extending 
maintenance cycles, and maintaining effectiveness 
through timely repair actions; (3) reducing the life 
cycle cost of equipment by decreasing inspection costs, 
downtime, and inventory; and (4) improving logistical 
support of fielded systems.

There has been transition from military specific 
to commercial electronics technologies [6]. Avionics 
suppliers are necessarily turning to COTS electronic 
components and sub-systems partly because of the 
increasing lack of military qualified components and 
partly to take advantage of the high-performance 
components available in the COTS market with the 
advent of new technologies such as low-k dielectrics, 
copper interconnect and low voltage. The dominant 
market segment for commercial components is the 
high-volume commercial electronics sector (e.g. 
computer, telecom) and that military has almost 
no weight in this market. The needs of commercial 
electronics do not include long-term supportability or 
long product life. There is no incentive for electronic 
part manufacturers to design for a part whose life is in 
excess of about 3-7 years; particularly when part cost 
savings can be made by not doing so. Therefore low-
volume/long support life industries such as military 
and aerospace are at risk from limited life electronic 
components.

5. Role of PoF and Data Driven techniques for 
PHM

As mentioned earlier, electronic component 
reliability prediction is better with PoF approach 
compared with average statistics life-estimation 
approach based on MTBF. Data Driven (DD) 
techniques can be utilized for system-level 
monitoring, and PoF approach is adapted for 
parameter selection (that correlate with failure 
progression) and for detailed component behaviour, 
failure modes and life estimation. PoF involves 
in-depth understanding of the prevalent failure 
mechanisms and associated physics of failure 
affecting semiconductor devices.  Specific fault to 
failure and system dependency inference models 
can be developed,  and tuned based on accelerated 
failure testing and fault injection simulation efforts 

to provide increased confidence in the developed 
technology and prognostic output.

This involves two processes - 1. Offline learning 
and 2. Online tracking and prediction. One needs to 
explicitly derive PoF based aging models, identify 
their parameters from externally observable device 
characteristics and then use those models in a 
state prediction  framework (e.g. PF) to carry out 
prognostics. In such a case, aging behavior will be 
linked to the changes in the internal model parameters 
which can then be linked to failure mechanisms 
like hot carrier injection, electromigration, etc. This 
involves devising aging experiments for the above 
objectives.

The measured variables are first transformed 
into uncorrelated variables with unit variances 
by PCA, map the input vectors into one feature 
space (possible with a higher dimension), either 
linearly or non-linearly, which is relevant with the 
selection of the kernel function. PCA aims at finding 
principal components that are uncorrelated and are 
combinations of observed variables. Then, within the 
feature space seek an optimized linear division, that 
is, construct a hyperplane which separates two classes 
(this can be extended to multi-class). SVM training 
always seeks a global optimized solution and avoids 
over-fitting, and it has the ability to deal with a large 
number of features. Suppose we are given a set of 
samples, that is, a series of input vectors X ε Rd (i = 
1 ,..., N) with corresponding class labels yi ε {+1,-1} 
(i = 1,. ..,N). Here, -l and +l are used to represent the 
two classes. The goal here is to  construct one binary 
classifier or derive one decision function from the 
available data samples, which has small probability 
of misclassifying a future sample.

RUL has multiple sources of errors due to 
modelling inconsistencies, system noise and degraded 
sensor which leads to unsatisfactory performance 
from classical techniques- EKF (Extended Kalman 
Filter), ARIMA (Autoregressive Integrated Moving 
Average); RVM – Bayesian treatment to SVM is used 
for model development [41]. For non-linear systems 
with non-Gaussian noise in measurement, PF is the 
best technique. The model is incorporated in PF 
framework, where statistical estimates of noise and 
anticipated operational conditions are used to provide 
RUL as pdf. However, for linear system with Gaussian 
noise this method reduces to KF.

Using degradation data offers some important 
advantages for making reliability inferences and 
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predictions, especially when test time is severely 
limited and few or no failures are expected at lower 
levels of acceleration variables in an accelerated 
test. Library of data mining algorithms is required 
for such prognosis calculations.

Implementing an effective PHM strategy 
for an entire system will involve integrating 
different health monitoring approaches. An 
extensive analysis may be required to determine 
the weak link in the system to enable a more 
focused monitoring process [2]. Once the potential 
failure modes, mechanisms, and effects have 
been identified, a combination of BIT, canaries, 
precursor reasoning, and life-cycle damage 
modelling may be necessary, depending on the 
failure attributes. In fact, different approaches can 
be implemented based on the same sensor data. For 
example, operational loads, such as temperature, 
voltage, supply current, and acceleration, can be 
collected by BIT. The current and temperature 
data can be used with damage models to calculate 
the susceptibility to electromigration between 
metallizations. Also, the supply-current data can 
be used with precursor reasoning algorithms for 
identifying signs of transistor degradation.

6. Target Device Selection

This is to select an appropriate digital component 
or device, to focus for the development of PHM 
technology. The digital component categories 
considered for evaluation were:
•	 Digital Signal Processor 

•	 Microprocessor

•	 Microcontroller

•	 FPGA

•	 Application Specific Integrated Circuit

•	 Static/Dynamic Random Access Memory 
(SRAM/DRAM)

While each of these digital component categories 
typically serves different functional purposes, they 
are structurally very similar, with the transistor as the 
common factor [29]. The component’s function may 
have a greater influence on its susceptibility to faults 
than the actual architecture. For example, memory 
devices are used with built-in error checking for 
fault tolerance; FPGA’s often run massively parallel, 
independent operations where a fault to a single 
element may have a negligible impact on the operation 
of the entire component. 

FPGA are a category of digital components that 
are being extensively used in making intelligent I/O 
boards. The intelligent I/O boards - Digital Input 
board, Digital Output board and Analog Input and 
Output board are based on FPGA.  They have a 
significant risk associated with an undiagnosed fault 
and a greater need for effective PHM. In consideration 
of this information, FPGA was selected as the focus of 
PHM development.

CMOS failure mechanisms such as HCI, EM, 
TDDB, NBTI occur in FPGA. The DD technique can be 
employed to determine the class of the device whether 
healthy or fail class. It can be formulated as a bi-class 
problem.  The state prediction technique will be based 
on the model applicable. Experiments of accelerated 
testing gives the variation of the externally measurable 
metrics. These metrics can be correlated with the 
failure mechanisms for making prediction of device 
reliability or RUL. PHM implementing canaries and 
fuse devices can also be considered.

7. Failure Mechanisms in MOSFET

The area of digital devices is vast,  from FPGAs 
and DSPs to general purpose processors and volatile 
and non-volatile memories. Inspite of functional and 
topological dissimilarities, all digital devices depend 
on semiconductor devices- transistors. Moreover, 
MOSFETs are everywhere in digital electronics 
and account for 99% of the FET market [4]. Thus, 
understanding PoF at the MOSFET level is important 
while seeing failure modes and mechanisms in digital 
systems.

Devices age due to electrical, mechanical and 
environmental stresses throughout lifetime. If 
knowledge of the time-dependent effects of these aging 
processes can be determined, development of physics 
based diagnostics and prognostics at the device or 
system level is possible. Documented semiconductor 
PoF models are available as a basis for deriving system 
level models describing the responses of the system 
over time to the environmental conditions [42]. 

Some major intrinsic faults of transistor physics 
include time dependent dielectric breakdown, hot 
carrier injection, negative bias temp instability and 
electromigration [43]. Some major extrinsic faults 
relevant to transistor packaging, include contact 
migration, wire lift, die solder degradation and 
package delamination.  These PoF mechanisms serve 
as the basis for the accelerated aging processes of the 
devices.
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The majority of semiconductor devices are based 
on silicon fabrication; however the following failure 
mechanisms can be extended to other materials such 
as silicon-germanium, gallium arsenide, and silicon 
carbide thereby providing foundation for analyzing 
almost all digital devices.

7.1  Thermal Cycling

Thermal cycling is one of the main environmental 
acceleration factors that cause MOSFET aging 
wherein deterioration occurs of the thermal circuit 
which allows the device to release generated 
heat.

 Multiple materials in IC have different thermal 
expansion coefficients and when exposed to thermal 
cycling, a fracture or void space is produced as seen in 
Figure 4. These fractures deteriorate the functionality 
of the device, though not directly interfere with the 
software operation of the device. The semiconductor’s 
ability to transfer heat reduces and  accelerates  the  
aging  process  for  other  failure mechanisms. Every 
time a device experiences a power-up and a power-
down cycle, damage caused by thermal cycling 
accumulates. Thermal cycling eventually weakens 
metallic contacts, triggering the occurrence of gate-
oxide breakdown or contact migration. The Coffin-
Manson model, shown below [29], can be used to 
estimate the number of thermal cycles before failure 
for a specific device.
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7.2. Electromigration

Electromigration is the mass transport of the 
metal because of momentum transfer between the 

conducting electrons and the diffusing metal atoms. 
This phenomenon happens in metals and highly 
doped semiconductors (with negative thermo-
impedance). The 50th percentile time to failure due 
to electromigration is calculated using the equation 
given below [29].          
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where

Ao = Constant 

T   = Temperature in K

j    = Current density 

k   = Boltzmann’s constant

Ea  = -0.1 to 0.2eV

In electromigration due to the action of the 
flowing current, die metallization is removed from 
one part of the trace and accumulated at a nearby 
place. This eventually leads to an open circuit trace 
or a short circuit or high resistance paths between 
adjacent traces. Electromigration is due to high current 
densities in silicon interconnects.  Electromigration has 
an intrinsic incubation time and depends on material, 
geometry and current density, and the probability of 
failure is zero until the accumulated damage exceeds 
a threshold. Studies have shown that the rate of 
electromigration in the newer copper metallurgies 
are at a slower rate than the more common aluminum 
metallurgy [24].

7.3 Hot Carrier Effects

Hot Carrier Effects lead to two distinct wearout 
mechanisms. These are Hot Carrier Degradation 
(HCD) and Negative Bias Temperature Instability 
(NBTI). Hot carriers effects are because of high-energy 
carriers, either holes or electrons, which enter the 
gate oxide of a transistor leading to degradation of 
the oxide’s properties. Hot carriers are produced as 
current flows from the source to the drain through 
the channel and a small number of these hot carriers 
gain enough energy and get injected into the gate 
oxide causing charge trapping and the generation 
of interface states. With time, this leads to a drift in 
the performance characteristics of the device and is 
referred to as HCD. Device lifetime can be determined 
by defining failure in terms of percentage shift in 
threshold voltage, change in trans-conductance, or a 
variation in drive or saturation current. NBTI happens 
due to hole trapping and interface state generation and Figure 4: Void Area Creation Process Due to Thermal Cycling [29]

S.V. Shrikhande et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 4 (2013) 35-68



49 © 2013 SRESA All rights reserved

results in threshold voltage drifts and delays within 
a CMOS device. As MOSFETs ages, the dielectric 
material of the device degrades. The silicon dioxide 
(SiO2) bonds of the dielectric material break due to 
interaction between high energy electrons, known 
as hot carriers. This phenomenon is important in 
MOSFET technology wherein presence of high electric 
fields aids creation of hot carriers, as shown in Figure 
5.The four common hot carrier injection mechanisms 
are 
•	 Drain avalanche hot carrier injection (DAHC)
•	 Channel hot electron injection
•	 Substrate hot electron injection
•	 Secondary generated hot electron injection

Drain Avalanche Hot Carrier (DAHC):  This 
phenomenon produces maximum accelerated device 
degradation under normal operating temperatures. 
This happens when the voltage applied at the drain 
under non-saturated conditions is higher than the 
voltage applied to the gate (VD>VG). High electric fields 
near the drain accelerates the carriers into the drain’s 
depletion region.

Acceleration of the channel carriers: This 
phenomenon, also termed as impact ionization, 
happens when accelerated carriers collide with Si 
lattice atoms, creating electron-hole pairs. The created 
electron-hole could gain enough energy to overcome 
the electric potential barrier between the silicon 
substrate and the gate oxide, causing gate isolation 
deterioration. This leads to increase in gate current 
and reduction in the sub-threshold voltage (Vth). 

 Substrate hot electron injection: Due to the 
influence of the drain-to-gate field, hot carriers are 
generated also in the substrate. These hot carriers gets 
injected and becomes trapped in the gate oxide layer, 
causing the same degradation as DAHC.

Secondary generated hot electron injection: 
The number of electrons that become trapped in 
the interface between  doped regions grows over 
time modifying the threshold voltage (Vth) and its 
transconductance (gm).

Irrespective of their origin, hot carriers produce 
two types of degradations in FET technologies. The 
first is acceleration in time-dependant dielectric 
breakdown (TDDB) of the oxide barrier (SiO2), and 
the second is migration and degradation of the 
semiconductor.

Figure 5: MOSFET Cross-sectional Visualization of Hot 
Carrier Effect [29]

Figure 6: Gate Current Increase in an Accelerated  
MOSFET Aging Test [29]

A median time-to-failure approximation for hot 
carrier injection is given below [29]:
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An example of a SiO2 progressive breakdown in  
MOSFET is shown in Figure 6.

7.4 Time-dependent Dielectric Breakdown

Dielectric breakdown happens when strong electric 
field induces a current channel through a previously 
insulated medium. Acute dielectric breakdown is 
typically due to electrostatic discharge (ESD) and 
junction over-voltage. TDDB is the breakdown of gate 
oxide caused by defect accumulation in SiO2 insulator. 
TDDB effect increases with increase in electric field 
strength. A strong electric field may induce energy into 
an electron or a hole thereby creating a “hot carrier”. 
Due to high kinetic energy stored, sufficient energy 
is obtained for tunneling and becoming trapped 
in gate oxide, and is the primary cause of TDDB 
and contributing to device failures under normal 
operating conditions. In general, it relates to the SiO2 
oxidation barrier degradation under normal operating 
conditions. The reduction in life can be computed as 
[29]:
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Breakdown occurs in SiO2 films when local 
electric field is sufficiently high to cause avalanche 
multiplication in the dielectric. SiO2 is a dielectric 
having property analogous to a ‘band gap’ of the 
order of ~9 eV. When the applied electronic field is 
sufficient, normally around 10 to 15 mV/cm;  electrons 
that tunnel in from cathode cause impact ionization 
within the dielectric and the consequential current 
destroys the material by Joule heating. In SiO2 this is 
a run-away phenomenon, because the holes, either 
tunneled in from the anode or produced by the impact 
ionization, are trapped creating a positive charge cloud 
that further increases the electric field. The electrons 
(mobility ~30cm2/Vsec) hence are multiplied and cause 
destruction. This phenomenon is triggered when the 
electric field reaches the critical value required to cause 
carrier multiplication. Due to the minute imperfections 
in the film, the electric field is normally not perfectly 

uniformly distributed, so that this phenomenon takes 
place in local region, and the current flow and the 
consequential destruction occur in a filament in the 
film, i.e. a localized explosion occurs. This causes a 
total denaturing of the region and typically causes a 
short between the gate electrode and source/drain 
or substrate electrodes. If the film is nearly perfectly 
uniform, the degradation phenomenon takes place, 
but the local current densities are not excessive, and 
the film is not physically destroyed. However, this 
non-destructive breakdown typically results in films 
that are filled with trapped charge, and consequently 
device threshold voltages gets shifted. In either case, 
the device ceases to function. 

7.5 Contact Migration

Contact migration forms metal voids between 
external contact metals and silicon. As metal voids 
grow, aluminum or other metals can diffuse into 
silicon. This can cause metal spikes to form deep 
in the silicon region resulting in shorting of p-n 
junctions

7.6 Tin Whiskers

The commercial drive to eliminate lead (Pb) 
from electronics has caused an interest in using tin 
(Sn) as an economical lead-free (Pb-free) plating 
option. Many electronic part manufactures have 
started providing pure tin (Sn) finishes and others 
are in the process of transition. This tin-plating 
has renewed concern over the threat of failure due 
to tin whiskers, first reported in the 1940s [38]. 
CALCE Consortium has posted an alert, warning 
manufacturers of electronic hardware that tin 
whiskers represent a current failure risk that must 
be addressed for the reliability of electronics that 
perform mission critical services and have long 
operation periods. Tin whiskers have been identified 
and are highly suspected in the failure of many 
electronic systems. Although new plating processes 
have been developed which reduces the risk of tin 
whisker growth, there is currently no industry-
accepted test for determining the tendency of tin 
whiskers growth on a finished surface. 

7.7 Package Related Fault

7.7.1 Wire lift

When the bond between the package wires 
connecting to the silicon die fail, wire lift occurs. Wire 
lift is a dominant failure mode in high power devices 
-IGBT.
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7.7.2 Die Solder Degradation

Die solder degradation is also a prominent 
package related fault. 

7.8 Printed Wiring Assemblies

The three dominant wearout failure mechanisms 
in Printed Wiring Assemblies (PWA) are: Conductive 
filament formation (CFF), PTH / VIA fatigue, and 
solder joint fatigue [44]. These failure mechanisms 
usually manifest themselves as intermittent failures 
which results in the assembly being classified as 
retest-OK. 

7.8.1 Conductive Filament Formation (Cff) 

CFF is a electrochemical wearout process involving 
transport of metal through a non-metallic medium, 
under applied electric field. Occurrence of CFF leads 
to formation of electrical shorts. 

7.8.2 Printed Through Hole (PTH) Fatigue 

Failure of PTH / VIA contributes to an electrical 
discontinuity and occurs due to difference in the 
coefficients of thermal expansion (CTEs) of the PTH 
plating material and the PWA material in the thickness 
direction. The dominant failure mechanism in a well 
manufactured PTH is barrel cracking caused by 
thermo-mechanical fatigue. The plating thickness and 
the aspect ratio (height of PTH/diameter of PTH) are 
critical geometrical parameters.

7.8.3 Solder Joint Fatigue  

Solder joint develop cracks as temperature cycles, 
caused by relative motion between the package and 
printed circuit board. These cracks starts developing 
from small discontinuities or inclusions in the material 
and eventually propagate right through the solder 
fillet causing failure. The mechanism can exhibit cyclic 
intermittent failure when the crack is physically forced 
closed again by the relative motion of chip and board 
under temperature variation, vibration and shock. 
There are models for solder joint failure for all the major 
attach technologies viz. through-hole, surface mount, 
ball grid array etc. Solder fatigue life is often correlated 
with amplitude of the shear strain which depends on 
the stress amplitude, mean value and dwell times.

8. Failure Mechanism Driven Reliability 
Monitoring

The first step in PHM is to select the life-cycle 
parameters to be monitored. Parameters are identified 
based on factors that cause catastrophic failures or 

that lead to long downtimes. Selection can be based 
on knowledge of the critical parameters established 
by past experience and field failure data on similar 
products and on qualification testing. Systematic 
methods, such as failure mode mechanisms and effects 
analysis (FMMEA) [2], can be used to determine 
parameters that need to be monitored. Testing needs to 
be conducted to demonstrate the potential of selected 
parameters to be useful for detecting incipient failures 
in electronic systems.

Based on virtual life assessment, critical failure 
modes and failure mechanisms can be prioritized 
[31]. The existing sensor data,  maintenance and 
inspection record can also be used to identify the 
abnormal conditions and parameters. Based on such 
information, the monitoring parameters and sensor 
locations for PHM can be determined. Damage is 
calculated from PoF models to obtain RUL.

List of common failure mechanisms and failure 
sites in electronics with the relevant loads and 
associated failure models can be obtained from 
standards including JESD659-A: Failure-mechanism-
driven reliability monitoring, JEP 122C: Failure 
mechanisms and models for silicon semiconductor 
devices, JEP143A: Solid-state reliability assessment 
and qualification methodologies, JESD91A: Method 
for developing acceleration models for electronic 
component failure mechanisms, SEMATECH 
#00053955A -XFR: Semiconductor device reliability 
failure models, and SEMATECH #99083810A-XFR: 
Use condition based reliability evaluation of new 
semiconductor technologies [45].

The current and temperature data can be used 
with damage models for calculating susceptibility 
to electromigration between metallizations [2]. Also, 
the supply-current data can be used with precursor 
reasoning algorithms for identifying signs of 
transistor degradation. Supply current monitoring is 
routinely performed for testing of CMOS integrated 
circuits (ICs). This method is based upon the notion 
that defective circuits produce significantly higher 
amount of current than the current produced by 
fault-free circuits. The power supply current has two 
elements: the quiescent current and the transient 
or dynamic current. Quiescent current (Iddq) is the 
leakage current drawn by the CMOS circuit when it 
is in a stable (quiescent) state.  Transient or dynamic 
current is the supply current produced  by circuits 
under test (CUT) during a transition period after the 
input has been applied. Iddq has been reported to have 
the potential for detecting defects such as bridging, 
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Table 3: Examples of  Failure Models [38]
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opens, and parasitic transistor defects. Operational 
and environmental stresses such as temperature, 
voltage, and radiation can quickly degrade and have 
undetected faults and increase the leakage current [2] 
[43] [46]. Iddq testing is in literature [47] and monitoring 
Iddq is more popular than Idds monitoring. Smith and 
Campbell developed a quiescent current monitor 
(QCM) that can detect elevated Iddq current in real 
time during operation. Some more information about 
current monitors is given in the ‘Sensors for PHM of 
CMOS ICs’ section below. A circuit for off-chip Iddq 
measurement is given in [48]. Evolution of circuits for 
Iddq measurement is stated in [49].

It is proposed by GMA Industries [4], to embed 
molecular test equipment (MTE) within ICs (in the 
chip substrate) to enable them to continuously test 
themselves during normal operation and to provide a 
visual indication of their failure. The molecular-sized 
sensor “sea of needles” could be used to measure 
voltage, current, and other electrical parameters, as 

well as sense changes in the chemical structure of 
integrated circuits that are indicative of impending or 
actual circuit failure. Development exists of specialized 
doping techniques for carbon nanotubes to form basic 
structure comprising the sensors. 

An algorithm for health monitoring of pulse-width 
modulation (PWM) voltage source inverters (VSIs) 
is mentioned in [2]. The algorithm was designed to 
detect and identify transistor open circuit faults and 
intermittent misfiring faults occurring in electronic 
drives. The mathematical foundations of the algorithm 
were based on discrete transform (DWT) and fuzzy 
logic (FL). Current waveforms were monitored 
and continuously analyzed using DWT to identify 
faults that may occur due to constant stress, voltage 
swings, rapid speed variations, frequent stop/start-
ups, and constant overloads. After fault detection, 
“if–then” fuzzy rules were used for very large scale 
integration (VLSI) fault diagnosis to pinpoint the fault 
device. The algorithm was demonstrated to detect 
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certain intermittent faults in laboratory experimental 
conditions.

Development of a damage precursor based RUL 
computation approach for various package elements 
to prognosticate electronic systems prior to the 
appearance of any macro-indicators of damage is 
mentioned in [2]. The precursor variables have been 
identified for various package elements and failure 
mechanisms. Model-algorithms have been developed 
to correlate precursors with impending failure for 
computation of residual life. Package elements 
investigated include, first-level interconnects, 
dielectrics, chip interconnects, underfills,  and 
semiconductors. Examples of damage include phase 
growth rate of solder interconnects, intermetallics, 
normal stress at chip interface, and interfacial shear 
stress. The precursor based damage computation 
approach eliminates the need for knowledge of prior 
or posterior operational stresses and enables system 
reliability management of deployed non-pristine 
materials under unknown loading conditions. 
The approach can be used on redeployed parts, 
subsystems, and systems, since it does not depend on 
availability of prior stress histories.  

9. Failure Modes

Analysis of failures throughout the lifespan 
identifies various failure mode possibilities triggered 
by various failure mechanisms. A failure mechanism 
is defined as the physical or chemical phenomenon 
causing the onset of failure; common examples in 
mechanical systems are vibration, corrosion, high 
friction, etc. The underlying failure mechanism 
becomes evident to the user through failure modes 
which are noticeable observations of how the system 
or device failed; for example overheating, unexpected 
shutdown, and reduced performance are observable 
failure modes. Commonly, single failure modes can 
be attributed to multiple failure mechanisms.

The characteristic changes as the device transits 
from useful life to end of life are of most interest 
when attempting to identify, classify, and track 
incipient signs of impending failure. Thermal 
stress and electrical stress are the most common 
aging methodologies. Thermal cycling and chronic 
temperature overstress are prevalent thermal stress 
methods. 

Electromagnetic pulses or ESD is a leading 
cause of gate oxide failure and hard switching of 
inductive loads, causing voltage spikes which can 

cause significant damage to drain-source junctions. 
Steady-state methods include chronic over-voltage 
and over-current. Applying high gate voltages, setting 
gate voltage (Vg) to maximize drain current, and 
applying current overstress across the drain  induces 
hot carrier and TBBD. Various failure mechanisms, 
their occurrence site, relevant stresses along with 
model type are given in Table 3.

9.1 Competing Failure Modes

As shown in the Fig.7, the functional failure 
threshold region is shown within feature space. Its 
advantage is that multiple and competitive failure 
modes can be mapped within the same N-dimensional 
feature space. As a result, the current health and 
time-to-failure can be assessed for each failure mode 
concurrently. Figure 7 represents the fault-to-failure 
progression of a number of competing failure modes 
(FM) using a statistical trending algorithm. The figure 
shows how the severity (or damage index) output of 
the feature space classifier (z-axis) changes for each 
failure mode (y-axis) over time (x-axis). The statistical 
trend of each FM (indicated by the dashed line) is 
obtained from the double exponential smoothing 
projection for each feature. The Figure also captures 
the concept of competing failure modes, wherein it can 
be seen that although Failure Mode 4 is classified as 
the most advanced failure mode by the classification 
routine (damage index of 0.78), the prognostic routine 
is able to determine that FM1 has a quicker fault-to-
failure progression and would correctly identify that 
this failure mode is more likely to lead to the shortest 
RUL. Assuming both routines have properly captured 
the true health state of the system, the information 
presented in the figure is important from a number 
of perspectives [40] as given below. 

Figure 7: Statistical Fault Progression Using Evolutionary 
Prognostics [50]
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Maintenance Perspective: Parts can be ordered 
to correct FM1 and FM4, since both reach functional 
failure within the time frame of interest. In addition, 
maintenance actions can be planned for FM1 knowing 
that it will likely fail first. Given that FM1 and FM4 are 
both close to failure, it may be most efficient to correct 
both problems at the same time. Without prognostics, 
however, the FM1 problem would not be realized and 
only FM4 maintenance would be planned. This most 
likely would result in unnecessary downtime for the 
system while FM1 parts are being ordered, while FM1 
maintenance is being performed, and possibly again to 
correct for FM4. The result is lost availability. Different 
fault progressions may also be generated based on 
altered mission plan to assess the risk associated with 
these new plans. Once again, without prognostics, the 
rapid fault progression and prediction horizon of FM1 
may be overlooked.

This capability therefore results in increased 
mission readiness and safety. Under the current 
approach, both diagnostics and prognostics are 
assessed within the evolutionary prognostics routine. 
In different implementations any diagnostic process, 
such as fuzzy logic or neural networks, can be fused 
with any prognostic routine, such as Kalman filtering, 
to effectively achieve a similar result [50]. 

9.2 	 Change of Direction of the Monitoring 
Parameter

Traditional applications in reliability and service 
life prediction based on accelerated testing, involve 
chemical degradation that is accelerated by increasing 
variables like temperature, humidity, and current 
density or voltage stress (using statistical models 
based on knowledge from physical chemistry). Fig. 
8 gives illustration of data cleaning for the peak a) 
shows original data paths. b) shows data paths after 
deleting outliers and increasing tails. Figure 8a shows 
that the parameter increases, peaks  after which the 
degradation paths begin to decrease. This behaviour 
is caused by physical and chemical changes in the 
specimens. The turning point happens to be far beyond 
the definition of failure, modelling beyond the turning 
point is not needed. Thus increasing/decreasing tails 
are cut after the turning point for those cases where 
degradation paths changes direction.

10. Sensors for PHM of CMOS ICs

Power supply quiescent current Iddq is a good 
indicator of the failures occurring in CMOS ICs.  As 
mentioned above, the quiescent current monitor 
(QCM) has been developed to detect elevated current 
in real time during operation [2]. The QCM performed 
leakage current measurements on every transition of 
the system clock to get maximum coverage of the IC 
in real time. A low-power built-in current monitor for 
CMOS devices is also proposed in the same reference. 
The current monitor developed by  Pecuh et al. [2] 
was tested on a series of inverters for simulating open 
and short faults. Both fault types were successfully 
detected and operational speeds of up to 100 MHz were 
achieved with almost no effect on the performance of 
the circuit under test. The current sensor developed 
by Xue and Walker enabled monitoring at a resolution 
level of 10 pA. The system translated the current level 
into a digital signal with scan chain readout. This 
concept was verified by fabrication on a test chip.  
The mathematical foundations of the algorithm were 
based on discrete wavelet transform (DWT) and fuzzy 
logic (FL) [50]. 

11. Binning and Density Estimation of Load 
Parameters

Sensors give large volumes of data which can be 
well managed by data reduction processing on the 
raw data [6]. For e.g. damage accumulation models 
are not sensitive to infrequent and large excursions 
away from the mean. This property enables data 

Figure 8: Illustration of data cleaning for the peak [77]
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reduction algorithms like Ordered Overall Range or 
Cycle Counting algorithms to reduce the data volume 
by an order of magnitude without losing significant 
amount of information.

This section shows how the captured data 
though appearing random, has information which 
can be extracted and used in the appropriate 
models. Examples from two references are given 
below.

Fig 9 shows measured absolute temperature 
profiles of CPU heat sink, hard disk drive, and 
external ambient air [6]. This collected data is analyzed 
statistically using data simplification and cycle 
counting algorithms, and converted into a format 
that can be used in PoF models, for both damage 
estimation and RUL prediction; due to specific 
failure mechanisms. Data simplification leads to 
gains in computing speed and testing time, condense 
load histories without losing important damage 
characteristics and preserve the interaction of load 
parameters. Figure10 shows CPU heat sink absolute 
temperature  variation for different CPU utilization. 
Data is recorded for three events as indicated - Event 
A shows when notebook is powered on, events B 
to C shows when numerical simulation is executed 
and event D shows when Notebook is powered 
off. Based on this data, histograms were drawn  as 
shown in Figure which shows the fraction of total 
time during which the product experienced a given 
range of absolute temperature.  Similar histograms 
are drawn for the number of occurrences of a range of 
temperature cycle magnitudes.  Histograms are also 
drawn for the fraction of total time during which the 
product experienced a given range of temperature 
ramp rate [6]. Temperature cycles of small amplitude 
may not significantly impact on the reliability of 

electronic packaging interconnections. The potential 
damage induced also depends on variables such as the 
mean cyclic temperature. Thus the above mentioned 
three types of histograms information about cyclic 
range (∆s), cyclic mean load (Smean), and rate of 
change of load(ds/dt) is applied in a life consumption 
monitoring methodology [7], [8], [78] to provide both 
damage estimation and RUL prediction due to specific 
failure mechanisms influenced by temperature. 51] 
on Histograms and kernel estimators are detailed  
in [51].

A similar data simplification techniques and a 
variety of tools such as filters, Fourier transforms, 
wavelets, Hayes method, ordered overall range, etc. 
are mentioned in [6]. It is extracts the relevant load 
parameters including cyclic mean, amplitudes, ramp 
rates, hold periods, power spectral densities, etc. 
Commonly used load parameter extraction methods 
include: cycle counting algorithms or extracting cycles 
from time-load signal, Fast Fourier transforms (FFT) 
for extracting the frequency content of signals, etc. 
Depending on the application and type of signal, load 
extraction methods may differ.

12. Machine Learning Techniques for PHM 
Algorithm

This section discusses various techniques that 
can be used for different purposes. ML techniques 
are based on datasets [79], translation of raw data 
to meaningful information is done by classification 
/ clustering, regression and ranking, since the raw 
data do not provide any meaningful information. 
In PHM applications i.e. for detecting or predicting 
system health, ML techniques are closely related to 
problem of classification or clustering of input data. 
Classification algorithms are used and patterns of 

Figure 9: Measured absolute temperature profiles of CPU heat 
sink, hard disk drive, and external ambient air [6]

Figure 10: Distributions of measured absolute temperature for 
the CPU heat sink and hard disk drive [6]
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collected data are analyzed for identification of healthy 
condition of system. 

For Prognostics, Data Driven (DD) Approach and 
PoF Approach can be employed. In DD approach, 
future behaviour is predicted based on learning 
from the data available of past.. DD technique is an 
economical way to automatically monitor health of 
large multivariate systems. DD technique incorporates 
statistical and probability theory, data preprocessing, 
dimensionality reduction (by compression and 
transformations), feature extraction and denoising.  
PoF approach uses underlying engineering and  
failure principles to model and predict RUL. Hybrid 
Approach is best suited, utilizing information from 
PoF and DD approaches; since it gives advantages 
of both approaches while eliminating some of 
their drawbacks.  Merits and limitations of various 
approaches (for machinery health prediction) are 
stated in [81].

12.1 Advantages of ML techniques

ML utilizes computational solutions to otherwise 
expensive or intractable theoretical alternatives. 
ML gives better accuracy for the statistical and 
probabilistic estimates. ML acts on relevant data to 
explain trends and characteristics of system health. 
ML is more useful for solving prognostics problems 
than diagnostics. ML is useful when user interaction is 
required for supervised learning, having information 
for relationship between data trends and physics, 
modes and mechanisms of failure.

12.2 Feature Selection for ML

Features or attributes having high interclass 
difference and intraclass similarity will have high 
weights. Features producing a larger deviation in 
output are considered important. Monitoring indices 
is quantifying feature characteristics. The desirable 
monitoring indices should be highly sensitive to the 
fault with low sensitivity to noise. The selection of 
monitoring indices involves different steps of signal 
processing and feature extraction. 

Feature Processing techniques also include the 
following [11]:
i)	 Principal Component Analysis (PCA) reduces size 

of data sets.  If input data are highly correlated, 
number of eigenvector will be small. This can 
be used to reduce huge quantity of information 
in given different data sets. It offers trade-off 
between computation time and prediction 
accuracy.

ii)	 Independent Component Analysis (ICA) 
separates mixed signal set into individual signal 
sets which are statistically independent. This 
is used in a neural network model to extract 
independent components from nonlinearly 
mixed signals.

12.3 Classification and Clustering

ML Classification techniques for Healthy versus 
unhealthy system behaviour can be achieved by 
engineering an appropriate kernel function for the 
given problem. ML techniques like Support vector 
Machines (SVM) are useful. 

ML classification techniques categorized based 
on Supervised and unsupervised learning along with 
their Discriminative and Generative Approach are 
briefly introduced below:

12.3.1 Supervised Learning 

Supervised learning means training data is 
already labelled and health conditions of acquired 
input data are available. Some of the Supervised 
learning techniques are given below along with their 
applications.
i)	 (LDA) Linear Discriminant Analysis was used for 

multivariate variables to detect and classify faults 
in process of IC designs.

ii)	 (NN) Neural Networks based auto associator 
was built and used to detect imminent motor 
failures.  It was trained with four motor current 
measurement data acquired from healthy motors 
[80].

iii)	 (SVM) Support Vector Machines. This technique 
is described in a section below.

iv)	 (DT) Decision Tree classifier algorithm based on 
tree structured model of feature attributes used 
to predict the class based on given data. 

v)	 Random forests algorithm (RF) is a general term 
for ensemble methods using tree-type classifiers. 
A comparative study of classification algorithms 
for high dimensional data; for classifiers -Random 
Forests, K-Nearest Neighbours and Support 
Vector Machines is done [82].

12.3.2 Unsupervised Learning

Unsupervised learning means the given data 
does not have its class-identification. Some of the 
Unsupervised learning techniques both Discriminative 
and Generative approaches are given below along 
with their applications.
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12.3.2.1 Discriminative approach in 
Unsupervised Learning
i)	 Hidden Markov Model (HMM) based approach- 

In HMM  Hidden state sequence is inferred from 
observation sequence [54]. 

ii)	 SVM- based approach -Combination of PF and 
relevance vector machine (RVM) is used to predict 
Li ion battery RUL [55].

iii)	 (PF) Particle filtering also known as sequential 
Monte Carlo method- Alternative to extended 
Kalman Filter for nonlinear systems and non-
Guassian noise, was used to predict RUL of 
IGBT.

12.3.2.2 Generative Approach in Unsupervised 
Learning

Generative Approach include models of prior 
probability density P(X/y) for each class cj and then 
chooses the class that best fits observed data X based 
on optimization algorithm.
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i)Naïve Bayes (NB) including Tree-

augmented naïve Bayes (TAN), (FAN) Forest-

augmented naïve Bayes- Naive Bayesian 

classifier [7] is based on the assumption that 

the features are independent given the class.  

The best class is found from the following 
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ii)Hierarchical classifier- e.g. Euclidian 

distance is used to find clusters; the distance 

between data points are defined. 

iii) (kNN) k-nearest neighbour classifier 

(Divides data points into k-clusters that 

represent degrees of health of system. Varying 

degrees of health of a system are described by 

centroid and density. The relative position of 

centroid shows variation of health state from 

one condition to another and density of cluster 

gives change of health state within one 

condition. Some examples of objective 

functions are minimize distance between a 

point and its centroid, maximum distance to its 

centroid for any point, sum of variances over 

all clusters, etc.  

iv) Fuzzy C mean classifier - a data point 

can belong to one or more clusters rather than 

belonging completely just to one cluster. Each 

data point belongs to each cluster with a 

degree of membership. Hence fuzzy C means 

clustering with a probabilistic approach to 

cluster boundaries.   

12.4. Statistical Techniques used in ML 

The two major statistical categories are 

Parametric methods and Non-Parametric 

methods. The various techniques under these 

methods are stated below. 

Parametric methods are given below: 

Maximum likelihood estimation (MLE) 

[79]. 

Neyman-Pearson Criterion- Classifier was 

used in minimizing probability of missed 

alarms and false alarm less than user specified 

level. 

Expectation Maximization- This 

technique has been used in many applications. 

Minimum Mean Square Error estimation -

is a point estimator. 

Maximize Posteriori (MAP) Estimation 

Classifier-MAP was used to estimate time 

varying fault parameters and applied to 

unmanned aerial vehicle. 

Rao-Blackwellization Estimation- In this 

sensed parameter is transformed into another 

variable with sufficient statistics. It was used 

in electrical machines and path tracking 

applications. 

Cramer-Rao Lower Bound- To check 

performance of an estimator as it sets lower 
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ii)	 Hierarchical classifier- e.g. Euclidian distance is 
used to find clusters; the distance between data 
points are defined.

iii)	 (kNN) k-nearest neighbour classifier (Divides 
data points into k-clusters that represent degrees 
of health of system. Varying degrees of health of 
a system are described by centroid and density. 
The relative position of centroid shows variation 
of health state from one condition to another and 
density of cluster gives change of health state 
within one condition. Some examples of objective 
functions are minimize distance between a point 

and its centroid, maximum distance to its centroid 
for any point, sum of variances over all clusters, 
etc. 

iv) Fuzzy C mean classifier - a data point can 
belong to one or more clusters rather than 
belonging completely just to one cluster. Each 
data point belongs to each cluster with a 
degree of membership. Hence fuzzy C means 
clustering with a probabilistic approach to cluster 
boundaries.  

12.4 Statistical Techniques used in ML

The two major statistical categories are Parametric 
methods and Non-Parametric methods. The various 
techniques under these methods are stated below.

Parametric methods are given below:

Maximum likelihood estimation (MLE) [79].

Neyman-Pearson Criterion- Classifier was used 
in minimizing probability of missed alarms and false 
alarm less than user specified level.

Expectation Maximization- This technique has 
been used in many applications.

Minimum Mean Square Error estimation -is a 
point estimator.

Maximize Posteriori (MAP) Estimation Classifier-
MAP was used to estimate time varying fault 
parameters and applied to unmanned aerial vehicle.

Rao-Blackwellization Estimation- In this sensed 
parameter is transformed into another variable with 
sufficient statistics. It was used in electrical machines 
and path tracking applications.

Cramer-Rao Lower Bound- To check performance 
of an estimator as it sets lower limit for variance of any 
estimator which is achieved by unbiased estimator.

Non-Parametric methods along with their usage 
are given below -

k Nearest Neighbour Classification- kNN, 
Normalized distance from cluster centers is mostly 
considered to arrive at nearest neighbour. Distance 
in this context need not be Euclidean distance, it may 
be other distance metric eg. cosine distance. Weights 
can be added to vote of each neighbour, depending 
on distance from test point.  Combination of PCA 
(dimensionality reduction technique and kNN 
was applied for fault detection in semiconductor 
manufacturing processes).

Kernel density/Parzen window estimation- In 
Kernel Density Estimation, the extent of contribution 
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to estimate of point xi depends on the shape of Kernel 
function and Band chosen. Gaussian is commonly 
used Kernel function. This was used in identification 
of damage initiation and growth on a box girder of a 
bridge using high frequency acoustic emission.

Wilcoxon rank-sum test is to check if two 
random variables arise from same pdf. This was used 
alongwith neural networks on a simulated statistical 
distribution for detection of abnormal conditions of 
aircraft engine.

Kolmogorov-Smirnov test- to compare observed 
and expected Conditional Density Functions (CDFs). 
Vertical difference between two CDFs under test 
is considered. This was used alongwith clustering 
algorithm for diagnostic testing on bearing of rotating 
machinery using acoustic emissions. 

Chi square test- This is used as Goodness of fit 
check to determine if the distribution in question 
differs from that of known population.

All the above techniques of Statistical/ Machine 
learning are increasingly being used in modern 
applications.  One such techniques viz. SVM which 
is a recent technique is being employed in various 
upcoming applications [56].  The following sections 
deals with SVM.

13. Support Vector Machines (SVM)

SVMs were introduced by Vapnik in the late 
1960s on the foundation of the statistical learning 
theory [56] [69]. Since the middle of the 1990s, the 
algorithms used for SVMs started emerging with 
greater availability of computing power, paving the 
way for numerous practical applications. SVM for 
classification, is a modern machine learning method 
[57]. SVMs have become one of the most popular 
approaches to learning from data and have many 
potential applications in science and engineering. It 
is possible to incorporate techniques that can make 
decisions on the health of the machine automatically 
and reliably from the collected data by learning from 
known problems.  Each data point is a N-dimensional 
vector and belongs to either of the two classes divided 
by N-1 dimensional hyperplanes.  The goal is to 
maximize separation margins between two classes. 
Maximum margin hyperplane is set. SVM is essentially 
a two-class classifier. A direct multi-class extension 
of SVM usually leads to a very complex optimization 
problem and tedious computations. Therefore multi-
class problems are often solved by training several 
binary SVM classifiers and fusing the outputs of the 

classifiers to find the global classification decision 
[58]. 

One-class SVM with RBF kernel was successfully 
applied for fault detecting in reactive ion etching 
system [59],  to discriminate normal condition 
and abnormal condition. SVM based classification 
methodology can be used for fault detection in 
induction motors [80].   Motor had 7 classes- one 
healthy and 6 faulty conditions. Dynamic SVMs can 
be used for non-stationary time series forecasting. 

Support Vectors are those data points which 
lie on the hyperplanes H1and H2 whose removal 
would change solution found. Margin between two 
hyperplanes is maximized [60]. SVMs have fast 
asymptotic rate of convergence. Useful properties 
of SVMs are that the optimization problem for 
constructing an SVM has a unique solution. The 
learning process for constructing an SVM is rather 
fast. The performance of the extracted rules is then 
evaluated in terms of accuracy, comprehensibility and 
area under the receiver operating characteristic curve 
(ROC). In all cases, sensitivity to the prior is substantial 
for small samples and decreases with increasing N 
[61]. Sparse kernel methods [62],  like SVM have 
been applied with great success to classification and 
(standard) regression techniques however are not 
suitable for partly censored survival data, which are 
typically analyzed using Cox’s proportional.  The 
real data sets can be split into a random training set 
consisting, for e.g. 75% of the observations, and a 
validation set consisting of the remaining 25% of the 
observations [62].

Due to usage of Kernel function, number of  faults 
is not limited; this is one of the powerful benefits of 
SVM approach over NN. SVMs are based on statistical 
theory and found to work well in comparison to 
NN in several applications. SVMs require few user-
defined parameters and perform better.  SVM perform 
better specially in handling large dimensions. For 
less training data SVMs outperform ANN. Multi-
class SVMs perform well as compared to NN and 
Decision tree classifier. SVMs train and run one order 
of magnitude faster. SVMs scale better. SVMs give 
higher classification accuracy.  SVM gives global 
solution unlike local minima in NN. SVM is good 
when dimensionality of input space and order of 
approximation create a dimensionality of feature 
space which is untractable with other methods. How 
and why algorithm has made a certain decision is 
supported by SVM.  NN in general, cannot easily 
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explain their decisions. SVM offers flexibility in 
choosing a similarity function, sparseness of solution 
when dealing with large data sets, ability to handle 
large feature spaces and ability to handle outliers. 
As the number of inputs increases the performance 
of SVM also increases. SVM attributes are number 
of classes, kernels used, input feature selection and 
ranking methods. 

The SVM-based blade damage detection system 
is more reliable and robust and shows no sudden 
fall in the damage class prediction performance 
with increase in noise level [56]. This system holds 
significant promise in the online damage detection 
system due to its ability to give optimal performance 
with a limited training data. The current damage 
detection system requires no data reduction technique 
and is based on the measurements obtained at non-
rotating system.  

SVM maps input vectors to a higher dimensional 
space where a maximal separating hyperplane is 
constructed. SVM maps the input patterns into a 
higher dimensional feature space through some non-
linear mapping chosen a priori [63]. A linear decision 
surface is then constructed in this high dimension [64]. 
There are different kernel functions used in SVMs, 
such as linear, polynomial, Laplacian RBF, chi-square 
and Gaussian RBE, which avoid the computational 
burden of explicitly representing the feature vectors. 
Too many features can cause cures of dimensionality 
and peaking phenomenon [65] [66] that greatly 
degrade classification accuracy since some features are 
essential, some are less important, some of them may 
not be mutually independent and some may be useless. 
Usually 5 to 12 parameters are  sufficient to perform 
the calculation and provide sufficient accuracy. The 
objective should be to identify the features that show 
high variability between different classes and thus 
help in distinguishing between them.

Typically, in the training process, the networks 
were trained until the mean square error is below 
0.01 or the maximum epochs (=10000) were reached. 
The overall success  of class classification ranges from 
98 % to 100% for training and 88% to 98% for testing. 
Among these classifiers, Gaussian RBF is usually 
the best with high training and testing accuracy. 
Support vector machine, linear discriminant analysis, 
k-nearest neighbours, and random forests algorithm 
are employed as classifiers for fault diagnosis.

By applying a nonlinear kernel function that 
transforms data points into high-dimensional feature 
space, SVM can also treat nonlinear classification 

problem. Some common nonlinear kernels are 
polynomial, radial basis function (RBF), linear, and 
sigmoid. 

Support vector regression (SVR) based on SVM for 
time-series prediction in a process-related application 
along with other models based on autoregressive 
moving average (ARMA) and recurrent NN (RNN) 
was presented [41]. The performance of SVR was 
found to be better than ARMA and RNN. The 
performance of SVR was also found to be better 
than that of adaptive neuro-fuzzy inference system 
(ANFIS). fuzzy inference models for failure definition 
are established using the domain experts with strong 
experiential knowledge [67]. SVM  is used along with 
Bayesian framework for improving the classification 
accuracy [68]. However, the training time of SVR was 
much higher than for ANFIS; but training is off-line, 
done initially. Study of combination of a probability 
approach and a support vector machine [33], to predict 
the failure degradation and the trained SVM is used 
to predict the final failure time of individual bearing 
data.  Systems for early fault detection and failure 
prediction have been developed for high end servers 
using continuous sensing of variables such as current, 
voltage, and temperature combined with analysis 
using pattern recognition algorithms. Support Vector 
Regression (SVR) is based on the principle of SVM and 
suitable for time-series prediction [70].

14. Prediction Algorithms

To implement a precursor reasoning-based PHM 
system, having identified the precursor variables for 
monitoring, development of a reasoning algorithm to 
correlate the change in the precursor variable with the 
impending failure is required and this characterization 
is typically performed by measuring the precursor 
variable under an expected or accelerated usage 
profile [50]. Based on the characterization, a model is 
developed, typically a parametric curve-fit, neural-
network, Bayesian network, or a time-series trending 
of a precursor signal. This approach assumes that 
there is one or more expected usage profiles that are 
predictable and can be simulated in a laboratory setup. 
In some products the usage profiles are predictable, 
but this is not always true. For a fielded product 
with highly varying usage profiles, an unexpected 
change in the usage profile could result in a different 
(non-characterized) change in the precursor signal. If 
the precursor reasoning model is not characterized 
to factor in the uncertainty in life-cycle usage and 
environmental profiles, it may provide false alarms.
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For supporting temporal logic, dynamic Bayesian 
networks would be useful for prognostic algorithms. 
The classical approaches like autoregressive (AR) 
model or dynamic system approach are easy to 
understand but limited to simple applications. On 
the other hand, completely data-driven approach 
can quite easily be applied to complex systems 
but require data with a high level of confidence. 
The fusion of failure dynamics with diagnostic 
data offers some compromise between the two 
approaches.

Impact Technologies has developed Impact 
diagnostic/validation technology termed SignalPro 
which is capable of learning the relationships between 
an arbitrary set of inputs (be they features or raw 
sensor values) to evaluate a digital boards and its 
components at a system level [29]. SignalPro has 
a data driven condition monitoring approach for 
diagnostics and prognostics. It’s engine has a system 
monitoring approach which evaluates electronics 
system performance by employing a combination 
of signal processing, statistics, and data-driven 
modelling techniques. A complete SignalPro system 
model is created by evaluating “healthy” data during 
training process. The generated model captures the 
interrelationships among sensor readings or extracted 
features. During training period, signal preprocessing 
is carried out and signal relationships and acceptable 
deviations are quantified.

Real-time data is used for monitoring along with 
a prediction model to assess whether the system 

is operating within acceptable limits. The model 
computes an estimate of the expected sensor values 
based on relationships between the new measurements 
and historical data. These data sets are compared with 
the actual data streaming and a residual signal is 
computed. This residual signal is further analyzed 
to arrive at unexpected (and potentially faulty) 
conditions. In addition, PHM algorithms are being 
present for critical components within the system, 
providing a system level model, and also having usage 
based monitoring. The health assessments provided by 
each of these independent paths are then be fused at a 
system level reasoner to provide a higher confidence 
analysis of the RUL of the electronic system, shown 
in Figure 11. 

14.1 Particle Filter- A Prognostic Technique

Particle filter (PF) technique has been investigated 
from a distributed implementation context [10]. 
Three different distributed implementations for 
particle filtering are possible. A parallel particle 
filter implementation is done with a shared-memory 
multiprocessor cluster. In recent times, distributed 
particle filters for sensor networks and tracking 
applications have been explored. 

PF is essentially Bayesian learning schemes that 
model the state equations as a first order Markov 
process with the outputs being conditionally 
independent. PF has the advantage of making the 
next state prediction dependent only on the current 
state and the current measurement, which requires 
lower memory and communication requirements than 
a Monte Carlo approach. PF methods are capable of 
identifying model parameters simultaneously by state 

Figure 11: System Health Assessment and RUL Analysis [29]

Figure 12: PF state tracking for diagnostics and state prediction 
during prognostics from 32 weeks onward for battery capacity [10]
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estimation, thus tuning the system model to fault 
progression, thereby making it superior to Kalman 
filters for health management approaches. 

15. Remaining Useful Life (RUL) Estimation

A degradation parameter is required for predicting 
(RUL) before final failure occurs. Temperature time 
series data was collected by the SPOTs from the 
Lithium-ion battery. Since run-to-failure experiments 
with these components take considerable amount of 
time (more than the battery life of the free ranging 
SPOTs), pre-recorded battery aging data was fed 
to the monitoring SPOTs through the base station 
in order to show proof of concept of the integrated 
PF-based diagnostics-prognostics framework. The 
state variables of interest are the battery capacity, the 
electrolyte resistance (RE) and the charge transfer 
resistance (RCT). But only battery capacity graphs are 
shown in this paper.

15.1. Diagnostics-Prognostics Framework

The predictions are fairly accurate since PF can 
adapt to the system aging model during the diagnostic 
routine. Here particle filter with only 20 particles is 
taken, so as to fit with the computational and memory 
resources of a single computational element (CE). 
Using less number of particles somewhat diminishes 
the ability of the PF to handle uncertainties, but 
since diagnostics is only concerned with tracking 
performance (1 step ahead prediction), the PF output 
is acceptable. Also, PF not only provides the mean 
prediction trajectories, but also the predicted state 
pdf. This distribution was compared against the EOL 
threshold (30% capacity fade, i.e. a battery capacity 
of 0.7 Ah) to generate the RUL pdf.  PF prognosis 
improves in both accuracy and precision (narrowness 
of the pdf) from 32 weeks to 48 weeks as more data is 
made available before prediction. 

For state prediction purpose the same PF framework 
can be used by running only the model-based particle 
propagation step until the predicted state value 
crosses some predetermined end-of-life threshold. The 
predicted trajectory of each particle then generates 
an estimate of RUL, which can be combined with the 
associated weights to give the RUL pdf. The process 
is broken down into an offline learning part, and an 
online tracking and prediction part. During offline 
analysis, regression is performed to find representative 
ageing curves. Exponential growth models, as shown 
in Eqn. 7, are then fitted on these curves to identify 

the relevant parameters viz. C (initial value of θ)  and 
λ (the decay parameters) with thermal cycling among 
the most prevalent accelerated aging methodology in 
electronics. 					   
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where θ is an internal model parameter of interest 
[71].

The state and measurement equations that 
describe the semiconductor aging model are given 
below [24]:
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where the vector z, consists of the OFF state exponential 
time decay constants for the IGBT collector-emitter 
current (ICE), and matrices C and Λ contain their 
aging decay parameters C and λ values respectively. 
The z and Λ vectors are combined to form the state 
vector x. The measurement vector y comprises the 
time decay parameters inferred from measured data. 
The time index is denoted by k. The values of the C 
and Λ vectors learned from regression were used to 
initialize the particle filter. The noise samples ω, ν and 
υ are picked from zero mean Gaussian distributions 
whose standard deviations are derived from the given 
training data, thus accommodating for the sources of 
uncertainty in feature extraction, regression modelling 
and measurement. System importance resampling of 
the particles is carried out in each iteration, in order 
to reduce the degeneracy of particle weights. 

The system description model developed in 
the offline process is fed into the online process 
where the particle filtering prognosis framework 
is triggered by a diagnostic routine. The algorithm 
incorporates the model parameter as an additional 
component of the state vector and thus, performs 
parameter identification in parallel with state vector, 
even under the presence of disruptive effects like un-
modelled operational conditions (in this case, high 
temperatures) estimation. Predicted values of the time 
decay parameters are compared against end-of-life 
thresholds to derive time of end-of-life (EOL) and 
RUL estimates. 

Overall, the parameter shows an exponential 
growth rate (negative), indicating an Arrhenius 
aging process. Near the end, the curve shows some 
anomalous behaviour since the IGBT approaches the 
latch-up condition. Originally the Arrhenius equation 
described the temperature dependence of the rate of 
a chemical reaction.
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In running the particle filter framework, an 
exponential growth model for P1was used like the one 
shown in eqn. 8. Since there was no separate learning 
and testing datasets, regressed C and λ values were 
not used from the model learning process to jump 
start the PF algorithm. Instead, 0 and 1 were used as 
the initial values for P1 and λP1.The EOL threshold is 
chosen as -2.5x105, which is approximately the value 
of P1 at the end of its exponential behaviour. Without 
loss of generality, the prediction time was arbitrarily 
chosen to be 51.875 minutes.

After the prediction timeline, the mean of the 
last 100 λP1 values is used for the propagation of each 
particle according to the state transition model (first 
line in eqn. 8. No additional computed λP1 values are 
used to update the particle weights. The propagated 
particle values are compared against the EOL 
threshold to compute the distribution of time at EOL. 
A mixture of Gaussians is then fitted in a least square 
sense to these EOL values to plot the magenta EOL 
pdf as shown in Figure 13. The RUL pdf is simply the 
prediction time subtracted from the EOL pdf. Inspite 
of the generic initial particle values, for modeling 
uncertainties and system noise, the PF performance 
is very good.

Limitations: Some significant limiting assumptions 
employed here are: Simple exponential growth models 
were used to explain the aging behaviour of IGBTs. 
Although the prediction results are very good, 
such an approach has limitations when applying 
the aging parameters and EOL thresholds learnt 
from one device to another. In order to achieve 
that, one needs to explicitly derive PoF based aging 
models, identify their parameters from externally 
observable device characteristics and then use 

those models in a PF framework 
to carry out prognostics. In 
such a case, aging behavior 
will be linked to the changes in 
the internal model parameters 
which can then be tied to failure 
mechanisms like hot carrier 
injection, electromigration etc. 

15.2 Decision Making

Decision Making can be cast 
as a classification problem: the 
classifier makes a hypothesis 
about the classification of a 
given data instance into one 
of predefined categories that Figure 13: Filter Tracking and Prediction [24]

represent different decisions. The decision is based 
on prior training of the classifier, using a set of 
representative training data, for which the correct 
decisions are apriori known. Availability of an 
adequate and representative set of training data is 
of prime importance for a classification algorithm to 
successfully learn the underlying data distribution. 
In the absence of adequate training data,  resampling 
techniques can be used for drawing overlapping 
random subsets of the available data, each of which 
can be used to train a different classifier, creating the 
ensemble. Such approaches have also proven to be very 
effective. Interpretation allows forming an ensemble 
through algebraic combination rules (majority voting, 
maximum /minimum/ sum/ product or other 
combinations of posterior probabilities), fuzzy integral 
for combination, the Dempster-Shafer based classifier 
fusion, and more recently, the decision templates like 
margin theory or Support Vector Machines. Having 
diversity of the classifiers, and hence it is possible to 
achieve better performance of the overall system.

Overfitting is usually attributed to memorizing the 
data, or learning the noise in the data. As a classifier’s 
capacity increases (for example, with the complexity of 
its architecture), so does its tendency to memorize the 
training data and/or learn the noise in the data. 

Uncertainty which is often present in diagnosis and 
is inherent to prognosis can be handled using Bayesian 
network models and Bayesian inference. Multiple 
sources of evidence in diagnosis and prognosis are 
coherently integrated, including component usage, 
environmental conditions of operation as well 
as component health and health trends [72]. This 
technique has been applied to diagnosis of very 
complex transportation and aviation systems and 
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to prognosis of electromechanical and electronic 
subsystems in aviation wherein general inference 
algorithms are employed for Bayesian networks to 
compute the desired probabilities.

Mechanisms that perform information fusion, 
uncertainty management, decision generation, 
evaluation, and optimization as crucial and necessary 
to the success of an effective PHM decision support 
system, complementing each other and making a 
robust decision support system for optimal prognostic 
decision making are mentioned in [73].  

15.3 Damage Identification

The developed model-based reasoner in reference 
[40], applies physical modeling and advanced 
parametric identification techniques, an evolutionary 
prognostics fault detection and failure prediction 
algorithm, for predicting the time-to-failure for each 
of the critical, competitive failure modes within the 
system. An advanced probabilistic fusion strategy 
is also built-in to combine both collaborative and 
competitive predictions. The model-based reasoner 
is non-intrusive and operates only on command/
response data from the flight control system. 
Ultimately, this approach can be transitioned 
towards an onboard or at-wing application. Figure 
14 illustrates a key concept behind model-based 
diagnostics and prediction. The actual system output 
response (event and performance variables) is the 
result of nominal system response plus fault effects 
and uncertainty. A path of the model-based analysis 
and identification of faults is to organize this method 
as an optimization problem to identify the fault 
effects (and thus identify the fault) that produces the 
minimum residual between the predicted and actual 
response. This can be represented mathematically 
using the equation:
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Global search methods, such as genetic algorithms 
and simulated annealing, are much better options 
for on-line model identification. However, similar to 
simplex methods, genetic algorithms do not always 
find the global minima. A hybrid approach that 
combines both genetic algorithms and simulated 
annealing in order to reduce the number of iterations 
needed to reach a global solution. The use of a global 
stochastic search routine may give good results. 
Probabilistic global search routines have proven 
to achieve similar accuracy as simulated annealing 

methods while reaching convergence upon the global 
solution in far less iterations.

Figure 14: Model–Based Approach to Damage Identification [40]

Classification and prognostics are critical steps 
within any PHM monitoring scheme. Impact’s model-
based approach employs a classification system for 
translating the model parameters (known evidence) to 
a current level of damage for each failure mode. Once 
faults are detected and the current damage level is 
assessed, prognostics are implemented to predict the 
progression of the fault towards failure [40].

The trend-based or evolutionary prognostics 
approach has proven to be very effective at predicting 
slow degradation mechanisms  and is attractive 
for system prognostics. This approach relies on 
gauging the proximity and rate of change of the 
current component condition (by way of the model 
parameters) to known fault conditions within 
N-dimensional parameter (feature) space. This 
approach requires that sufficient sensor information is 
available to assess the current condition of the system 
or subsystem with a relative level of uncertainty in this 
measurement. Furthermore, the parametric conditions 
that signify known condition-related faults must be 
identifiable. The evolutionary prognostics routine 
works well within the model-based PHM architecture. 
The developed probabilistic approach uses Euclidean 
distance to calculate the distance between the (current) 
measured condition and known fault conditions in 
parameter space. The fault regions having the shortest 
Euclidean distance to the current condition are then 
used to determine the current health. The primary 
task of diagnostic and damage assessment in real time 
using input from multiple sources, both sensor-based 
and model-based are dealt in [74].

16.1 Prognostic Fusion Strategy

PHM can be based on a hybrid approach to 
accomplish specific goals. Various algorithms are 
developed and each is having some advantage over 
others in various applications. Fusion or hybridization 
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of techniques viz. ‘Multiple classifier fusion’, wherein 
outputs from several different prognostic algorithms 
is fused. Resultant output is more accurate and has 
tighter uncertainty bounds as compared to individual 
algorithm output.  Final decision should be weighted 
combination of decisions of different theories where 
weights are conditional probability of the theories 
given the evidence using Probabilistic Graphical 
Modeling techniques [54].

There is some inherent uncertainty in material 
properties and dimensions of the structures in 
electronic components, electronic system and the 
environment actually experienced. Since uncertainty 
is there in the estimation process, confidence level 
needs to be applied.  Thus RUL requires the fusion 
of models and sensor data to provide an estimate of 
equipment failure time. The modelling of uncertainty 
is essential in PHM, since the objective is to estimate 
a lower bound on time-to-failure at a user selected 
confidence level. 

The application of fusion can be performed at a 
number of areas within the developed framework. 
The developed classification scheme can be expanded 
to  include additional classifiers. The results of the 
independent classifications can then be fused using 
one of the approaches discussed above for a more 
robust classification. Likewise, multiple fault-to-
failure predictors can be used to assess RUL and 
fused to produce a single estimate. Other possible 
applications of fusion include sensor validation and 
confidence evaluation, to name a few.

A framework for applying such fusion approaches 
to multiple RUL predictions was considered in 
reference [40]. As part of the model-based approach, an 
RUL prediction is returned for each of the competitive 
failure modes, each having a different likelihood 
of occurrence. The fusion approach evaluates the 
probability that a given RUL will be reached given 
the probability that the correct failure mode has been 
classified. As illustrated in figure 15, the probability 
that an RUL value will be reached is a function of 
all RUL pdfs from each failure mode. Additionally, 
the probability of reaching an RUL is a function of 
the likelihood of occurrence for each failure mode. 
Therefore, the probability that a specified RUL will be 
reached can be evaluated by the following equation
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The advantage of using this technique for 
reporting RUL is that the user has the ability to assess 
RUL based on a desired risk level. This is manifested 
and reported through the use of a prognostic vector, 
rather than a single RUL prediction. Prognostic 
vectors are arrays of RUL values, returned with the 
corresponding probability that each RUL value will 
be reached. Figure 16 illustrates a prognostic output 
vector, which ultimately allows the user to choose 
the appropriate risk level and make maintenance 
decisions accordingly.

Figure 15: Distribution of RUL Predictions for Each 
Competitive Failure Mode [33]

16.1 Advanced Fusion Strategies

Data or knowledge fusion is the process of using 
collaborative or competitive information to arrive at a 
more confident inference. It is used in both diagnostic 
and prognostic processes. There are three main areas 
where fusion technologies are utilized. At the lowest 
level, data fusion can be used to combine information 
from a multi-sensor data array to validate signals and 
create features [75]. At a higher level, fusion may be 
used to combine derived features to obtain the best 
possible diagnostic information. Finally, knowledge or 
decision fusion is used to incorporate experience-based 
information such as legacy failure rates or physical 
model predictions with signal-based information.
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There exist many algorithms for fusion including 
Bayesian and Dempster-Shafer Combination, and 
Weighted Voting schemes to name a few. (17) 
Bayesian Inference can be eq (10) used to determine 
the probability that a diagnosis is correct, given a 
piece of apriori information. Analytically this process 
is described as follows [40]:
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where P( f1 / On ) = Probability of fault (f) given 
a diagnostic output (On)

P(On / f1)= Probability that a diagnostic output(On) 
is associated with a fault (f1)

P(f1) = Probability of the fault (f1) occurring

The Dempster-Shafer methodology lies on the 
construction of a set, called the frame of discernment, 
which contains every possible hypothesis. Every 
hypothesis has a belief denoted by a mass probability 
(m). Beliefs are combined with the following equation 
[40]:
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17. Conclusion and Recommendations

The current state of practice and ongoing research 
in PHM of electronic products and systems is 
reviewed in this paper. The paper deals with all the 
phases in PHM development; starting from failure 
mechanisms of semiconductor transistors, physics of 
failure models, monitoring parameters for detecting 
failure progression, sensors, data preprocessing 
techniques, identifying important features, handling 
n-dimensional features and system non-linearities 
in classifying healthy and faulty states, regression 
techniques, damage assessment, RUL estimation 
along with uncertainties handling and the required 
mathematical techniques to realize these. It also gives 
methodologies to implement these phases.

The traditional reliability predictions based on 
handbook methods are inaccurate and misleading. 
PHM is more suitable for reliability prediction and 
remaining life assessment, since it considers actual 
operational and environmental loading conditions. By 
using physics-based damage models for electronics, 
obtaining the life cycle data of product, and assessing 

the uncertainty in RUL prediction (in order to make 
PHM more realistic) are covered in this paper. From 
the applications and examples, it is obvious that PHM 
can be incorporated into various electronics products 
and systems which can benefit in reducing life cycle 
costs. In near future, due to the increasing amount of 
electronics in the world and using COTS devices and 
the competitive drive toward more reliable products, 
PHM will be looked upon as a cost-effective solution 
for reliability of electronic products and systems.  The 
major technological items necessary to construct an 
PHM system (failure and cost models and modelling 
tools, prognostic cells, sensors, statistical techniques) 
are all sufficiently matured to consider PHM. It remains 
only to put these pieces together into a workable 
solution and generate a PHM solution having sensors 
with embedded algorithms that will enable fault 
detection, diagnostics and remaining life prognostics. 
The possible applications in nuclear plants considering 
prognotics at system level, critical components level, 
etc. which will help in reducing outages and aid in 
scheduling effective maintenance leading to failure 
avoidance, high availability, and reduction of life 
cycle costs are covered. Implementation of PHM 
technology providing comprehensive and effective 
prognostic solution, should require minimal sensor 
retrofitting or hardware modifications, and should 
be suitable for deployment on wide range of digital 
electronics applications including integration into 
digital electronic boards and COTS embedded 
computer system.
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Abstract

In this article, it has been shown that the credibility distribution of triangular fuzzy variable leads 
us to find a very simple alternative method of finding the membership function for functions of 
triangular fuzzy variables. This concept of credibility theory also leads us in finding an alternative 
method of computing basic arithmetic operations of triangular fuzzy variables and generalised 
membership function for the root of triangular fuzzy variable. The method has been demonstrated 
with the help of some examples.  
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1. Introduction

The basic arithmetic operation of fuzzy number 
has been developed well through the years. Indeed 
Chou [4, 5] has actually developed a method of 
finding the membership function of the square 
root and cube root of a triangular fuzzy number. 
Although there are many arithmetical operation 
approaches, none of the approaches presents a 
generalised method for finding the nth root of the 
fuzzy number. 

Zadeh [7] proposed the concept of possibility 
measure and thereafter this has been widely used 
in solving fuzzy problems. The necessity measure 
is defined as a dual part of possibility measure. 
However, both possibility measure and necessity 
measure are not self-dual. In order to define a self-
dual measure, Liu and Liu [1] present the concept of 
credibility measure.

In this paper the triangular fuzzy variable are 
considered and we try to develop a generalised 
method for finding the membership function for 
functions of triangular fuzzy variables, and very well 
applied in dealing the basic arithmetical operations 
of triangular fuzzy variables, based on the concept of 
credibility distribution.

2. Preliminaries 

3.1 Triangular Fuzzy Variable

A fuzzy variable determined by the triplet 
],,[ cba=β  of crisp number with ( )cba <<  and 

whose membership function is given by
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 
2.1. 

      
],,[ cba=β      ( )cba << 
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   



2.2. 

Θ 
Θ  PA∈ 


}){}{(
2
1

}{ ANecAPosACr +=  

   
 PA∈ 

)1},{2min(}{ ACrAPos =   
    
Cr 

 .1}{ =ΘCr 
 }{}{ BCrACr ≤  BA⊂ 
 1}{}{ =+ CACrACr  
 }{sup}{ iiii ACrACr =∪   
}{ iA  5.0}{sup <ii ACr 

                                                                           (2.1.1)

is called a triangular fuzzy variable.

3.2.	 Credibility Measure

Let Θ  be a non-empty set, and P the power set of 
Θ and PA∈ , Liu and Liu [1] defined the credibility 
measure as
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    
      



 
2.1. 

      
],,[ cba=β      ( )cba << 


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










≤≤−
−
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−
−

=
otherwise

cxbif
bc
xc

bxaif
ab
ax

x

,0

,

,

)(βµ   

   



2.2. 

Θ 
Θ  PA∈ 


}){}{(
2
1

}{ ANecAPosACr +=  

   
 PA∈ 

)1},{2min(}{ ACrAPos =   
    
Cr 

 .1}{ =ΘCr 
 }{}{ BCrACr ≤  BA⊂ 
 1}{}{ =+ CACrACr  
 }{sup}{ iiii ACrACr =∪   
}{ iA  5.0}{sup <ii ACr 

                        
  (2.2.1)

Furthermore, for any PA∈  we have

                                                          (2.2.2) 



















 

               
          
     


        



 
     

     
      

         
     
    
     
    thn     



      
      

    
      





     
 
      
    
      



 
2.1. 

      
],,[ cba=β      ( )cba << 


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
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


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−
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−
−

=
otherwise

cxbif
bc
xc

bxaif
ab
ax

x

,0
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,

)(βµ   

   



2.2. 

Θ 
Θ  PA∈ 


}){}{(
2
1

}{ ANecAPosACr +=  

   
 PA∈ 

)1},{2min(}{ ACrAPos =   
    
Cr 

 .1}{ =ΘCr 
 }{}{ BCrACr ≤  BA⊂ 
 1}{}{ =+ CACrACr  
 }{sup}{ iiii ACrACr =∪   
}{ iA  5.0}{sup <ii ACr 

Li and Liu [8] defined that a set function 
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
















 

               
          
     


        



 
     

     
      

         
     
    
     
    thn     



      
      

    
      





     
 
      
    
      



 
2.1. 

      
],,[ cba=β      ( )cba << 















≤≤−
−

≤≤
−
−

=
otherwise

cxbif
bc
xc

bxaif
ab
ax

x

,0

,

,

)(βµ   

   



2.2. 

Θ 
Θ  PA∈ 


}){}{(
2
1

}{ ANecAPosACr +=  

   
 PA∈ 

)1},{2min(}{ ACrAPos =   
    
Cr 

 .1}{ =ΘCr 
 }{}{ BCrACr ≤  BA⊂ 
 1}{}{ =+ CACrACr  
 }{sup}{ iiii ACrACr =∪   
}{ iA  5.0}{sup <ii ACr 

 is a 
credibility measure if it holds the following  



















 

               
          
     


        



 
     

     
      

         
     
    
     
    thn     



      
      

    
      





     
 
      
    
      



 
2.1. 

      
],,[ cba=β      ( )cba << 















≤≤−
−

≤≤
−
−

=
otherwise

cxbif
bc
xc

bxaif
ab
ax

x

,0

,

,

)(βµ   

   



2.2. 

Θ 
Θ  PA∈ 


}){}{(
2
1

}{ ANecAPosACr +=  

   
 PA∈ 

)1},{2min(}{ ACrAPos =   
    
Cr 

 .1}{ =ΘCr 
 }{}{ BCrACr ≤  BA⊂ 
 1}{}{ =+ CACrACr  
 }{sup}{ iiii ACrACr =∪   
}{ iA  5.0}{sup <ii ACr 

Let ξ  be a fuzzy variable defined on the credibility 
space ),,( CrPΘ



















 

               
          
     


        



 
     

     
      

         
     
    
     
    thn     



      
      

    
      





     
 
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2.2. 
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Θ  PA∈ 
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
 .1}{ =ΘCr 
 }{}{ BCrACr ≤  BA⊂ 
 1}{}{ =+ CACrACr  
 }{sup}{ iiii ACrACr =∪   
}{ iA  5.0}{sup <ii ACr 

),,( CrPΘ . Then its membership function is 
defined from the credibility measure by
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2.3. 
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Rxyyx xyxy ∈∀−+=Φ >≤ )},(sup1)({sup
2
1

)( µµξ



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2.5. 

     
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ξ 
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2.6.    
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3.1. 

    
)0,,(,],,[ >= cbacbaX   

     
],,[ 1111 −−−− = abcX   



                                (2.2.3)
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2.3 Credibility Distribution 

Liu [2] defined credibility distribution as 
]1,0[: →Φ Rξ  of any fuzzy variable ξ as

})(:{)( xCrx ≤Θ∈=Φ θξθξ



















 

               
          
     


        



 
     

     
      

         
     
    
     
    thn     



      
      

    
      





     
 
      
    
      



 
2.1. 

      
],,[ cba=β      ( )cba << 















≤≤−
−

≤≤
−
−

=
otherwise

cxbif
bc
xc

bxaif
ab
ax

x

,0

,

,

)(βµ   

   



2.2. 

Θ 
Θ  PA∈ 


}){}{(
2
1

}{ ANecAPosACr +=  

   
 PA∈ 

)1},{2min(}{ ACrAPos =   
    
Cr 

 .1}{ =ΘCr 
 }{}{ BCrACr ≤  BA⊂ 
 1}{}{ =+ CACrACr  
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That is the credibility that the fuzzy variable ξ  
takes a value less than or equal to x . If the fuzzy 
variable ξ  is given by a membership function µ , 
then its credibility distribution is determined by
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2.4 Credibility Distribution of Triangular Fuzzy 
Variable 

The credibility distribution of a triangular fuzzy 
variable ],,[ cba=β  is given by
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                                                                                  (2.4.1)

2.5 Credibility Density Function 

The credibility density function defined by Liu 
[3] as ),0[: ∞→Rξφ of any fuzzy variable ξ  is a 
function such that
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3. The Membership Function for Functions of 
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   )](),(),([)( cFbFaFXF = 
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2.3. 

     
]1,0[: →Φ Rξ ξ 

})(:{)( xCrx ≤Θ∈=Φ θξθξ 

ξ 
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3.2 Negative of a Triangular Fuzzy Variable

C o n s i d e r  a  t r i a n g u l a r  f u z z y  v a r i a b l e
)0,,(,],,[ >= cbacbaX , with membership function 

as given in (2.1.1) and let ],,[ abcX −−−=− . The 
credibility distribution function and the credibility 
density function are as given in (2.4.1) and (2.6.1) 
respectively.

Let xy −= ,  so that 1
dx

dy
= . The credibility 

distribution of X−  is
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4.3 Square Root of a Triangular Fuzzy Variable

C o n s i d e r  a  t r i a n g u l a r  f u z z y  v a r i a b l e
)0,,(,],,[ >= cbacbaX , with membership function 

is as given in (2.1.1), and let ],,[ cbaX =
. Accordingly the credibility distribution and the 
credibility density function are as given in (2.4.1) and 
(2.6.1) respectively.
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 . The credibility

distribution function for X , is  
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3.2. 

    
)0,,(,],,[ >= cbacbaX   

      
],,[ abcX −−−=− 



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3.3.      


    
)0,,(,],,[ >= cbacbaX   

       
],,[ cbaX =   
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       


 xy =  y
dy
dx 2= 
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3.4. thn 

    
)0,,(,],,[ >= cbacbaX   

      
],,[ nnnn cbaX =   

    
       

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dy
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Then the membership function of the fuzzy 
variable X is 

3.4 thnth Root of a Triangular Fuzzy Variable

C o n s i d e r  a  t r i a n g u l a r  f u z z y  v a r i a b l e
)0,,(,],,[ >= cbacbaX , with membership function 

as given in (2.1.1), and let ],,[ nnnn cbaX =
. Accordingly the credibility distribution and the 
credibility density function are as given in (2.4.1) and 
(2.6.1) respectively.
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3.2. 

    
)0,,(,],,[ >= cbacbaX   

      
],,[ abcX −−−=− 




 xy −=    1=
dy
dx   
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3.3.      


    
)0,,(,],,[ >= cbacbaX   

       
],,[ cbaX =   
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
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dy
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 )(xYX +Φ 
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 
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],,[ cbaX =   ],,[ rqpY =  

YXZ −=     
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)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 

 ].,.,.[. rcqbpaYXZ ==   
   YX .    
  X   Y   )(xXµ  
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     
       
     
     


4. Arithmetic of Triangular Fuzzy Variables

4.1 Addition of Fuzzy Variable

Consider the fuzzy variables ],,[ cbaX =
and ],,[ rqpY = .Suppose  ],,[ rcqbpaYXZ +++=+=  

],,[ rcqbpaYXZ +++=+= be the fuzzy number of YX + . Let the 
membership function of X  and Y  be )(xXµ  and

)(yYµ , where,
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 )(2 xΦ  )(2 yΦ     
( )xy 1ψ=   ( )xy 2ψ=   

yxz +=     ( )xxz 1ψ+=  
( )xxz 2ψ+=    ( )zx 1ω=  

( )zx 2ω=     
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( )z2ω   ( )xf   ( )xg    ( ) ( )zxf 1χ= 
 ( ) ( )zxg 2χ= 
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],,[ cbaX =   ],,[ rqpY =  

YXZ −=     
YXZ −=  )( YXZ −+= 


 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 

 ].,.,.[. rcqbpaYXZ ==   
   YX .    
  X   Y   )(xXµ  

)(yYµ       
     
       
     
     


                             (4.1.1)
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)0,,(,],,[ >= cbacbaX 


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 ].,.,.[. rcqbpaYXZ ==   
   YX .    
  X   Y   )(xXµ  

)(yYµ       
     
       
     
     


                                                                      

     (4.1.2)

Let the credibility distribution of the triangular 
fuzzy variables (4.1.1) and (4.1.2) are 
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    ],,[ cbaX =
 ],,[ rqpY =  

],,[ rcqbpaYXZ +++=+=   
  YX +    
  X   Y   )(xXµ  

)(yYµ 
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1  

   
      






<≤
<≤= cxbifxg
bxaifxfxX ),(

),()(φ  

   
    )(1 xΦ  )(1 yΦ

 )(2 xΦ  )(2 yΦ     
( )xy 1ψ=   ( )xy 2ψ=   

yxz +=     ( )xxz 1ψ+=  
( )xxz 2ψ+=    ( )zx 1ω=  

( )zx 2ω=     

 ( )z1ω 

( )z2ω   ( )xf   ( )xg    ( ) ( )zxf 1χ= 
 ( ) ( )zxg 2χ= 

  ( )( ) ( )zmz
dz
d

dz
dx

11 == ω  

( )( ) ( )zmz
dz
d

dz
dx

22 == ω   

 YX + 
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11

χ

χ 





 )(xYX +Φ 

 

    
],,[ cbaX =   ],,[ rqpY =  

YXZ −=     
YXZ −=  )( YXZ −+= 


 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 

 ].,.,.[. rcqbpaYXZ ==   
   YX .    
  X   Y   )(xXµ  

)(yYµ       
     
       
     
     


 

					               (4.1.3)
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
3.2. 

    
)0,,(,],,[ >= cbacbaX   

      
],,[ abcX −−−=− 




 xy −=    1=
dy
dx   

 X− 
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3.3.      


    
)0,,(,],,[ >= cbacbaX   

       
],,[ cbaX =   

    
       
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                          (4.1.4)

Let the credibility density function of the credibility 
distribution function (4.1.3) is  
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   YX .    
  X   Y   )(xXµ  

)(yYµ       
     
       
     
     


                              (4.1.5)

We start with equating )(1 xΦ with )(1 yΦ and 
)(2 xΦ with )(2 yΦ . And so, we obtain ( )xy 1ψ=  

and ( )xy 2ψ=  respectively. Let yxz += , so we 
have ( )xxz 1ψ+=  and ( )xxz 2ψ+= , so that 

( )zx 1ω=  and ( )zx 2ω= , say. The credibility 
density function (4.1.5) should be transformed in 
terms of the function of z by replacing x by ( )z1ω  and 

( )z2ω  in ( )xf  and ( )xg , so that ( ) ( )zxf 1χ=  and
( ) ( )zxg 2χ= , say.
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
 ( )z1ω 

( )z2ω   ( )xf   ( )xg    ( ) ( )zxf 1χ= 
 ( ) ( )zxg 2χ= 

  ( )( ) ( )zmz
dz
d

dz
dx

11 == ω  

( )( ) ( )zmz
dz
d

dz
dx

22 == ω   

 YX + 
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χ

χ 





 )(xYX +Φ 

 

    
],,[ cbaX =   ],,[ rqpY =  

YXZ −=     
YXZ −=  )( YXZ −+= 


 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 

 ].,.,.[. rcqbpaYXZ ==   
   YX .    
  X   Y   )(xXµ  

)(yYµ       
     
       
     
     


,  a n d . 
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    ],,[ cbaX =
 ],,[ rqpY =  

],,[ rcqbpaYXZ +++=+=   
  YX +    
  X   Y   )(xXµ  

)(yYµ 
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1  

   
      






<≤
<≤= cxbifxg
bxaifxfxX ),(

),()(φ  

   
    )(1 xΦ  )(1 yΦ

 )(2 xΦ  )(2 yΦ     
( )xy 1ψ=   ( )xy 2ψ=   

yxz +=     ( )xxz 1ψ+=  
( )xxz 2ψ+=    ( )zx 1ω=  

( )zx 2ω=     

 ( )z1ω 

( )z2ω   ( )xf   ( )xg    ( ) ( )zxf 1χ= 
 ( ) ( )zxg 2χ= 

  ( )( ) ( )zmz
dz
d

dz
dx

11 == ω  

( )( ) ( )zmz
dz
d

dz
dx

22 == ω   

 YX + 
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χ

χ 





 )(xYX +Φ 

 

    
],,[ cbaX =   ],,[ rqpY =  

YXZ −=     
YXZ −=  )( YXZ −+= 


 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 

 ].,.,.[. rcqbpaYXZ ==   
   YX .    
  X   Y   )(xXµ  

)(yYµ       
     
       
     
     

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   
    )(1 xΦ  )(1 yΦ

 )(2 xΦ  )(2 yΦ     
( )xy 1ψ=   ( )xy 2ψ=   

yxz +=     ( )xxz 1ψ+=  
( )xxz 2ψ+=    ( )zx 1ω=  

( )zx 2ω=     

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
 )(xYX +Φ 

 

    
],,[ cbaX =   ],,[ rqpY =  

YXZ −=     
YXZ −=  )( YXZ −+= 


 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 

 ].,.,.[. rcqbpaYXZ ==   
   YX .    
  X   Y   )(xXµ  

)(yYµ       
     
       
     
     


Thus the membership function of addition of the 
fuzzy variables can be easily found from the credibility 
distribution function )(xYX +Φ .

4.2 Subtraction of Fuzzy Variable

Consider the triangular fuzzy variables 
],,[ cbaX =  and ],,[ rqpY = . Suppose YXZ −= ,  

then the membership function of YXZ −=   is given 
by )( YXZ −+= .

4.3 Multiplication of Fuzzy Variables

Consider the triangular fuzzy variables

)0,,(,],,[ >= cbacbaX

 and
)0,,(,],,[ >= rqprqpY .

Suppose ].,.,.[. rcqbpaYXZ ==  be the fuzzy 
variable of YX . . Let the membership function of 
X  and Y  be )(xXµ  and )(yYµ  as mentioned in 
(4.1.1) and (4.1.2) respectively. Let the credibility 
distribution of (4.1.1) and (4.1.2) are as mentioned 
in (4.1.3) and (4.1.4) respectively. Let the credibility 
density function of the credibility distribution function 
(4.1.3) is (4.1.5).

We start with equating )(1 xΦ with )(1 yΦ and 
)(2 xΦ with )(2 yΦ . And so, we obtain ( )xy 1ψ=  

and ( )xy 2ψ=  respectively. Let yxz .=  , so 
we have ( )xxz 1.ψ=  and ( )xxz 2.ψ= , so that 

( )zx 1ω=  and ( )zx 2ω= , say. The credibility 
density function (4.1.5) should be transformed in 
terms of the function of z by replacing x by ( )z1ω  and 

( )z2ω  in ( )xf  and ( )xg , so that ( ) ( )zxf 1χ=   and
( ) ( )zxg 2χ= , say.

N o w  l e t ,   
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 ( ) ( )zxg 2χ= 
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22 == ω   

 YX . 














≥

<≤+

<≤

<

=Φ




rcxif

rcxqbifdzzmz

qbxpaifdzzmz

paxif

x
x

rc

x

pa
YX

.,1

..)()(1

..,)()(

.,0

)(

.. 22

. 11

.

χ

χ


    
      
     
 )(. xYXΦ 

 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 


Y
XZ =  


Y
X

Z =  1. −= YXZ 


 


    
]28,16,12[=X   ]8,6,5[=Y  

      





==

5
28,

3
8,

2
3

Y
XZ 











≤≤−
≤≤−

=
otherwise

xifx
xifx

xX

,0
2816,

36
384

1612,
4
12

)(µ 








≤≤−
≤≤−

=
otherwise

yify
yify

yY

,0
86,

2
8

65,5

)(µ 

    
    )(xXµ   












≥
<≤−
<≤−

<

=Φ

28,1
2816,

24
4

1612,
8
12

12,0

)(

xif
xifx
xifx

xif

xX 







<≤=

<≤=
=

2816,
24
1)(

1612,
8
1)(

)(
2

1

zifz

zifz
zX

χ

χ
φ 

 1−Y 














≥
<≤−
<≤−

<

=Φ

−

−−

−−

−

−

1

11

11

1

5,1

56,
2

17

68,
4

18
8,0

)(1

yif

yif
y

y

yif
y

y
yif

yY 

    
 X  1−Y 

( )zm
zdz

dx
12)2(

56 =+=   

( )zm
zdz

dx
22)12(

1056 =
+

=    

   1. −= YXZ    














≥

<≤+
−

<≤+
−

<

=Φ −

5/28,1

5/283/8,
)12(2

47
3/82/3,

2
32

2/3,0

)(1.

xif

xif
x
x

xif
x
x

xif

xYX 

     
 1. −YX 

 a n d .







    )(1 xΦ  )(1 yΦ
 )(2 xΦ  )(2 yΦ     

( )xy 1ψ=   ( )xy 2ψ=   
yxz .=      ( )xxz 1.ψ=  

( )xxz 2.ψ=    ( )zx 1ω=  
( )zx 2ω=     


 ( )z1ω 

( )z2ω   ( )xf   ( )xg    ( ) ( )zxf 1χ= 
 ( ) ( )zxg 2χ= 

   ( )( ) ( )zmz
dz
d

dz
dx

11 == ω  

( )( ) ( )zmz
dz
d

dz
dx

22 == ω   

 YX . 














≥

<≤+

<≤

<

=Φ




rcxif

rcxqbifdzzmz

qbxpaifdzzmz

paxif

x
x

rc

x

pa
YX

.,1

..)()(1

..,)()(

.,0

)(

.. 22

. 11

.

χ

χ


    
      
     
 )(. xYXΦ 

 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 


Y
XZ =  


Y
X

Z =  1. −= YXZ 


 


    
]28,16,12[=X   ]8,6,5[=Y  

      





==

5
28,

3
8,

2
3

Y
XZ 











≤≤−
≤≤−

=
otherwise

xifx
xifx

xX

,0
2816,

36
384

1612,
4
12

)(µ 








≤≤−
≤≤−

=
otherwise

yify
yify

yY

,0
86,

2
8

65,5

)(µ 

    
    )(xXµ   












≥
<≤−
<≤−

<

=Φ

28,1
2816,

24
4

1612,
8
12

12,0

)(

xif
xifx
xifx

xif

xX 







<≤=

<≤=
=

2816,
24
1)(

1612,
8
1)(

)(
2

1

zifz

zifz
zX

χ

χ
φ 

 1−Y 














≥
<≤−
<≤−

<

=Φ

−

−−

−−

−

−

1

11

11

1

5,1

56,
2

17

68,
4

18
8,0

)(1

yif

yif
y

y

yif
y

y
yif

yY 

    
 X  1−Y 

( )zm
zdz

dx
12)2(

56 =+=   

( )zm
zdz

dx
22)12(

1056 =
+

=    

   1. −= YXZ    














≥

<≤+
−

<≤+
−

<

=Φ −

5/28,1

5/283/8,
)12(2

47
3/82/3,

2
32

2/3,0

)(1.

xif

xif
x
x

xif
x
x

xif

xYX 

     
 1. −YX 

 

The credibility distribution function of YX . , is 
given by

 







    )(1 xΦ  )(1 yΦ
 )(2 xΦ  )(2 yΦ     

( )xy 1ψ=   ( )xy 2ψ=   
yxz .=      ( )xxz 1.ψ=  

( )xxz 2.ψ=    ( )zx 1ω=  
( )zx 2ω=     


 ( )z1ω 

( )z2ω   ( )xf   ( )xg    ( ) ( )zxf 1χ= 
 ( ) ( )zxg 2χ= 

   ( )( ) ( )zmz
dz
d

dz
dx

11 == ω  

( )( ) ( )zmz
dz
d

dz
dx

22 == ω   

 YX . 














≥

<≤+

<≤

<

=Φ




rcxif

rcxqbifdzzmz

qbxpaifdzzmz

paxif

x
x

rc

x

pa
YX

.,1

..)()(1

..,)()(

.,0

)(

.. 22

. 11

.

χ

χ


    
      
     
 )(. xYXΦ 

 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 


Y
XZ =  


Y
X

Z =  1. −= YXZ 


 


    
]28,16,12[=X   ]8,6,5[=Y  

      





==

5
28,

3
8,

2
3

Y
XZ 











≤≤−
≤≤−

=
otherwise

xifx
xifx

xX

,0
2816,

36
384

1612,
4
12

)(µ 








≤≤−
≤≤−

=
otherwise

yify
yify

yY

,0
86,

2
8

65,5

)(µ 

    
    )(xXµ   












≥
<≤−
<≤−

<

=Φ

28,1
2816,

24
4

1612,
8
12

12,0

)(

xif
xifx
xifx

xif

xX 







<≤=

<≤=
=

2816,
24
1)(

1612,
8
1)(

)(
2

1

zifz

zifz
zX

χ

χ
φ 

 1−Y 














≥
<≤−
<≤−

<

=Φ

−

−−

−−

−

−

1

11

11

1

5,1

56,
2

17

68,
4

18
8,0

)(1

yif

yif
y

y

yif
y

y
yif

yY 

    
 X  1−Y 

( )zm
zdz

dx
12)2(

56 =+=   

( )zm
zdz

dx
22)12(

1056 =
+

=    

   1. −= YXZ    














≥

<≤+
−

<≤+
−

<

=Φ −

5/28,1

5/283/8,
)12(2

47
3/82/3,

2
32

2/3,0

)(1.

xif

xif
x
x

xif
x
x

xif

xYX 

     
 1. −YX 

Thus the membership function of multiplication 
of the fuzzy variables can be easily found from the 
credibility distribution function )(. xYXΦ . 

4.4 Division of Fuzzy Variables

Consider the triangular fuzzy variables
)0,,(,],,[ >= cbacbaX

and

)0,,(,],,[ >= rqprqpY .

Suppose Y
XZ = then membership function of 

Y

X
Z =  

is given by 1. −= YXZ .
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5. Numerical Examples

Example 

Consider two triangular fuzzy variables 
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 ( ) ( )zxg 2χ= 
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 )(. xYXΦ 

 


)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 


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     
 1. −YX 
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    )(1 xΦ  )(1 yΦ
 )(2 xΦ  )(2 yΦ     

( )xy 1ψ=   ( )xy 2ψ=   
yxz .=      ( )xxz 1.ψ=  

( )xxz 2.ψ=    ( )zx 1ω=  
( )zx 2ω=     


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( )z2ω   ( )xf   ( )xg    ( ) ( )zxf 1χ= 
 ( ) ( )zxg 2χ= 
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    
      
     
 )(. xYXΦ 

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
)0,,(,],,[ >= cbacbaX 


)0,,(,],,[ >= rqprqpY 


Y
XZ =  


Y
X

Z =  1. −= YXZ 


 

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The credibility distribution function of 1−Y  is 
found to be
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1)(

)(
2

1

zifz

zifz
zX

χ

χ
φ 

 and 

















≤≤+
−

≤≤+
−

=−

otherwise
xif

x
x

xif
x
x

xYX

,0
5/283/8,

12
528

3/82/3,
2
64

)(1.µ 




    
]19,14,7[=X   ]10,5,3[=Y  

      
]16,9,3[−=−= YXZ 











≤≤−
≤≤−

=
otherwise

xifx
xifx

xX

,0
1914,

5
19

147,
7

7

)(µ 













≤≤−
≤≤−

=
otherwise

yify
yify

yY

,0
105,

2
10

53,
2

3

)(µ 

    
    )(xXµ   













≥
<≤−
<≤−

<

=Φ

19,1
1914,

10
9

147,
8

7
7,0

)(

xif
xifx
xifx

xif

xX 







<≤=

<≤=
=

1914,
10
1)(

147,
8
1)(

)(
2

1

zifz

zifz
zX

χ

χ
φ 

 Y− 














−≥
−<≤−+
−<≤−−

−<

=Φ−

3,1
35,

4
7

510,
10

10
10,0

)(

yif
yify
yify

yif

yY 

    
  X   Y−   

( )zm
dz
dx
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( )zm
dz
dx

27
5 ==    

 )( YXZ −+= 












≥
<≤−

<≤−+
−<

=Φ −+

16,1
169,

14
2

93,
24

3
3,0

)()(

xif
xifx
xifx

xif

xYX 

     
 )( YX −+ 











≤≤−
≤≤−+

=−+

otherwise
xifx
xifx

xYX

,0
169,

7
16

93,
12

3

)()(µ 




    
]5,3,2[=X   ]6,5,3[=Y  

      
]30,15,6[. == YXZ 








≤≤−
≤≤−

=
otherwise

xifx
xifx

xX

,0
53,

2
5

32,2
)(µ 










≤≤−
≤≤−

=
otherwise

yify
yif

y

yY
,0

65,6
53,

2
3

)(µ 

    
)(xXµ  )(yYµ 











≥
<≤−
<≤−

<

=Φ

5,1
53,

4
1

32,
2

2
2,0

)(

xif
xifx
xifx

xif

xX 













≥
<≤−
<≤−

<

=Φ

6,1
65,

2
4

53,
4

3
3,0

)(

yif
yif

y
yif

y
yif

yY 

     
 )(xXΦ 







<≤=

<≤=
=

53,
4
1)(

32,
2
1)(

)(
2

1

zifz

zifz
zX

χ

χ
φ 

 with membership 
function as given below, and let. 

 

















≤≤+
−

≤≤+
−

=−

otherwise
xif

x
x

xif
x
x

xYX

,0
5/283/8,

12
528

3/82/3,
2
64

)(1.µ 




    
]19,14,7[=X   ]10,5,3[=Y  

      
]16,9,3[−=−= YXZ 











≤≤−
≤≤−

=
otherwise

xifx
xifx

xX

,0
1914,

5
19

147,
7

7

)(µ 













≤≤−
≤≤−

=
otherwise

yify
yify

yY

,0
105,

2
10

53,
2

3

)(µ 

    
    )(xXµ   













≥
<≤−
<≤−

<

=Φ

19,1
1914,

10
9

147,
8

7
7,0

)(

xif
xifx
xifx

xif

xX 







<≤=

<≤=
=

1914,
10
1)(

147,
8
1)(

)(
2

1

zifz

zifz
zX

χ

χ
φ 

 Y− 














−≥
−<≤−+
−<≤−−

−<

=Φ−

3,1
35,

4
7

510,
10

10
10,0

)(

yif
yify
yify

yif

yY 

    
  X   Y−   

( )zm
dz
dx

112
7 ==   

( )zm
dz
dx

27
5 ==    

 )( YXZ −+= 












≥
<≤−

<≤−+
−<

=Φ −+

16,1
169,

14
2

93,
24

3
3,0

)()(

xif
xifx
xifx

xif

xYX 

     
 )( YX −+ 











≤≤−
≤≤−+

=−+

otherwise
xifx
xifx

xYX

,0
169,

7
16

93,
12

3

)()(µ 




    
]5,3,2[=X   ]6,5,3[=Y  

      
]30,15,6[. == YXZ 








≤≤−
≤≤−

=
otherwise

xifx
xifx

xX

,0
53,

2
5

32,2
)(µ 










≤≤−
≤≤−

=
otherwise

yify
yif

y

yY
,0

65,6
53,

2
3

)(µ 

    
)(xXµ  )(yYµ 











≥
<≤−
<≤−

<

=Φ

5,1
53,

4
1

32,
2

2
2,0

)(

xif
xifx
xifx

xif

xX 













≥
<≤−
<≤−

<

=Φ

6,1
65,

2
4

53,
4

3
3,0

)(

yif
yif

y
yif

y
yif

yY 

     
 )(xXΦ 







<≤=

<≤=
=

53,
4
1)(

32,
2
1)(

)(
2

1

zifz

zifz
zX

χ

χ
φ 

















≤≤+
−

≤≤+
−

=−

otherwise
xif

x
x

xif
x
x

xYX

,0
5/283/8,

12
528

3/82/3,
2
64

)(1.µ 




    
]19,14,7[=X   ]10,5,3[=Y  

      
]16,9,3[−=−= YXZ 











≤≤−
≤≤−

=
otherwise

xifx
xifx

xX

,0
1914,

5
19

147,
7

7

)(µ 













≤≤−
≤≤−

=
otherwise

yify
yify

yY

,0
105,

2
10

53,
2

3

)(µ 
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The credibility distribution function and 
credibility density function of )(xXµ  are as below 
respectively.
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The credibility distribution function of Y−  is 
found to be
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Now equating the credibility distribution functions 
of X  and Y− , we have 
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 and similarly. 
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Example

Consider two triangular fuzzy variables 
]5,3,2[=X  and ]6,5,3[=Y  with membership 

function as given below, and let
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The credibility distribution functions of )(xXµ  
and )(yYµ  are as below respectively.
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The credibility density function of the credibility 
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Now equating the credibility distribution functions 
of X  and Y , we have
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     
     
   




          

      
 


       


       


 
       



 



        
    


           



         
      


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     
 YX . 
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      

    
α 


 



    


     
     
      
     
      
      


        
     thn 
      
      
    

     
     



    

      
     
     
   




          

      
 


       


       


 
       



 



        
    


           



         
      






 Thus the  credibi l i ty 
distribution function of YXZ .=  is of the 
form

 






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=    

   YXZ .=    
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xif
xifx

xifx
xif

xYX 

     
 YX . 
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
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xifx

xifx

xYX
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3015,

4
17849
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4

817

)(.µ 

      

    
α 


 



    


     
     
      
     
      
      


        
     thn 
      
      
    

     
     



    

      
     
     
   




          

      
 


       


       


 
       



 



        
    


           



         
      


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Thus the membership function of the fuzzy 
variable YX .  is
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     
 YX . 
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      

    
α 


 



    


     
     
      
     
      
      


        
     thn 
      
      
    

     
     



    

      
     
     
   




          

      
 


       


       


 
       



 



        
    


           



         
      






These examples have been quoted from the book 
by Bojadziev and Bojadziev [6], the result tallies 
with it, where it has been solved by the method of 
α -cuts.
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6. Conclusion

Here we have tried to develop an alternative 
method of finding the membership function for 
functions of triangular fuzzy variable from the concept 
of credibility theory. A new method for computation 
of basic arithmetical operations of fuzzy variable 
is forwarded. This method validity has been tested 
evaluating some examples which were quoted from [6], 
where they were solved by the method of alpha-cuts 
and are compared with the results obtained here. The 
square root of triangular fuzzy variable found by our 
proposed method tallies with the one defined by Chou 
[2].  A generalised membership function for the thn  
root of triangular fuzzy variable has been forwarded. 
The method can be applied in solving equations with 
fuzzy coefficients. Further the proposed method can 
be applied to the uncertainty analysis of dispersion 
models and engineering problems which can be taken 
for further research.  
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