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Editorial

  Life Cycle Reliability and Safety Engineering 
Vol.2 Issue 1 (2013)

It is established that the engineering decisions have to be taken in the face of uncertainties.  The type of uncertainty to 
be handled by the engineer varies depending on its source.  In such cases decisions should take into account the presence 
of a single or multiple types of uncertainties.  This special issue, being brought out in two parts, is dedicated to basically 
handling of hybrid uncertainties.  However, two papers, one dealing with the fuzzy and the other with probabilistic 
uncertainties are included since they are insightful.  

The first paper of this issue is by Padhy et al, on ‘Simplified fuzzy-random seismic fragility of open ground storey 
buildings’.  The topic of this paper is important since open storey buildings are being constructed and the ground storey 
is used as parking lots.  During the Bhuj earthquake, in 2001, this type of buildings suffered extensive damage and in 
some instances collapsed.  Thus, seismic fragility analysis of open storey buildings is a topic of current research interest.  
The authors carry out detailed nonlinear time history analysis of the RC frames for estimating capacity and also evaluate 
the seismic demand.  While the seismic demand and capacity have been considered, in the displacement space, to follow 
lognormal distributions, the limit state has been fuzzified. The analysis of fragility curves for different values of fuzziness 
parameter showed that the fragility curves are sensitive to limit state thresholds when fuzziness is high. The coupling 
effect of structural irregularity with the fuzziness is found to be insignificant. 

The second paper is by Balu and Rao on ‘Bounds on reliability of structures with multiple design points using 
MHDMR’.  The authors propose two approaches to determine the bounds on reliability of structures namely, (i) 
coupled MHDMR−FFT based reliability analysis, and (ii) coupled MHDMR−MCS based reliability analysis.  Both the 
methods are able to handle the random and fuzzy variables and nonlinear limit state function with multiple design 
points.  The efficacy of the proposed methodologies has been demonstrated for three example problems.  The proposed 
approaches are elucidated in the form of flow charts and the examples clearly show how the proposed approaches are 
computationally efficient compared to the simple Monte Carlo techniques.  These approaches show promise especially 
when the dimensionality of the problem increases.  

The next paper in this issue is on ‘Expert elicitations: A tool for decision making in risk management issue’, by Gopika 
Vinod and Sanyasi Rao, deals with an important aspect of engineering decision making namely, expert elicitation.  The 
authors have presented briefly, but effectively, different commonly used approaches with respect to structured expert 
judgment and also highlighted their advantages and disadvantages appropriately.  The authors provide two very insightful 
examples namely, a typical example of finding failure probability of a component taking into account the results of risk 
based inspection, and, forecasting research areas and their importance ranking using Delphi technique.

The paper by Anoop et al on ‘Remaining life estimation of corrosion-affected RC bridge girders using online monitoring 
data – a fuzzy-random approach’ presents a new approach for remaining life estimation of corrosion-affected reinforced 
concrete (RC) flexural members in the presence of fuzzy and random uncertainties. The proposed approach takes into 
consideration the delay in detection of corrosion initiation using the online monitoring data. Using the proposed approach, 
bounds for characteristic value of failure probability for a RC T-beam bridge girder has been determined.  The approach 
will be useful for making decisions regarding scheduling of in-service inspections.

‘Sensitivity studies on fatigue crack growth parameters in concrete’, by Fathima and Chandra Kishen, deals with the 
explanation of fatigue crack growth in concrete members within the framework of thermodynamics.  The authors have 
made use of concepts of dimensional analysis and self-similarity to determine the parameters in the crack propagation 
law.  The authors carry out both deterministic and probabilistic sensitivity analyses to identify important parameters 
affecting the fatigue crack propagation in concrete.  In their study they consider the test results reported by Bazant and Xu 
on three notched beams.   The authors also indicate that there is a need to carry out further investigations by considering 
the crack length as a fuzzy variable.

Rama Rao et al present in their paper ‘Fuzzy analysis of the moment of resistance of a doubly reinforced concrete 
beam with uncertain structural parameters’ the static stress analysis of doubly reinforced concrete flexural members 
subject to parametric uncertainty.  The two variables considered as fuzzy are area of steel and the Young’s modulus of 
steel and the same are represented as number of α - sublevels.  The interval analysis is performed using three different 
approaches. A direct interval computation, and two response surface based approximate approaches.  The authors find 
that, with respect to the problem considered, all three approaches perform satisfactorily in determining the fuzzy set 
for moment of resistance.  

One of the guest editors, Dr K. Balaji Rao, is very thankful to his colleague Dr M. B. Anoop, of Risk and Reliability of 
Structures Group of CSIR-SERC, for helping in reviewing some of the papers and also in helping in discussions regarding 
the papers.  The guest editors are very thankful to the chief-editors in general and, Dr Varde and Dr Gopika Vinod in 
particular.  We are very thankful to all the authors who have responded to our invitation and the publishers who have 
done a good job of bringing out this special issue.

K. Balaji Rao 
Chandra S. Putcha
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remaining life Estimation of Corrosion-affected rC bridge Girders 
using online Monitoring data – a fuzzy-random approach
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* - Scientist, CSIR-Structural Engineering Research Centre, CSIR Campus, Taramani, Chennai, INDIA 

** - Professor, Department of Civil Engineering, Indian Institute of Science, Bangalore, INDIA 
email: anoop@serc.res.in

abstract 

A new approach for remaining life estimation of corrosion-affected reinforced concrete (RC) flexural 
members in the presence of fuzzy and random uncertainties presented in this paper. The proposed 
approach takes into consideration the delay in detection of corrosion initiation using the online 
monitoring data. The approach combines the vertex method of fuzzy set theory with Monte Carlo 
simulation technique for fuzzy-random modelling of the evolution of deterioration of moment 
of resistance of a corrosion-affected RC structural member. The fuzzy sets of failure probability 
against the limit state of collapse in flexure at different instants of time are constructed. It is 
also shown how to determine the bounds for characteristic value of failure probability from the 
resulting fuzzy set with minimal computational effort. Using the proposed approach, bounds for 
characteristic value of failure probability for a RC T-beam bridge girder has been determined. The 
fuzzy-random approach presented will be useful for remaining life estimation and for making 
decisions regarding scheduling of in-service inspections.

Keywords: Reinforced Concrete; Chloride-Induced Corrosion; Online Monitoring; Change Point 
Detection; Hybrid Uncertainties; Remaining Life Estimation;
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1 introduction

With the emphasis being placed on development 
of new infrastructure and life extension programs for 
existing structures to meet the challenges of sustainable 
structures, online health monitoring has become a 
practical requirement. In particular, this is required in 
the case of bridge stocks consisting of large number 
of bridges which are to be monitored simultaneously. 
The advances made in sensing technologies, data 
acquisition and data communication has made 
possible the long-term continuous monitoring of major 
structures using permanent monitoring systems [1]. A 
major shortcoming of permanent monitoring systems 
is the extensive lengths of cables required for transfer 
of sensor measurements, leading to higher costs. The 
costs can be reduced by eliminating the cables through 
integration of wireless radio with sensor [2]. Most of 
the power in the wireless sensing units is used by the 
wireless radios, which can be reduced by transmitting 
only the significant data. This can be achieved by 
examining the data in the wireless sensing unit itself 
using integrated sophisticated microcontroller, and 
then transmitting only the required indicators [3]. 

For instance, damage detection algorithms could be 
used to determine if damage is present and wireless 
radio is used for transmitting the information only if 
damage was sensed [4]. 

In civil structures, the detection of damage before 
critical failure is of extreme importance. Most of the 
damage detection problems involve detection of one 
or several changes in some characteristic properties of 
the considered system [5]. The time instant at which 
the change occurs is called the change point [6]. With 
the development of more comprehensive strategies 
for online monitoring and the developments in smart 
sensor technology and digital data acquisition [7], 
there is a need to develop change point detection 
algorithms which can be used online for automated 
damage detection. 

One of the major degradation mechanisms for 
reinforced concrete (RC) structures located in marine 
environment is the chloride-induced corrosion of 
reinforcement embedded in concrete. For these 
structures, detection of corrosion of reinforcement in 
its early stages will be useful for undertaking suitable 
measures for mitigating the corrosion damage. This 
will help in optimal allocation of resources. From 
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laboratory experimental investigations [8-12], it is 
noted that electrochemical noise can indicate the 
current level of corrosion activity of steel in concrete, 
especially transition from passive state to active 
corrosion state. Electrochemical noise technique is 
an emerging technique for monitoring corrosion 
of reinforcement in concrete [13-14]. There is a 
need to develop automated procedures to identify 
the corrosion initiation from the online monitored 
electrochemical noise data. Towards this, in the present 
study, the identification of time of corrosion initiation 
is modeled as a problem of detection of change point in 
online monitored electrochemical current noise data. 
For change point detection, an algorithm based on 
Bayesian approach is proposed [15]. A new approach 
for remaining life estimation of corrosion-affected 
RC flexural members in the presence of fuzzy- and 
random- uncertainties, taking into consideration the 
delay in detection of corrosion initiation using the 
online monitoring algorithm, is presented in this 
paper. The fuzzy-random approach presented will be 
useful for making decisions regarding scheduling of 
in-service inspections. 
2. detection of Corrosion initiation using 

online Monitoring data

The localized corrosion processes, such as that 
associated with chloride-induced corrosion of 
reinforcement in concrete, give rise to electrochemical 
noise as already indicated. The coefficient of variation 
of corrosion current noise ranges from 10-3 for general 
corrosion to 1.0 for localized corrosion [13]. Before 
initiation of corrosion, the reinforcement in concrete is 
in the passive state (corrosion currents are negligible, 
i.e., < 1 mA/m2) and hence the mean corrosion current 
can be considered as zero. When depassivation of steel 
occurs, there is a shift in the mean corrosion current, 
which indicates initiation of active corrosion. The 
initiation of corrosion can be identified by detecting 
this shift in the mean corrosion current. In this study, 
identification of time of corrosion initiation (ti) is posed 
as a problem of detection of single change point in 
online monitored electrochemical current noise data. 
This information is further used for the remaining life 
estimation of the RC structural element.
2.1 Change point detection for identifying time 

of corrosion initiation 

Consider a RC structural element, having two 
identical, electronically isolated, rebar probes 
embedded in concrete coupled through a zero 

resistance ammeter (ZRA) to monitor the corrosion 
currents. At ti (when depassivation of steel occurs), 
there is a shift in mean value of corrosion current, 
indicating initiation of active corrosion. The actual 
shift in mean value of corrosion current depends on 
different factors (viz. humidity content in concrete, 
temperature, etc.). Andrade et al. [16] presented 
typical ranges for corrosion current for different 
exposure conditions, based on measurements made 
on laboratory specimens and on real structures. These 
ranges of values of corrosion current for different 
exposures can be further subdivided [17], using 
typical trend of variation of rate of corrosion with 
water-cement ratio [18]. Thus, knowing the exposure 
condition and water-cement ratio  used, the range 
of values of corrosion current that can be expected 
in the girder during active state of corrosion can be 
determined, which will give an idea about amplitude 
of shift in mean corrosion current. The identification of 
ti can be viewed as a problem of identifying the time 
of shift in mean of the monitored corrosion current 
data, i.e., a change point detection problem.
2.2 algorithm based on bayesian approach for 

identification of time of corrosion initiation 

Bayesian approach is based on the assumption that 
a priori information about the probability distribution 
of the time of change (time of corrosion initiation in 
the present study) is available. It is assumed that the 
monitored corrosion current data can be represented 
using a Gaussian white noise (GWN) process. Balaji 
Rao et al. [19] proposed an algorithm for detecting 
time of shift in mean amplitude of online monitoring 
data modeled as a GWN process. This algorithm 
is modified and used for identification of time to 
corrosion initiation in reinforced concrete structures 
using electrochemical noise data obtained using 
ZRA technique [15]. The salient features of proposed 
algorithm are as follows.

It is assumed that the observed continuous time 
random process ( ){ }0≥t,tY  has the form:

( ) ( ) ( ) 0≥+−= t,ttU.AtY ξλ                                      (1) 
       

where   is a standard GWN process 
with zero mean and Dirac delta function correlation 
function. ξ(t) represents the randomness in the system 
performance with time. A is the shift in the mean of the 
observed process. 
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 λ  is the time instant at which a step shift in the mean 
level of the observed process occurs. It is assumed 
that λ  is a random variable with known distribution 
function Fλ(t) = P{λ ≤ t}. 

The optimal (Bayesian) least squares estimate of 
the shift time is the conditional mean [20]

ty0
ˆ λλ =          (2) 

          

where ty 0  is the observed time history of the 
process, ( ){ }tssY ≤≤0, . It has been shown by Fishman 
[20] that, for all t ≥ 0, the optimal estimate has the 
form

( ) ( )
( )t
tt

Λ
=
ζλ̂

      
                                                (3)

where ζ(t) and Λ(t) are statistics defined by a 
system of stochastic differential equations
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( ) ( ) ( ) 0≥+−= t,ttU.AtY ξλ              (1) 

where ( ){ }0≥t,tξ  is a standard GWN process with zero mean and Dirac delta function 

correlation function. ξ(t) represents the randomness in the system performance with time. A is 

the shift in the mean of the observed process. ( )λ−tU  is the unit step function; 
( ) λλ <=− ttU for0  and ( ) λλ ≥=− ttU for1 . λ  is the time instant at which a step shift in 

the mean level of the observed process occurs. It is assumed that λ  is a random variable with 

known distribution function Fλ(t) = P{λ ≤ t}.  
 

The optimal (Bayesian) least squares estimate of the shift time is the conditional mean [20] 

ty0
ˆ λλ =                 (2) 

where  is the observed time history of the process, ( ){ }tssY ≤≤0, . It has been shown by 

Fishman [20] that, for all t ≥ 0, the optimal estimate has the form 

( ) ( )
( )t
t

t
Λ

= ζλ̂
         (3) 

where ζ(t) and Λ(t) are statistics defined by a system of stochastic differential equations 

( ) ( ) ( ) ( )dttyxdFxt
I
A

td
t









−= 

∞

λζζ .       (4)                          (4)
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satisfying the initial conditions ( ) ( ) ( )
∞

∞−

==Λ dxxdFxand λζ .010 , and I is the intensity of the 

GWN process. Thus, the initial estimate of ζ(t) is the mean value of the random variable λ 

itself, and since ( ) 10 =Λ , ( )0λ̂  is also equal to the mean value of λ, i.e., the initial estimate of 

time of shift is the mean of λ, since that is the best information available at time time t = 0.  It 

is noted from Eq. 3 that Λ(t) is the likelihood ratio in the problem of testing two hypotheses:  

 

( ) ( )ttyH ξ=:0  (no change has occurred);  

( ) ( ) ( )ttUAtyH ξλ +−= .:1  (change has occurred).  
 

Fλ(λ) is the known distribution function, decided based on engineering judgment, for the time 

of shift. 

 

The estimate of the shift time (Eq. 3) given by Fishman [20] is based on the condition that y(t) 

is a random process. However if ( )ty  is available (or is continuously observable in real time), 

Eqs. 4 and 5 become ordinary differential equations, and can be solved using numerical 

methods such as Runge-Kutta methods. From the simulation studies carried out at CSIR-

SERC, it is noted that there is a need to apply a modification to ( )tλ̂  (Eq. 3), when y(t) is 

assumed to be  continuously observable in real time. The following decision function is 

proposed: 

)(ˆ)0(ˆ

)(ˆ)(ˆ

)( 0
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ttdxx

t

t

λλ

λλ
λ

−

⋅−
=


       (6) 

 

The time of shift is the value to which λ(t) converges (or when the successive values of λ(t) 

do not differ by more than a specified tolerance). Since the entire observed time history of the 

process need not be considered for determining ( )λ , a sliding window of width W containing 

specified sample size S is considered. The assumption made when a sliding window is 

considered is that the change point can be detected within S time steps after it has occurred. 
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                                        (6)

The time of shift is the value to which λ(t) 
converges (or when the successive values of λ(t) do 
not differ by more than a specified tolerance). Since 
the entire observed time history of the process need 
not be considered for determining , a sliding 
window of width W containing specified sample size 
S is considered. The assumption made when a sliding 
window is considered is that the change point can 
be detected within S time steps after it has occurred. 
The algorithm is suitable for online detection of 
change point, since data points in the time series are 
progressively included and analyzed. 

The modified algorithm can be applied to identify 
the time of corrosion initiation in a reinforced concrete 
structure using electrochemical noise data. The delay 
in detection (td) is given by:

                                                                                (7)     for;  oaoad tttt  t >−=
                                          

where ta is the time of shift detected using the proposed 
algorithm and to is the actual time of shift in the time 
series. In the present investigation, only the case of   
ta > to is considered, since this case is detrimental to the 
engineering decision making scenario.
3. remaining life Estimation 

A rational estimation of remaining life of reinforced 
concrete structural elements subject to corrosion of 
reinforcement is required for making engineering 
decisions regarding the inspection/maintenance 
activities of these elements. Internationally, efforts 
are being made to develop methodologies for service 
life design and remaining life estimation of reinforced 
concrete structural elements [17, 21-31]. In almost all 
these investigations, the variables involved in service 
life design and/or remaining life estimation, such 
as diffusion coefficient governing the diffusion of 
chlorides into cover concrete, surface chloride content, 
critical chloride content are considered as stochastic 
variables. 

As is known, amongst other factors, service life 
of a structural element with respect to corrosion of 
reinforcement depends upon the exposure condition 
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and the type and quality of concrete used. In most 
of the codes of practice, exposure conditions are 
classified in a general and qualitative manner using 
linguistic terms (eg., mild, moderate, severe, very 
severe, extreme). Also, the quality of construction is 
often specified using linguistic terms (eg., excellent, 
good, average, poor, very poor). While there are 
several techniques for handling uncertainties arising 
from randomness, imprecision, vagueness, ambiguity 
etc., fuzzy sets are commonly used for handling 
uncertainties arising due to the use of linguistic terms 
[32]. Therefore, a more rational approach for remaining 
life estimation should take into consideration the 
fuzzy and random uncertainties together. Different 
methods have been proposed by various researchers 
for handling of fuzzy and random uncertainties 
together (for instance, [33-38]). One of the methods is 
to determine equivalent probability distributions for 
the fuzzy sets (or vice versa), and carry out the analysis 
in the framework of probability theory (or fuzzy set 
theory) [33, 34, 36, 38]. But, a major draw back of these 
approaches is that according to possibility theory, if 
the membership function of the fuzzy set is the only 
available information, there is a class of probability 
measures which are equally valid [39]. Therefore, it 
is not always possible to obtain a unique equivalent 
probability distribution for a fuzzy set. Thus, there is 
a need to develop methods which can handle fuzzy 
and random uncertainties as they are in the service life 

estimation. Anoop et al. [37] proposed a methodology 
for service life estimation of corrosion-affected 
reinforced concrete flexural elements in the presence 
of fuzzy and random uncertainties, by combining the 
vertex method of fuzzy set theory with Monte Carlo 
simulation (MCS) technique. This methodology is 
used in the present study for modeling the fuzzy-
random evolution of resistance deterioration in RC 
members.
3.1 Modeling resistance deterioration

In this study, the interest is on the estimation 
of remaining life after the detection of corrosion 
initiation, and hence the time is reckoned from the time 
of detection of corrosion initiation. Also, there can be 
a time delay (td) in the detection of corrosion initiation 
using the online monitoring data. The diameter of the 
reinforcing bar at any time tp, after corrosion initiation, 
is given by,

 

7 

 

 

consideration the fuzzy and random uncertainties together. Different methods have been 

proposed by various researchers for handling of fuzzy and random uncertainties together (for 

instance, [33-38]). One of the methods is to determine equivalent probability distributions for 

the fuzzy sets (or vice versa), and carry out the analysis in the framework of probability 

theory (or fuzzy set theory) [33, 34, 36, 38]. But, a major draw back of these approaches is 

that according to possibility theory, if the membership function of the fuzzy set is the only 

available information, there is a class of probability measures which are equally valid [39]. 

Therefore, it is not always possible to obtain a unique equivalent probability distribution for a 

fuzzy set. Thus, there is a need to develop methods which can handle fuzzy and random 

uncertainties as they are in the service life estimation. Anoop et al. [37] proposed a 

methodology for service life estimation of corrosion-affected reinforced concrete flexural 

elements in the presence of fuzzy and random uncertainties, by combining the vertex method 

of fuzzy set theory with Monte Carlo simulation (MCS) technique. This methodology is used 

in the present study for modeling the fuzzy-random evolution of resistance deterioration in 

RC members. 

 

3.1 Modeling resistance deterioration 

In this study, the interest is on the estimation of remaining life after the detection of corrosion 

initiation, and hence the time is reckoned from the time of detection of corrosion initiation. 

Also, there can be a time delay (td) in the detection of corrosion initiation using the online 

monitoring data. The diameter of the reinforcing bar at any time tp, after corrosion initiation, 

is given by, 

  

 ( ) ( ) ( )
dpcorrp ttI0.01160t +−= αφφ      (8) 

 

where φ(0) and φ(tp) are diameters of bar before corrosion initiation and at time 't', 

respectively; α  is a parameter varying in the range 4 to 8 for pitting type of corrosion; corrI  

is the corrosion current density; pt  is the time elapsed after detection of corrosion initiation, 

and dt  is the delay in detection of the algorithm used. Rule-bases, in the form of simple if-

then rules, are developed for determining the values of Icorr and α based on the exposure 

conditions and water-cement ratios defined/specified in codes of practice [31]. Additive fuzzy 
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Fig. 1 Rule-bases for determining Icorr and α 

 

3.2 Estimation of failure probability 

In the present study, remaining life estimation of RC structural elements is carried out 

considering the limit state of collapse in flexure, given by  

 ( ) ( ) SLpup MtMtg −=         (9) 

where Mu(tp) is the ultimate moment of resistance at any time t (capacity) and MSL is the 

moment due to service loads (demand).  
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Fig. 1 Rule-bases for determining Icorr and α 

 

3.2 Estimation of failure probability 

In the present study, remaining life estimation of RC structural elements is carried out 

considering the limit state of collapse in flexure, given by  

 ( ) ( ) SLpup MtMtg −=         (9) 

where Mu(tp) is the ultimate moment of resistance at any time t (capacity) and MSL is the 

moment due to service loads (demand).  

) is computed using 
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the relations given in IS 456-2000 [40] without the 
partial safety factors. 

3.2 Estimation of failure probability

In the present study, remaining life estimation of 
RC structural elements is carried out considering the 
limit state of collapse in flexure, given by 
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Fig. 1 Rule-bases for determining Icorr and α 

 

3.2 Estimation of failure probability 

In the present study, remaining life estimation of RC structural elements is carried out 

considering the limit state of collapse in flexure, given by  

 ( ) ( ) SLpup MtMtg −=         (9) 

where Mu(tp) is the ultimate moment of resistance at any time t (capacity) and MSL is the 

moment due to service loads (demand).  

                                                      (9)

where Mu(tp) is the ultimate moment of resistance 
at any time t (capacity) and MSL is the moment due 
to service loads (demand). 

In the remaining life estimation, the strengths of 
materials (namely, compressive strength of concrete 
and yield strength of steel), the dimensions of the 
cross-section (namely, breadth and depth) and the 
time to corrosion initiation are considered as random 
variables, while the corrosion current Icorr and the 
pitting factor α are considered as fuzzy variables. 
Therefore, Mu (tp) is a fuzzy-random variable, and 
hence the failure probability, PF (tp), against the limit 
state considered will be a fuzzy set. In the present 
study, the fuzzy set of PF (tp) is determined using a 
hybrid method involving a combination of vertex 
method with MCS technique. A brief explanation of 
the vertex method is given below.

Vertex method, introduced by Dong and Shah 
[41], is an approach for computing functions of fuzzy 
variables, based on λ-cut concept and standard interval 
analysis. Vertex method provides a computationally 
efficient solution technique for calculation of functions 
of fuzzy variables. Suppose Iλ is the λ-cut interval, 
i.e., Iλ = [a, b], of fuzzy set A. If fuzzy set B is image 
of A given by the mapping B = f(A), then interval 
representing B at a particular value of λ, say Bλ, can 
be obtained by

Bλ = f(Iλ) = [min(f(a),f(b)), max(f(a), f(b))]               (10)

When the mapping is for n input variables, i.e., y 
= f(x1, x2, …, xn), and each input variable is described 
by an interval, say Iiλ at a specific λ-cut, where Iiλ = 
[ai, bi], i = 1, 2, …, n, then values of interval function 
representing output fuzzy set B at a particular value 
of λ, is given by 
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where m = 2
n, and cj represents all possible combinations of input interval variables, i.e., they 

are vertices of input space in the n-dimensional Cartesian region.  

 

The vertex method is applicable only if the function is continuous and monotonic on Iiλ = [ai, 

bi], i = 1, 2, …, n. In the present study, Icorr and  are considered as the fuzzy variables. As 

     (11)

where m = 2n, and cj represents all possible 
combinations of input interval variables, i.e., they are 
vertices of input space in the n-dimensional Cartesian 
region. 

The vertex method is applicable only if the 
function is continuous and monotonic on Iiλ = [αi, 
bi], i = 1, 2, …, n. In the present study, Icorr and α are 
considered as the fuzzy variables. As noted from Eq. 
8, the remaining diameter of the reinforcing bar (f(t)), 
at any time t, decreases with increase in either Icorr or 
α, indicating that f(t) is a monotonic function of Icorr 
and α. The form of the Eq. 8 also suggests that f(t) is 
a continuous function of Icorr and α. The moment of 
resistance at any time t, Mu (t), increases (decreases) 
with increase (decrease) in f(t), indicating that  
Mu (t) can be considered as a continuous and 
monotonic function of f(t). Since the failure probability 
at any time t increases (decreases) with decreases 
(increase) in Mu (t), the vertex method is applicable 
in the present investigation for estimating the fuzzy 
set for failure probability.

In the present study, λ-cut levels are taken as 0+, 
0.2, 0.4, 0.6, 0.8 and 1.0. For each λ-cut level, possible 
combinations of the fuzzy variables are considered. 
Since there are two fuzzy variables (namely, Icorr 
and α), four combinations are possible for each 
λ-cut level. For each combination of Icorr and α, PF (t) 
is determined for different values of t using Monte 
Carlo simulation with importance sampling technique 
[42], by considering width of beam, effective depth of 
beam, yield strength of steel, compressive strength of 
concrete and time to corrosion initiation as random 
variables. The target coefficient of variation of failure 
probability is kept as 0.05 while carrying out the 
simulation. From four values of ( )tPF  (each value 
corresponding to one combination of Icorr and α) for 
a specific λ-cut level, interval of fuzzy set of ( )tPF   
is determined. In this way, fuzzy set of ( )tPF  at any 
specific time against the limit state of collapse in 
flexure is determined. 

3.3 determination of bounds for characteristic 
value of failure probability using possibility 
theory

While the fuzzy set of PF (t) can be determined 
using the procedure given in section 3.2, specification 
of characteristic value of PF (t) will be more useful 
for engineering decision making. In this section, 
the procedure for determination of bounds for 
characteristic value of PF (t) using possibility theory 
is presented [39]. 

Possibility theory, introduced by Zadeh [43], 
is an uncertainty theory devoted to the handling 
of incomplete information. Similar to probability 
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theory, possibility theory is also based on set 
functions. But it differs from probability theory by 
the use of a pair of dual set-functions (possibility and 
necessity measures) instead of only one (probability 
measure). Thus, the theory of possibility is based 
on two measures of confidence, namely, possibility 
measure (∏) and necessity measure (N). A confidence 
measure is a number 0 ≤ g(A) ≤ 1, which represents 
the confidence one has on the occurrence of event 
A [44]. A basic notion in possibility theory is the 
possibility distribution. A possibility distribution is 
a mapping from a set of states of affairs to a totally 
ordered scale such as the unit interval [0,1]. The 
possibility distribution is a representation of the state 
of knowledge, i.e., a description of the way we think 
the state of affairs is [44]. The possibility distribution 

Xπ  can be viewed as the membership function of 
fuzzy set of possible values of a quantity X. Knowing 
the possibility distribution, the likelihood of events 
can be described by means of possibility and necessity 
measures. If interest is on the occurrence of an event A, 
with membership function for fuzzy set X as available 
information, possibility and necessity measures are 
defined as:

( ) ( )ωπ
ω XA

sup
A

∈
=Π

                                            (12)

 ( ) ( )( )

( )A

A
inf

A X

Π=

−
∈

=Ν

-1 

         

1 ωπ
ω         

                                                             (13)

by considering membership function of X as 
possibility distribution Xπ . A  denotes complement 
of event A. The possibility Π(A) defines to what 
extent at least one element in A is consistent with the 
available information Xπ . The necessity N(A) defines 
to what extent no element outside A is possible, 
i.e., to what extent Xπ  implies A [44]. It has been 
shown that possibility and necessity are limit cases 
of an equivalence class of probability distributions 
compatible with available data [33]. This is in line 
with the consistency principle proposed by Zadeh [43] 
which can be translated as: “the degree of possibility 
of an event is greater than or equal to its degree of 
probability, which must be itself greater than or equal 
to its degree of necessity” [45]. Thus, an equivalence 
class Pc of probability measures P compatible with 
available data can be defined as:

                                                                          (14) 
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The upper bound for characteristic value of ( )tPF  can be used in the service life estimation. 

The usefulness of the proposed algorithm for identification of corrosion initiation and 

remaining life estimation is illustrated through an application. 
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where ω denotes a particular value of X. Since 
the aim is to determine a conservative estimate of 
PF, bounds for a characteristic value corresponding 
to a high fractile, k (say, 0.95), need to be defined. 
It has been shown by Savoia [39] that lower bound 
for characteristic value is given by lower limit of the 
interval corresponding to λ-cut of fuzzy set Q at k (qkl) 
and upper bound is given by upper limit of interval 
corresponding to λ-cut of fuzzy set Q at 1-k (qku) as 
shown in Fig. 2. The fractile k (say, 0.95) is shown in 
Fig. 2 as a particular value of membership function. 
Accordingly, from fuzzy sets of PF at different times, 
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assumed to represent the electrochemical current noise data obtained from online monitoring 

and stochasticity in time of occurrence of change point event (initiation of chloride-induced 

corrosion) is taken into consideration. The entire problem has been formulated within the 

framework of Monte Carlo simulation, and is depicted schematically in Fig. 4.  
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Figure. 4 Schematic representation of problem considered

it is possible to determine bounds for characteristic 
values corresponding to any fractile k (taken as 0.95 
in this study since a conservative estimate of PF is 
required). The upper bound of the characteristic value 
is recommended for decision-making purposes.

The upper bound for characteristic value of  
PF (t) can be used in the service life estimation. The 
usefulness of the proposed algorithm for identification 
of corrosion initiation and remaining life estimation 
is illustrated through an application.

table 1 Values of mean and standard deviation 
(Sd) for the random variables considered for 
determination of time for corrosion initiation

variable mean Sd remarks
d (mm) 45 2.25 Assumed cov  

of 0.05
D (cm2/s) 5 x 10-8 1 x 10-8 cov = 0.20 [48]
cs (% by weight of 
concrete)

0.25 0.05 cov = 0.20 [48]

ccr (% by weight 
of concrete)

0.125 0.025 Assumed cov 
of 0.20

4. application

A reinforced concrete bridge girder, 
located in a severe environment (as per the 
definitions of exposure conditions in IS 
456-2000 [40]) with cross-sectional details 
as shown in Fig. 3 is considered. The 
specified water-cement ratio is 0.45. For 
studying the efficiency of the proposed 
algorithms for change point detection, 
an ensemble of y(t) is generated which is 
assumed to represent the electrochemical 
current noise data obtained from online 
monitoring and stochasticity in time 
of occurrence of change point event 
(initiation of chloride-induced corrosion) 
is taken into consideration. The entire 
problem has been formulated within the 
framework of Monte Carlo simulation, 
and is depicted schematically in Fig. 4. 

Assuming ingress of chlorides into 
cover concrete as a diffusion process, time 
to corrosion initiation (ti) can be determined 
from Fick’s second law of diffusion as
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where d is the clear cover to reinforcement, D is the diffusion coefficient for chlorides in 

concrete, cs is the surface chloride concentration and ccr is the critical chloride concentration. 

To account for variations in workmanship and exposure conditions, d, D, cs and ccr are treated 

as random variables. The values of mean and standard deviation of these random variables are 

given in Table 1. All the random variables are assumed to be statistically uncorrelated with 

each other. The mean and standard deviation of time to corrosion initiation are determined 
using first order approximation as 14.11 years and 9.42 years, respetively. It is assumed that ti 

follows a lognormal distribution [46], i.e., FΛ(λ) in Eqs. 4 and 5 is lognormal.  

 

Table 1 Values of mean and standard deviation (SD) for the random variables considered for 

determination of time for corrosion initiation 

variable mean SD Remarks 

d (mm) 45 2.25 Assumed cov of 0.05 

D (cm2/s) 5 x 10-8 1 x 10-8 cov = 0.20 [48] 

cs (% by weight of concrete) 0.25 0.05 cov = 0.20 [48] 

ccr (% by weight of concrete) 0.125 0.025 Assumed cov of 0.20 

 

The amplitude of shift in mean corrosion current is taken as 0.15 µA/cm2, which is consistent 

with exposure condition for the girder. The cov of current noise indicates type of corrosion, 

ranging from 10-3 for general corrosion to 1.0 for localized corrosion [13]. A value of 0.33 is 

assumed as the cov of corrosion current in this study. In the present study, simulated 

electrochemical noise data, representing the monitored corrosion currents, is used. Cottis et al. 

[47] used a shot noise model to simulate electrochemical noise data. It is assumed that 

monitored electrochemical noise data can be represented by a GWN process. One thousand 

realizations of GWN process are generated representing the possible realizations of monitored 

electrochemical noise for a period of 100 years at an interval of 0.01 years (for each 

realization). One thousand lognormal random variables, representing time-to-corrosion 

initiation, one for each realization of the observed process, are generated. Typical realizations 

            (18)
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of the observed process (electrochemical noise) without and with shift (corrosion initiation) 

are shown in Fig. 5. 
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Fig. 5 Typical realizations of the observed process (simulated in the present study) without- 
and with- shift (time of corrosion initiation = 16.1 years) 

 

For the change point detection algorithm, width of sliding window is taken as 5 years (i.e., S = 

500). The window width should be chosen long enough so that detection of change point is 

possible, but short enough for computational efficiency. Thus, the selection of window width 

is a pareto-optimal problem; however, this aspect is not considered in this study. Fourth-order 

Runge-Kutta method is used for solving the ordinary differential equations (Eqs. 4 and 5), and 

the time of shift (ta) is determined using Eq. 6 for each realization of the process. The values 

of delay in detection (td) are determined for the cases oa tt > using Eq. 7, and the statistical 

properties (namely, mean and standard deviation) of td are computed. The dealy in detection is 

assumed to follow a lognormal distribution. The information on delay in detection of the 
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where d is the clear cover to reinforcement, D 
is the diffusion coefficient for chlorides in concrete, 
cs is the surface chloride concentration and ccr is 
the critical chloride concentration. To account for 
variations in workmanship and exposure conditions, 
d, D, cs and ccr are treated as random variables. The 
values of mean and standard deviation of these 
random variables are given in Table 1. All the random 
variables are assumed to be statistically uncorrelated 
with each other. The mean and standard deviation 
of time to corrosion initiation are determined using 
first order approximation as 14.11 years and 9.42 
years, respectively. It is assumed that ti follows a 
lognormal distribution [46], i.e., FΛ(λ) in Eqs. 4 and 5 
is lognormal. 

The amplitude of shift in mean corrosion current 
is taken as 0.15 µA/cm2, which is consistent with 
exposure condition for the girder. The cov of current 
noise indicates type of corrosion, ranging from 10-3 for 
general corrosion to 1.0 for localized corrosion [13]. 
A value of 0.33 is assumed as the cov of corrosion 
current in this study. In the present study, simulated 

electrochemical noise data, representing the monitored 
corrosion currents, is used. Cottis et al. [47] used a 
shot noise model to simulate electrochemical noise 
data. It is assumed that monitored electrochemical 
noise data can be represented by a GWN process. One 
thousand realizations of GWN process are generated 
representing the possible realizations of monitored 
electrochemical noise for a period of 100 years at 
an interval of 0.01 years (for each realization). One 
thousand lognormal random variables, representing 
time-to-corrosion initiation, one for each realization 
of the observed process, are generated. Typical 
realizations of the observed process (electrochemical 
noise) without and with shift (corrosion initiation) are 
shown in Fig. 5.

Figure 5 Typical realizations of the observed 
process (simulated in the present study) without- 
and with- shift (time of corrosion initiation = 16.1 
years)

For the change point detection algorithm, width 
of sliding window is taken as 5 years (i.e., S = 500). 
The window width should be chosen long enough 
so that detection of change point is possible, but 
short enough for computational efficiency. Thus, 
the selection of window width is a pareto-optimal 
problem; however, this aspect is not considered 
in this study. Fourth-order Runge-Kutta method 
is used for solving the ordinary differential 
equations (Eqs. 4 and 5), and the time of shift (ta) 
is determined using Eq. 6 for each realization of 
the process. The values of delay in detection (td) 
are determined for the cases oa tt > using Eq. 7, 
and the statistical properties (namely, mean and 
standard deviation) of td are computed. The delay 
in detection is assumed to follow a lognormal 
distribution. The information on delay in detection 
of the change point detection algorithm is used 
further in the remaining life estimation of the RC 
bridge girder considered.

The moment due to service loads (
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change point detection algorithm is used further in the remaining life estimation of the RC 

bridge girder considered. 

 

The moment due to service loads ( SLM ) is considered to be deterministic, and is equal to 

711.0 kN-m (17). In the present study, the ultimate moment of resistance at any time ( ( )tM u ) 

is computed using the relations given in IS 456-2000 [40] without the partial safety factors. 

The breadth of flange, effective depth, compressive strength of concrete, yield strength of 

steel and delay in detection are considered as random variables. The statistical properties of 

these random variables are given in Table 2.  

 

Table 2 Random variables considered for remaining life estimation problem 

Variable Mean COV Distribution Reference 

Breadth of flange (mm) 2000 0.03 Normal [49] 

Effective depth (mm) 891 0.03 Normal [49] 

Compressive strength of concrete (N/mm2) 30 0.176 Lognormal [49] 

Yield strength of steel (N/mm2) 415 0.12 Lognormal [49] 

Delay in detection of corrosion initiation 

(years) 

0.139 0.105 Lognormal Based on 

simulation 

 

The fuzzy sets for Icorr and α are selected from Fig. 1 based on the exposure condition and 

water-cement ratio used, and are shown in Fig. 6. Fuzzy sets for failure probability at different 

times are computed according to section 3.2. Four combinations of Icorr and α are considered 

for each of the λ-cut levels of 0+, 0.2, 0.4, 0.6 and 0.8, and two combinations of Icorr and α are 

considered for the λ-cut level of 1.0, giving a total of 22 combinations of Icorr and α. For each 

combination, the failure probability against limit state of flexure (Eq. 9) is computed using the 

importance sampling technique. Thus, the fuzzy sets of PF at different times after detection of 

corrosion initiation are constructed, and the defuzzified values of PF are determined using 

defuzzification. The bounds for characteristic values of failure probability (corresponding to 

0.95 fractile) are determined from fuzzy sets of failure probability at different times using the 

approach given in section 3.3. 

) is 
considered to be deterministic, and is equal to 711.0 
kN-m (17). In the present study, the ultimate moment 
of resistance at any time (Mu(t)) is computed using the 
relations given in IS 456-2000 [40] without the partial 
safety factors. The breadth of flange, effective depth, 
compressive strength of concrete, yield strength of 
steel and delay in detection are considered as random 
variables. The statistical properties of these random 
variables are given in Table 2. 
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The fuzzy sets for Icorr and α are selected from  
Figure 1 based on the exposure condition and water-
cement ratio used, and are shown in Fig. 6. Fuzzy sets 
for failure probability at different times are computed 
according to section 3.2. Four combinations of Icorr and 
α are considered for each of the λ-cut levels of 0+, 0.2, 
0.4, 0.6 and 0.8, and two combinations of Icorr and α 
are considered for the λ-cut level of 1.0, giving a total 
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Fig. 6 Fuzzy sets for corrosion current density and α for the example considered 

 

5 Results and Discussion 

5.1 Change point detection using proposed algorithm  

The comparison between the actual and predicted times of shift for the one thousand 

realizations considered are shown in Fig. 7, and the frequency distributions of actual and 

predicted times of shift are shown in Fig. 8. From these figures, it is noted that the predicted 

times of shift are in good agreement with the actual times of shift. The mean and standard 

deviation for delay in detection are obtained as 0.139 and 0.105 years, respectively. The small 

values of delay in detection indicate the usefulness of the proposed algorithm. The delay in 

detection is assumed to be lognormally distributed. The information of delay in detection is 

used in the remaining life estimation of the RC bridge girder. 
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Figure. 8 Frequencies of actual and predicted times of shift
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Fig. 8 Frequencies of actual and predicted times of shift 

 

5.2 Remaining Life Estimation 

The fuzzy sets of PF at 15, 30, 45 and 60 years after detection of corrosion initiation are 

shown in Fig. 9. From this figure, it is noted that interval lengths of fuzzy sets of PF at a given 

λ-cut level increase with age, resulting in the increase in uncertainty about PF with age. The 

increase in uncertainty about PF with age can be attributed to increase in uncertainty about 

remaining diameter of the reinforcement with increase in time.  
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Fig. 9 Fuzzy sets for failure probability at different times after detection of corrosion initiation 

(Failure criterion: ( ) SLu MtM < ) 
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Fig. 11 Bounds for characteristic value of PF corresponding to 0.95 fractile (Failure criterion: 

( ) SLu MtM < ) 
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Fig. 12 Upper bound for characteristic value of PF corresponding to 0.95 fractile (Failure 

criterion: ( ) SLu MtM < ) 

6 Summary 

An algorithm, based on the Bayesian approach, is proposed for identifying time of corrosion 

initiation in reinforced concrete structures affected by chloride-induced corrosion of 

reinforcement. The usefulness of the algorithm is studied by using an example problem of 

identification of time of corrosion initiation in a reinforced concrete bridge girder, using 

simulated corrosion current data. The small values of delay in detection indicate the 

usefulness of the proposed algorithm for online change point detection. The statistical 

 )

table 2 random variables considered for 
remaining life estimation problem

Variable Mean COV Distribution Reference
Breadth of 
flange (mm)

2000 0.03 Normal [49]

Effective 
depth (mm)

891 0.03 Normal [49]

Compressive 
strength of 
concrete 
(N/mm2)

30 0.176 Lognormal [49]

Yield 
strength of 
steel (N/
mm2)

415 0.12 Lognormal [49]

Delay in 
detection of 
corrosion 
initiation 
(years)

0.139 0.105 Lognormal Based on 
simulation
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of 22 combinations of Icorr and α. For each combination, 
the failure probability against limit state of flexure 
(Eq. 9) is computed using the importance sampling 
technique. Thus, the fuzzy sets of PF at different times 
after detection of corrosion initiation are constructed, 
and the defuzzified values of PF are determined using 
defuzzification. The bounds for characteristic values of 
failure probability (corresponding to 0.95 fractile) are 
determined from fuzzy sets of failure probability at 
different times using the approach given in section 3.3.
5 results and discussion
5.1 Change point detection using proposed 

algorithm 

The comparison between the actual and predicted 
times of shift for the one thousand realizations 
considered are shown in Fig. 7, and the frequency 
distributions of actual and predicted times of shift are 
shown in Fig. 8. From these figures, it is noted that 
the predicted times of shift are in good agreement 
with the actual times of shift. The mean and standard 
deviation for delay in detection are obtained as 0.139 
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6 Summary 

An algorithm, based on the Bayesian approach, is proposed for identifying time of corrosion 

initiation in reinforced concrete structures affected by chloride-induced corrosion of 

reinforcement. The usefulness of the algorithm is studied by using an example problem of 

identification of time of corrosion initiation in a reinforced concrete bridge girder, using 

simulated corrosion current data. The small values of delay in detection indicate the 

usefulness of the proposed algorithm for online change point detection. The statistical 
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The defuzzified values of PF (determined using centroidal defuzzification method) obtained 

from fuzzy-random analysis are shown in Fig. 10. The PF values obtained from fuzzy-random 

analysis are more rational since appropriate representations of uncertainty are used for the 

different variables. Also, by carrying out a probabilistic analysis, while it is possible to obtain 

bounds on PF, it may be computationally expensive to obtain probability distribution for PF. 

But from the resulting fuzzy set of PF obtained using the proposed procedure, one can obtain 

not only the possibility distribution of PF, but also the bounds for characteristic values of PF 

corresponding to a specified fractile, with minimal computational effort. The bounds for 

characteristic values of PF corresponding to 0.95 fractile obtained from fuzzy sets of PF at 

different times, are shown in Fig. 11. The upper bound for characteristic value of PF (shown 

separately in Fig. 12) can be used for remaining life estimation (by comparing with the 

allowable value of PF). For instance if the allowable value of probability of failure is 10-3, 

then the remaining life of the structure after detection of corrosion initiation is about 28.3 

years, while if the allowable value of probability of failure is 10-2, then the remaining life of 

the structure after detection of corrosion initiation is about 40 years. This type of information 

will be useful for decision-making regarding in-service inspections. 
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6 Summary 
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)

5.2 remaining life estimation

The fuzzy sets of PF at 15, 30, 45 and 60 years after 
detection of corrosion initiation are shown in Fig. 9. 
From this figure, it is noted that interval lengths of 
fuzzy sets of PF at a given λ-cut level increase with 
age, resulting in the increase in uncertainty about PF 
with age. The increase in uncertainty about PF with 
age can be attributed to increase in uncertainty about 
remaining diameter of the reinforcement with increase 
in time. 

The defuzzified values of PF (determined using 
centroidal defuzzification method) obtained from 
fuzzy-random analysis are shown in Fig. 10. The 
PF values obtained from fuzzy-random analysis are 
more rational since appropriate representations 
of uncertainty are used for the different variables. 
Also, by carrying out a probabilistic analysis, while 
it is possible to obtain bounds on PF, it may be 
computationally expensive to obtain probability 
distribution for PF. But from the resulting fuzzy set 
of PF obtained using the proposed procedure, one 
can obtain not only the possibility distribution of PF, 
but also the bounds for characteristic values of PF 
corresponding to a specified fractile, with minimal 
computational effort. The bounds for characteristic 
values of PF corresponding to 0.95 fractile obtained 
from fuzzy sets of PF at different times, are shown in 
Fig. 11. The upper bound for characteristic value of PF 
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(shown separately in Fig. 12) can be used for remaining 
life estimation (by comparing with the allowable value 
of PF). For instance if the allowable value of probability 
of failure is 10-3, then the remaining life of the structure 
after detection of corrosion initiation is about 28.3 
years, while if the allowable value of probability of 
failure is 10-2, then the remaining life of the structure 
after detection of corrosion initiation is about 40 years. 
This type of information will be useful for decision-
making regarding in-service inspections.
6 Summary

An algorithm, based on the Bayesian approach, is 
proposed for identifying time of corrosion initiation 
in reinforced concrete structures affected by chloride-
induced corrosion of reinforcement. The usefulness of 
the algorithm is studied by using an example problem 
of identification of time of corrosion initiation in a 
reinforced concrete bridge girder, using simulated 
corrosion current data. The small values of delay 
in detection indicate the usefulness of the proposed 
algorithm for online change point detection. The 
statistical properties of the delay in detection of 
the proposed change point detection algorithm 
are determined. A methodology for remaining life 
estimation of corrosion-affected reinforced concrete 
flexural members, in the presence of fuzzy and random 
uncertainties, taking into consideration the delay 
in detection of corrosion initiation using the online 
monitoring algorithm, is presented. The usefulness 
of the approach is demonstrated through an example 
problem of remaining life estimation of a reinforced 
concrete bridge girder. It is also illustrated that one can 
determine the bounds for characteristic value of failure 
probability from the resulting fuzzy set for failure 
probability with minimal computational effort. 
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  abstract

Open ground storey buildings are very common in urban areas in countries like India. They are 
also the most vulnerable type of vertically irregular buildings in the event of earthquake. In this 
study, the coupled effect of vertical irregularity with the fuzziness of limit states, on the seismic 
fragility of buildings, is studied.  Seismic fragility of typical open ground storey buildings designed 
as per IS 1893 (2002) are evaluated for various damage states. The predominant failure mode 
for the open ground storey building is a soft-storey mechanism in the ground storey, and hence 
inter-storey drift at ground storey has been considered as the demand parameter. A simplified 
power–law model is then utilised to construct the probabilistic demand as proposed by Cornell 
et al. Fuzziness in the limit states is then introduced through a recently proposed membership 
function. It is found that fuzziness information has a significant role on the seismic fragility at 
ultimate limit states for open ground storey frames, as well as for regular frames. 

Keywords: seismic fragility, soft storey, fuzzy–random, membership function
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1. introduction

Performance in the past earthquakes indicates 
that the buildings with open ground storey or the 
‘pilotis-storey’ are susceptible to extensive damage [1]. 
Despite their vulnerability to earthquakes, they are still 
preferred, especially in the urban areas for providing 
parking space in apartments and multi-functional 
spaces in hotels and commercial establishments. 
The absence of non-structural walls in the ground 
storey of such buildings creates considerable vertical 
irregularity in both stiffness and strength, resulting in 
very large inter-storey drift compared to the storeys 
above. This has prompted a concerted research effort 
to evaluate such buildings with and without the 
retrofitting measures [2- 5].

There are various sources of uncertainty to be 
considered.  Firstly, there is the inherent randomness 
in the ground shaking; secondly, there is some 
uncertainty in the estimated material properties 
of the structure; thirdly, the threshold limits for 
the damage states are also not precisely defined. 
In this study, the first two sources of uncertainty 
are accounted for in the probabilistic formulation, 
and the third is accounted for in terms of fuzziness 
in the definition of the limit states, by means of a 
membership function.

2. Seismic fragility analysis

Seismic fragility is defined as the probability of 
reaching or exceeding a limit state or performance 
level as a function of specific ground motion intensity 
measure. In other words, it is the conditional 
probability of demand exceeding the capacity for a 
given seismic intensity. Assuming the capacity and 
demand to be log-normal and independent of each 
other, it can be expressed in closed-form as [7]:

( )
ln

0
2 2

Sd
ScP C D IM

cd IMβ β

 
 
 − ≤ | = Φ
 + | 

   

                                                                                        (1)

  Where C is the drift capacity, D is the demand, 
Sd is the median of the structural demand and Sc is 
the median structural capacity of the chosen limit 
state (LS). βd|IM and βc are the logarithmic standard 
deviations or dispersion measures in the demand and 
capacities respectively.

The seismic demand on the structure is determined 
through the nonlinear time history analyses that are 
performed using an ensemble of ground motions. The 
demand can be related to the seismic intensity using 
a simplified probabilistic seismic demand model, as 
suggested by Cornell et al [6]:
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( )bD a IM ε=                                                                (2)

where ε is a log-normal random variable with 
median 1.0 and dispersion βd|IM. This dispersion 
represents the uncertainty due to record-to-record 
variability. a and b are the linear regression parameters 
(using least squares) found from the ‘cloud’ analysis. 
Here, ‘cloud’ analysis refers to a wide range of 
intensity measures unlike the ‘stripe’ analysis wherein 
the analysis is done for a particular value of intensity 
measure [7]. In this study, the structural demand 
measure is selected to be the absolute maximum inter-
storey drift of the ground storey, which occurs as the 
dynamic response during the earthquake excitation. 
This choice of demand measure presumes the failure 
mechanism to be a storey-mechanism at the ground 
floor as observed in several earthquake reconnaissance 
surveys. The seismic intensity measure is taken to be 
the peak ground acceleration (PGA) of the ground 
motion. The analysis involved nonlinear time history 
analyses of thirty statistically equivalent analytical 
models to obtain a set of thirty inter-storey drifts (δ) 
for the corresponding PGAs. Simulation has been 
carried out using Latin Hypercube Sampling in which 
the ground motion and the system parameters (viz. 
characteristic compressive strength of concrete and 
yield strength of steel) are considered as random.  The 
parameters a and b are determined for the set of thirty 
values through the ‘cloud analysis’ [8] and the values 
are presented in Table 1.

table 1 regression Parameters

Frame a b
OGS 52.746 1.233

Fully-infilled 52.300 1.653
Bare 114.434 1.111

The structural capacities are defined as the 
allowable maximum inter-storey drift (which occurs 
at the ground storey) corresponding to three widely 
used performance levels: (a) immediate occupancy 
(IO) at which the structure can be occupied safely 
without significant repair (b) life safety (LS) a limit state 
signifying considerable damage but with a safe margin 
against incipient collapse and (c) collapse prevention 
(CP), defined as the point of incipient collapse. Since 
these limits are hard to quantify in terms of inter-storey 
drift, fuzziness has been introduced in this study with 
‘most probable’ drift limits as suggested by Ghobarah 
[9]. The dispersion in capacity, βc, is dependent on the 
building type and construction quality. Wen et al [10] 
have suggested a value of 0.3 whereas ATC 58-75% 

draft [11] suggests 0.10, 0.25 and 0.40 depending on 
the quality of construction. In this study, a uniform 
value of 0.25 has been assumed for the dispersion of 
the median capacity (Table 2).

table 2 limit State definitions

limit 
states

c (%) with 
infill

c (%) without 
infill

βc

IO 0.2 0.4 0.25
LS 0.4 1.0 0.25
CP 0.8 3.0 0.25

3. fuzzy random Method

The failure probability according to classical 
reliability theory can be expressed as follows [19]:
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(3)

where R and S are the resistance and response 
of the structural system at a certain performance 
level, respectively. Both R and S are assumed to be 
independent random variables with some probability 
distribution. In the following text, these notations 
are substituted by C and D, denoting capacity and 
demand, in lieu of R and S, respectively.

It is important to consider fuzziness in the 
thresholds of capacity for defining various damage 
states. There is the presence of subjective judgment 
while specifying the level of damages, using linguistic 
terms (‘few’, ‘moderate’,’ extensive’). Giovinazzi 
and Lagomarsino [12] used a weighted approach to 
overlapping membership functions to arrive at the 
vulnerability index. Möller et al [13] introduced the 
concept of ‘fuzzy FORM’ to deal with fuzzy limit 
state surface, wherein the fuzzy reliability index is 
computed by α-level optimization. Gu and Lu [14] 
suggested two fuzzy-random membership function to 
define occurrence of a limit state and exceedance of a 
limit state, respectively. The fuzzy interval was based 
on the drift values associated with non-structural and 
structural limit states. This definition of membership 
function has been utilised and a simpler membership 
function is proposed in a recent work [15].

The probability of a fuzzy-random event, A, is 
defined as the expectation of its membership function 
mA(x) [16] as 

[ ]( ) ( ) ( ) ( )A A XP A E m x m x f x dx= = ∫                 (4)
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where fX (x) is the probability density function 
of X.

Reaching or exceeding a damage state is considered 
here as a fuzzy event whose occurrence is uncertain. 
A recently proposed membership function [15], 
which simplifies the formulation while satisfying the 
restriction on boundedness and convexity, has been 
adopted. It is defined by a two-piece second-degree 
polynomial, m(x), as 
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where x here denotes the demand D.  In the 
absence of any fuzziness with regard to the damage 
state, failure occurs when x exceeds a ‘crisp’ threshold 
of capacity C = c. The fuzziness in the threshold is 
represented by the ‘fuzzy parameter’, γ, which can 
take any value between 0 and unity, and distributes 
the fuzziness equally on both sides of c.  Typical 
extreme values of γ are 0.10 and 0.95, the former 
corresponding to low fuzziness and the latter to high 
fuzziness.  The variation of the membership function 
for these two extreme values of γ are depicted in Fig. 
1, for a typical value of c = 0.40.  The value of c will 
depend on the damage state under consideration 
(IO, LS or CP).

a typical value of c = 0.40.  The value of c will depend on the damage state under consideration 
(IO, LS or CP). 
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When the capacity and demand are assumed to be log-normal and independent of each other, the 
failure probability, in the presence of fuzziness in capacity, can be expressed as [15] 
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4. Numerical example  

The OGS building frames considered for numerical analysis in the present study are located in 
Indian seismic zone IV with medium soil conditions [17]. These frames are designed as per 
prevailing practice in India, ignoring the soft-storey effect. Seismic loads are estimated as per IS: 
1893 (2002) [17] and the design of the RC elements is carried out as per IS: 456 (2000) [18]. The 
characteristic strength of concrete and steel were taken as 25MPa and 415MPa. The buildings are 
assumed to be symmetric in plan, and hence a single plane frame may be considered to be 
representative of the building along one direction. Typical bay width and column height in this 
study are selected as 3.2m and 3.0m respectively, as observed from the study of typical existing 
OGS residential buildings (Table 3). Concrete compressive strength, fck and steel yield strength, 

 : fuzziness parameter(0 <<1) 

m(x): membership function 

c: threshold limit = 0.4 , shown 
here 

When the capacity and demand are assumed to be 
log-normal and independent of each other, the failure 
probability, in the presence of fuzziness in capacity, 
can be expressed as [15]
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4. numerical Example 

The OGS building frames considered for numerical 
analysis in the present study are located in Indian 
seismic zone IV with medium soil conditions [17]. 
These frames are designed as per prevailing practice 
in India, ignoring the soft-storey effect. Seismic loads 
are estimated as per IS: 1893 (2002) [17] and the design 
of the RC elements is carried out as per IS: 456 (2000) 
[18]. The characteristic strength of concrete and steel 
were taken as 25MPa and 415MPa. The buildings are 
assumed to be symmetric in plan, and hence a single 
plane frame may be considered to be representative 
of the building along one direction. Typical bay width 
and column height in this study are selected as 3.2m 
and 3.0m respectively, as observed from the study 
of typical existing OGS residential buildings (Table 
3). Concrete compressive strength, fck and steel yield 
strength, fy are taken as normal random variables 
whose distribution parameters are assumed as per 
Ranganathan [19]. The OGS frame 4s5band a building 
frame with infill walls extended to the ground storey 
(4s5b-full) considered for the present study are shown 
in Fig. 2. The dead load of the slab (3 m x 3 m panel), 
including floor finishes, is taken as 2.5 kN/m2 and live 
load as 3 kN/m2. The non-structural brick masonry 
infill is 230 mm thick. The unit weight of infill is taken 
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as 18 kN/m3, maximum allowable shear strength is 
0.45 MPa, initial elastic modulus is 5000 MPa and the 
masonry prism strength is 9.09 MPa.

stiffening along with user friendly inputs without 
extensive calibration. However, it does not take into 
account the bond-slip and reinforcing bar buckling 
which may contribute to larger degradation in the 
case of direct simulation of collapse. Skyline solver 
method and Hilber-Hughes-Taylor integration scheme 
has been used for non-linear time history analysis. 
Seismostruct uses Crisafulli’s model [23] to represent 
nonlinear response of infill masonry panels.

For nonlinear time history analyses, a set of ground 
motion records are required, consistent with the 
prevailing earthquake scenario. Also, there are very 
few natural records available for the current scenario. 
So, there is a need to generate artificial ground motion 
or to select and modify the natural ground motion 
records. The latter is preferred as it preserves the 
natural spectral shape [24]. But presently, there are 
no guidelines available to select ground motions. The 
number of ground motions required for an unbiased 
estimate of the structural response is 7 as per ASCE 
7-05 [25]. However, ATC 58 75% draft [11] recommends 
a suite of 11 pairs of ground motions for a reliable 
estimate of the response quantities. ASCE/SEI 41 
[26] suggests 30 recorded ground motions to meet the 
spectral matching criteria for nuclear infrastructures. 
A set of 30 naturally recorded ground motions are 
with consistent magnitudes and distances required for 
this study and are modified in the frequency-domain 
using wavelets [27]. 

To consider the effect of the fuzziness parameter γ, 
two extreme values of γ are taken corresponding to low 
(γ = 0.10) and high (γ = 0.95) fuzziness, respectively. 
It is seen that the fragility curve for γ = 0.10coincides 
with that of the crisp limit state (γ = 0), across the limit 
states as expected, whereas for γ = 0.95, the fuzziness 
effect is quite significant, especially in case of CP limit 
state (Figure 3). The fragility curves, with and without 
fuzziness, intersect each other at a probability of failure 
of around 0.5. This can be attributed to the shape of the 
chosen membership function, which is symmetrical 
about the median capacity. As the fragility curves 
become flatter towards LS and CP limit states, the 
effect of fuzziness is observed to be significant. It 
can be seen that the probability of failure gets under-
estimated up to 7% for PGA beyond the intersection 

fy are taken as normal random variables whose distribution parameters are assumed as per 
Ranganathan [19]. The OGS frame 4s5band a building frame with infill walls extended to the 
ground storey (4s5b-full) considered for the present study are shown in Fig. 2. The dead load of 
the slab (3 m x 3 m panel), including floor finishes, is taken as 2.5 kN/m2 and live load as 3 
kN/m2. The non-structural brick masonry infill is 230 mm thick. The unit weight of infill is taken 
as 18 kN/m3, maximum allowable shear strength is 0.45 MPa, initial elastic modulus is 5000 
MPa and the masonry prism strength is 9.09 MPa. 





Figure 2 Example Buildings 

 

Table 3 OGS frame building details  
Frame  Bay width(m) Storey 

height(m) 
Ground storey 
column size 
(mm2) 

% of 
reinforcement 

Fundamental 
period(sec.) 

4s5b 3.2 3.0 300 x 300 2.79 0.44 
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where seismic zone factor, Z = 0.24, Importance factor I = 1.0, Response reduction factor R = 
3.0.  

‘Seismostruct’ has been used throughout the study for developing nonlinear analytical models. In 
‘Seismostruct’, fibre approach is made use of to represent the cross-sectional behaviour, where 
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Figure 2 Example Buildings

The design base shear (VB) is calculated as per IS: 
1893 (2002) as 

2
a

B
SZIV W

R g
 

=  
 

                                                   (7)

where seismic zone factor, Z = 0.24, Importance 
factor I = 1.0, Response reduction factor R = 3.0. 

‘Seismostruct’ has been used throughout the 
study for developing nonlinear analytical models. 
In ‘Seismostruct’, fibre approach is made use of 
to represent the cross-sectional behaviour, where 
each fibre is associated with a uniaxial stress-strain 
relationship; the sectional stress-strain state of 
beam-column elements is then obtained through the 
integration of the nonlinear stress-strain response 
of individual fibres with which the section has been 
discretised [20]. Both force-based (infrmFB) and 
displacement-based (infrmDB) analysis options are 
available in the program to simulate inelastic behaviour 
of the beam-column elements. Here, the displacement-
based option has been chosen for the analyses of all 
the elements. Each element is assigned five integration 
points along its length where the nonlinear axial-
flexural behaviour of the cross-section is monitored. 
The fibres in each cross-section are assigned material 
properties to represent unconfined concrete, confined 
concrete and the steel reinforcement. Here, Mander’s 
nonlinear model [21] has been chosen to represent both 
confined and unconfined concrete. For reinforcement 
steel, Menegotto and Pinto stress-strain relationship 
with Filippou’s isotropic hardening rule is used [22]. 
The main advantages of the fibre model include 
the ability to capture axial-flexural interaction and 
the effects of concrete tensile strength and tension 

table 3 oGS frame building details
frame bay width(m) Storey 

height(m)
Ground storey 

column size (mm2)
% of 

reinforcement
fundamental 
period(sec.)

4s5b 3.2 3.0 300 x 300 2.79 0.44
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point and over-estimated up to 15% for lower PGA 
values (Figure 3), and this corroborates the results of 
the previous study [15]. Similar trend has been also 
observed in the case of fully-infilled frames. This trend 
can be seen in all the limit states. In the case of frames 
without any infill (i.e. bare frames), the fragility curves 
are flatter compared to those pertaining to OGS frames 
at CP limit state and hence, the effect of fuzziness is 
more prominently observed here (Figure 4). Further, 
the sensitivity of fragility curves to threshold values 
of median capacity, c and dispersion, βc is investigated 
for CP limit state (Figure 5 and 6). For low values 
of fuzzy parameter, γ, the fragility curve is neither 
sensitive to changes in limit state threshold value nor 
the variance (Figure 5). For higher values of γ, with 
limiting capacity varying between 0.75c and 1.25c, 
there is significant over-estimation of probability of 
failure with increase in median threshold capacity 
for PGA values that lie before the intersection point 
(Figure 6(b)). Similarly, there is an over-estimation 
of failure probability up to 17% when the dispersion, 
βc is decreased by 25%, whereas the fuzzy-random 

fragility curve closes in with the fragility curve without 
the fuzziness effect for higher values of dispersion 
(1.25βc). In order to understand the effect of fuzziness 
on structural irregularity, the fragility curves of OGS 
and a fully-infilled frame are compared.  The coupling 
effect of structural irregularity with the fuzziness is 
found to be insignificant i.e. structural irregularity 
does not change the trend of effect of fuzziness on the 
fragility curve (Figure 7).

5. Summary and Conclusion

A study has been undertaken to incorporate the 
fuzziness information in limit state function in the 
computation of seismic fragility. This is achieved 
through a membership function which represents the 
fuzziness effect using a fuzziness parameter γ. It is 
found that when the value of γ is high, the fuzziness 
effect can be significant, especially at higher level 
limit states (collapse prevention) whereas its effect 
on serviceability limit states is marginal. Also, at 
higher limit states, the fuzzy-random fragility curve 

(c)

Figure 3 Fragility curves for OGS buildings

(a) (b)
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(a) (b)

(d)(c)

(c)

Figure 4 Fragility curves for Bare Frames

(b)(a)

Figure 5 Sensitivity of Limit state function at low fuzziness

Tushar K Padhy  et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 1 (2013) 13-20

Bare_IO_(gamma)=0.1

fuzzy-random-1.25C



19 © 2013 SRESA All rights reserved

(b)

(c) (d)

Figure 6 Sensitivity of Limit state function at high fuzziness

Figure 7 Comparison of effect of irregularity on fuzziness

underestimates failure in the low intensity of seismic 
excitation whereas it overestimates in the higher 
excitation range. The fragility curves are sensitive to 
limit state thresholds when the presence of fuzziness 
is high. The coupling effect of structural irregularity 
with the fuzziness is found to be insignificant.

appendix

When the capacity and demand are assumed to be 
log-normal and independent of each other, the failure 

(a)

probability, with γ as a fuzziness parameter, can be 
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is high, the fuzziness effect can be significant, especially at higher level limit states (collapse 
prevention) whereas its effect on serviceability limit states is marginal. Also, at higher limit 
states, the fuzzy-random fragility curve underestimates failure in the low intensity of seismic 
excitation whereas it overestimates in the higher excitation range. The fragility curves are 
sensitive to limit state thresholds when the presence of fuzziness is high. The coupling effect of 
structural irregularity with the fuzziness is found to be insignificant. 
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abstract

Expert elicitation is one of the powerful technique to combine subjective information and 
experimental observations. However, traditional approach followed in eliciting expert’s opinion 
has its own limitations.  There are concerns regarding the usability of results considering the 
scatter of information collected from such exercise. This has resulted in formulating a structured 
expert judgment uncertainty quantification model, which was developed at the Delft University 
of Technology over the last 17 years. This model has succesfully demonstrated techniques to 
enable performance-based weighted combination of experts’ distributions and analytical tools 
for opinion aggregation. This paper explains the classical model for structured expert judgment 
and the performance measures, and demonstrates with suitable case studies.

keywords: structured expert judgement, seed variable, expert calibration, aggregation.

1. background
Quality of the information is the key basis for 

determining the efficiency of decision making in Risk 
management issues [1]. Various techniques are utilized 
to enhance the quality content of information, be it to 
improve the quality of existing qualitative information 
or to exploit the information content in existing 
(quality assured) information in a more efficient way 
to assure decisions that are more robust. There are 

mainly four classes of information that are used as a 
basis for decision making ranging from quantitative 
statistics to qualitative subjective judgment. Figure 1 
shows the relation between the information classes to 
assessment techniques.

In the context of this paper, techniques and tools 
will be explored for carrying out expert judgment in 
a structured manner.

Figure 1 : Relation between the information classes to assessment techniques

  Life Cycle Reliability and Safety Engineering 
Vol.2 Issue 1 (2013) 21-32



22 © 2013 SRESA All rights reserved

2. introduction to Expert judgment

Expert judgments can provide useful information 
for forecasting, making decisions, and assessing risks. 
Such judgments have been increasingly used as an 
informal approach from earlier days. Recent advances 
in expert elicitation techniques have introduced formal 
and structured methods for conducting these studies 
in a systematic and efficient manner [2]. However, it 
has to be kept in mind that the application areas can 
become diverse ranging from engineering problems, 
to social, cultural and economic policy issues. This 
has resulted in providing judgments of different 
kinds such as forecasting, estimates, or probabilistic 
assessment. In this paper, the application of expert 
judgment to forecasting and quantitative assessment 
has been explored.

In the world of engineering, technical expertise 
is generally separated from value judgements. 
Engineering judgement is often applied to bridge 
the gap between hard technical evidence and 
mathematical rules on the one hand, and, unknown 
characteristics of a technical system on the other hand. 
Suitable numerical data have to be derived for the 
practical problem at hand. Engineers are quite able 
to provide these data which are essentially subjective 
in nature and are driven by engineering models and 
experience. The same is true for expert judgements. 
Engineering models and experience largely drive the 
subjective experts’ assessments. 

When expert opinions are being used as data, some 
trends can be observed such as [3].
1. Expert opinion estimates typically exhibit a large 

scatter.
2. Estimates, given by the experts, are not always 

independent. For example: if an expert judges 
negative of one aspect within a study, then he 
could also have a tendency to be negative of other 
aspects within the study, too.

3. In general, if the same expert opinion method 
is applied several times on the same problem, it 
doesn’t produce similar results.

4. Mostly, the subjective probabilities don’t agree 
with observed frequencies.

The above trends were attributed to the fact that 
expert opinion is unstructured; without the use of 
formal processes/methodologies. This emphasizes the 
use of structured expert judgement. In order to ensure 
the structured nature, the following steps should be 
taken during the expert elicitation process.

1. Preparation of the expert elicitation process
2. Identification of variables
3. Identification and selection of experts
4. Elicitation of expert opinions
5. Handling the results of the elicitation session

The fundamental goal of science is to build rational 
consensus and, therefore, the process of collecting 
expert assessments must be subjected to the following 
five basic principles (the first and second principles 
are later combined as a scrutability/accountability 
principle [3]:

1. Reproducibi l i ty:  All  results  must  be 
reproducible, with calculation models and data 
being clearly specified and made available.

2. Accountability: The source of data (name and 
institution) must be identified, and data must 
correspond to the exact source from which the 
data are elicited.

3. Empirical Control: Experts’ assessments must 
be, in principle, physically observable.

4. Neutrality: The elicitation process must ensure 
that the actual beliefs of experts be collected 
(e.g. no punishment or rewards through a 
self-rating system, where the experts rate their 
opinions themselves).

5. Fairness: All experts must be regarded equally 
before the aggregation process.

3. Structured Expert judgment Methods

As explained in the previous section, for carrying 
out expert elicitation in a structured manner, five steps 
mentioned above have to be meticulously followed. 
The techniques and tools involved in adopting these 
steps are explained in the sub sections below: 

3.1. Preparation of the expert elicitation process

One of the key stages in the expert elicitation 
process is the definition of the problem or issue to be 
judged. Here, we should analyse the subject of interest 
and how we are going to tackle the issue. For example, 
are we looking for a quantitative probability assessment 
of an issue or interest in forecast of policy planned to be 
implemented? or do we need an estimate of the variables 
for our problem in hand?
l		 Definition of the case structure document: This 

document contains the description of the field 
of interest, what is expected from the experts, 
and in what way the experts will be queried 
about the problem.
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l		 Deciding the type of questionnaires according 
to the problem on hand.

The case structure document contains the 
framework for the panel of experts, specifying all 
issues to be taken into account, while conducting the 
expert elicitation process. Depending on the nature 
of issue, there are following types of quantities of 
interest.

1. Point values: experts are asked to guess the 
values of unknown quantities as single point 
estimates. This type of assessment is not 
popular, due to some of its disadvantages like 
difficulty in combining scores for variables 
measured on different scales, no indication 
of uncertainty, difficulty in combining 
judgements, etc. 

2. Paired comparisons: In the paired comparison 
method, experts are asked to rank alternatives 
pair wise according to some criterion like 
preference, feasibility, etc. If 20 items are 
involved in total, 190 comparisons must be 
made; each item is compared with the 19 
others. Since each item is compared with all 
the other items, there is a great deal of possible 
redundancy in the judgement data. Various 
processing methods are proposed for distilling 
a rank order from the pair wise comparison 
data. 

3. Discrete event probabilities: Experts are asked to 
assess the probability of occurrence of uncertain 
events. The assessment takes the form of a 
single point value in the [0,1] interval, for each 
uncertain event.  The assessment of discrete 
event probabilities must be distinguished from 
the assessment of limit relative frequencies 
of occurrence in a potentially infinite class of 
experiments (the so-called reference class). 

4. Distributions of continuous uncertain quantities: 
For applications in uncertainty analysis, we are 
mostly concerned with random variables taking 
values in some continuous range, described by 
a subjective probability distribution. Typically, 
only the 5%, 50% and 95% quantiles are 
requested, and distributions are fitted based on 
the elicited quantiles.

In some typical issues, for example related to 
policies, surveys are used, which is another form of 
expert elicitation for measuring attitude. Typically 
in ranking using “Likerts scale”, subjects are asked 

to express agreement or disagreement on a five-
point scale. Each degree of agreement is given a 
numerical value, for example from one to five. Thus, 
a total numerical value can be calculated from all the 
responses. This ranking method is popular method 
used for relative ranking of issues and is an excellent 
tool for qualitative decision making.
3.2. Identification of variables

Not all experts perform equally well with respect 
to a given assessment case. Assessments of ‘better’ 
experts should get a higher weight (score) in the 
overall linear combination [3]. There are two types 
of questions. Seed, or calibration questions allow to 
measure how good the experts are in quantifying 
their uncertainty. Second, there are questions of 
interest variables, i.e. questions on uncertain quantities 
being assessed. Seed questions must be chosen from 
the expert’s research field, related to the questions of 
interest. Answers to them are known or will become 
known in the time after the project. A score measuring 
‘goodness’ of an expert is calculated based on the 
answers to seed variables as a product of two values, 
namely, a calibration score and an information score. 
The calibration score says how statistically well the 
expert performs. The information score measures 
the expert’s uncertainty about the requested matter. 
The second type of questions concerns assessing the 
quantities we are interested in called interest or target 
or query variables.

l	 Identification of the seed variables: Variables 
whose true values are unknown to experts when 
giving their opinion, but whose values are known 
to the evaluators.

l	 target variables: Which variables are to be 
quantified by the experts 

 √ Identification of the query variables: These 
are the variables to be assessed by the experts. 
The target variables may not be appropriate 
for direct elicitation.  Then it is needed to find 
derived variables for these.

Information score and calibration score: Let 
us assume that we have one seed question with 
realization r and N experts.

Each of them give (5%,50%,95%) quantiles for this 
seed variable

(q5(e), q50 (e), q95 (e)),e =1,..., N 

Information score: In order to compute information 

Gopika Vinod et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 1 (2013) 21-32



24 © 2013 SRESA All rights reserved

score, intrinsic range is to be defined. Intrinsic range is 
the interval (l,h), such that

                                                                             (1) 


            


 
    
   


            
            
  




 
              

           


          
 
     








                




 

             



         
                 

              

   


• 


• 

 
       


              









{ } { }reqhreql
NeNe

),(max,),(min 95
...1

5...1 ==
==    


             


)( lhklql −−=   )( lhkhqh −+=     

i.e. it is the minimum interval containing all 
experts’ assessments and the realization of the chosen 
seed variable. Intrinsic range should contain the whole 
distribution. For this reason, k% overshoot is often 
included in range (l,h). The sensitivity to the choice 
of k must be checked.

                                                                     (2) 


            


 
    
   
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              

   


• 


• 

 
       


              









{ } { }reqhreql
NeNe
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5...1 ==
==    


             


)( lhklql −−=   )( lhkhqh −+=     


            


 
    
   


            
            
  




 
              

           


          
 
     








                




 

             



         
                 

              

   


• 


• 

 
       


              








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
             

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The information score defines the- degree to 
which the experts’ assessments are concentrated 
relative to user-defined background measure. This 
measure is assigned to each variable for each 
expert. For the uniform and for the lognormal 
distributions,  for example,  the background 
measure is respectively:
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         

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

))(())(( 51 eqFeqFr l−=   ))(())(( 5502 eqFeqFr −= 

))(())(( 50953 eqFeqFr −=  ))(())(( 954 eqFeqFr h −=  


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
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               
              














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If the background measure distribution is uniform, 
then the expert’s distribution for seed variables is 
uniform between quantiles 0 and 5%, 5% and 50%, 50% 
and 95%, and, 95% and 100%. The information score of 
an expert for one seed question is then defined as
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Let us have M seed questions. The information score 
of an expert is defined as the average of information 
scores for each of the seed variables:
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                                  (7)

The information score shows how confident 
the expert is in estimations, i.e. how concentrated 
is the distribution. The value of the information 
score depends on the choice of background measure 
and intrinsic range, but usually this dependence is 
negligible.

Calibration score: Let us consider one expert and M 
seed questions. We would like to estimate the ability 
of the expert to predict realizations. If we ask him/
her to give (5%,50%,95%) quantiles, then 5% of the 
realizations should fall in the interval (<5%), 45% in 
the interval (5%-50%), 45% in the interval (50%-95%) 
and 5% in the interval (>95%). Let us denote these 
realizations as (s1(e), s2(e), s3(e), s4(e)). 

i.e.
s1(e) = #{ i | xi ≤ 5% quantile}/N 
s2(e) = #{ i | 5% quantile < xi ≤ 50% quantile}/N
s3(e) = #{ i | 50% quantile < xi ≤ 95% quantile}/N 
s4(e) = #{ i | 95% quantile < xi }/N 

where, N is the total number of experts participating 
in the elicitation process, xi is the value given by the 
expert for the ith seed question

If the expert e is well calibrated we should expect 
that approximately 5% of the true values fall beneath 
5% quantile, 45% should fall between 5% and 50% 
quantiles, etc. To evaluate how close the empirical 
density of the expert (s1, s2, s3, s4) is to the hypothetical 
one (p1, p2, p3, p4) = (5%,45%,45%,5%), so-called relative 
information is used:
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Its minimum value zero is achieved if and only 
if s=p. Calibration score is based on I (s, p). It is the 
likelihood of statistical hypothesis which is defined 
for each expert as [3]:

The realizations may be regarded as independent 
samples from a distribution corresponding to the expert’s 
quantile assessments.

We would like to test the degree to which the 
realizations for seed variables support this hypothesis, 
i.e. to check if discrepancies between the realizations 
and the expert’s assessments have appeared by chance. 
It is well-known that [4].
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The calibration score for expert is defined as the 
probability to get the relative information score worse 
than obtained, under assumption that his/her true 
distribution is(p1, p2, p3, p4). The score is expressed 
as

)),(2(1)),(2(1)( 2
3

2
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                                                           (10)

The best case is when c(e) =1, where the expert’s 
empirical distribution is just the same as the 
hypothetical one. Low calibration score (say less 
then 0.05) means that the expert’s probabilities are 
not supported by seed variables. We choose experts 
with higher information score between those with 
approximately equal calibration scores. Identification 
and selection of experts

This step involves choosing experts, and selecting 
from the initial list of experts the final group for the 
elicitation process, on the basis of a few selection 
criteria: reputation in the field of interest, diversity in 
background, familiarity with uncertainty concepts. 
Sometimes, it is required to train/prepare experts 
in making probabilistic assessments, if they are not 
familiar with these concepts. 

3.3 Elicitation of expert opinions

In the elicitation, either the expert is interviewed 
alone or the questionnaire in a web based environment 
is designed and experts are notified through email 
for their participation. Instructions of how the 
questionnaire must be filled-in will be described 
and an example will be presented in order to clarify 
the use of quantiles. Experts are encouraged to 
provide answers to all the queries. In addition, some 
background information of the subject of interest is 
also provided to assit experts in giving the clear picture 
of issue on hand. 

3.4. Handling the results of elicitation session

Combining and aggregating the results of 
elicitation session is the most critical step of the whole 
structured expert judgment process and needs detailed 
description of various methods used. It involves (i) 
Scoring the expert, and, (ii) Combining the result. 
Since it is still an evolving area, some of the classical 
methods are described in this paper. 

3.4.1. Scoring the experts

The first step in this process is to score the experts. 
Three schemes are used for computing the weights 
of experts. Before going to estimate the weights for 
the experts, it is assumed that information score and 
calibration score has been computed according to 
equation (7) and (8) respectively.
1. Global weights – we equals the product of the 

calibration and information score (each score 
normalised). 

 We = I(e) x c(e)                                                      (11)
2. Equal weights, 
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 where N is the 
number of the total experts                              (12)

3. Item weights – uses individual scores for each of the 
experts and items,and the same calibration score for 
any of the items within each of the experts. 
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     

     

     

                                                                                  (13) 

Another simple, qualitative combination approach 
is to use the Saaty’s analytic hierarchy process [7]. This 
involves pairwise comparisons concerning information 
about the experts’ qualifications. A numeric value is 
assigned to the ratio of the qualifications between 
the two experts. The weights for each experts are just 
the normalized eigen vector corresponding to the 
maximum eigen value of the pairwise comparison 
matrix. This procedure is demonstrated by considering 
the following pairwise comparisons:  

1 vs 2: 
Better

2 vs 3: 
Worse

3 vs 4: 
Same

4 vs 5: 
Same

5 vs 6: 
Same

6 vs 7: 
Worse

1 vs 3: 
Same

2 vs 4: 
Worse

3 vs 5 : 
Better

4 vs 6: 
Better

5 vs 7: 
Worse

1 vs 4 : 
Same

2 vs 5: 
Worse

3 vs 6: 
Better

4 vs 7: 
Same

1 vs 5 : 
Better

2 vs 6: 
Worse

3 vs 7: 
Same

1 vs 6 : 
Better

2 vs 7: 
Worse

1 vs 7: 
Better
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A scale of 1 to 9 is often used, depending on 
the magnitude of the relative importance between 
the two experts. For this simple case, we let Better 
= 2.72, Worse = 1/ Better = 0.37, and same =1. In 
principle, any appropriate based on judgment can 
be assigned to these variables. Our comparison 
matrix is then

 

The maximum eigen value is λMAX = 7.324 and the 
corresponding normalized eigen vector is (0.23, 0.06, 
0.19, 0.17, 0.1, 0.08, 0.17). These would be the weights 
given to each expert. The disadvantage of this method 
is that it can only be used to combine single values, 
like a median. We cannot calculate the uncertainty of 
the estimates. 

3.4.2.Combining / Aggregation of expert opinions

Combination, or aggregation [4], procedures are 
often dichotomized into mathematical and behavioral 
approaches, although in practice aggregation 
might involve some aspects of each. Mathematical 
aggregation methods range from simple summary 
measures such as arithmetic or geometric means 
of probabilities assessed by experts to procedures 
based on axiomatic approaches or on various models 
of information-aggregation process requiring inputs 
regarding characteristics such as the quality of and 
dependence among the experts’ probabilities. In 
contrast, behavioral aggregation approaches attempt 
to generate agreement among the experts by having 
them interact in some way. This interaction may be 
face-to-face or may involve exchanges of information 
without direct contact. Behavioral approaches 

consider the quality of individual expert judgments 
and dependence among such judgments implicitly 
rather than explicitly.

3.4.2.1. Mathematical approaches 

Let p(e) = (p5 (e),p50 (e),p95 (e)), e 1,...,N be the 
assessment of N experts of the variable of interest. 
We need to combine these distributions to get the 
distribution of the variable of interest. An appealing 
approach to the aggregation of probability distributions 
is the linear opinion pool,

)()(
1

θθ ∑
=

=
N

e
ee pwp     

                   
(14)

where N is the number of experts, pe(θ) represents 
expert e’s probability distribution for variable of 
interest, θ, p(θ) represents the combined probability 
distribution, and the weights we are non-negative and 
sum to one.

Another typical combination approach uses 
multiplicative averaging and is sometimes called a 
logarithmic opinion pool. In this case, the combined 
probability distribution is of the form 

∏
=

=
N

e

w
e

epkp
1

)()( θθ     
                                 (15)

where k is a normalizing constant and the weights 
we satisfy some restrictions to assure that p(θ) is a 
probability distribution. Typically, the weights are 
restricted to sum to one. 

Perhaps the most robust technique in combining 
expert opinion is the bayesian method. In this 
method, the decision maker uses experts’ probability 
assessments as data to update his own prior belief 
about the distribution of an unknown quantity of 
interest, according to Bayes’ Theorem [5]. Let P(x) be 
the decision-maker’s prior probability distribution 
for some unknown quantity x, and P(D|x) be the 
likelihood of some observational data D given x. Then 
the decision-maker’s posterior distribution is P(x|D) 
= [P(D|x)*P(x)] / P(D) via Bayesian update.

The psychological scaling models assume that 
every expert has some internal value associated with 
a variable of interest and he/she can only provide his 
or her qualitative input (no numerical estimates). The 
decision-maker asks experts to state their preference 
or views on pairwise comparisons. This approach 
originated from the study of estimating intensities 
of physical stimuli, which later developed into the 
study of estimating relative intensities of psychological 

Figure 2: Relation between different approaches for combining 
or aggregarting expert opinions
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stimuli among experts. Using simulation, experts’ 
assessments lead to a consensus with confidence 
bounds. Their inputs are measured for their consistency 
and concordance.  Suppose there are N experts, and 
each expert is asked to express his/her preference 
for one of two events. Let A(1), …, A(t) be events to 
be compared, V(1), …, V(t) be the true probabilities 
of events. Let V(i, e) denote the internal value of 
expert e for event i. If expert e prefers event A(i) to 
event A(j), (i.e. A(i) > A(j) ), then A(i) is judged more 
probable than A(j) by e, and V(i, e) >V(j, e). The paired 
comparison models are appealing in that experts are 
not required to be familiar with numerical assessments 
and the overall elicitation process is relatively simple. 
They have, however, disadvantages such as requiring 
a large number of experts and forcing stringent 
assumptions about experts’ underlying assessment 
mechanisms. 

3.4.2.2. Behavioural approaches

Behavioral combination approaches require experts 
to interact in some fashion [6]. Some possibilities 
include face-to-face group meetings, interaction by 
computer, or sharing of information in other ways. The 
group may assess probabilities or forecasts, or simply 
discuss relevant issues and ideas with only informal 
judgmental assessment. Emphasis is sometimes placed 
on attempting to reach agreement, or consensus, 
within the group of experts; at other times, it is simply 
placed on sharing of information and having the 
experts learn from each other. The degree to which 
the risk- assessment team is involved in structuring 
and facilitating the expert interaction can vary. Specific 
procedures (e.g., Delphi, Nominal Group Technique) 
can be used, or the risk- assessment team can design 
the interaction process to suit a particular application. 
The simplest behavioral approach is to assemble 
the experts and assign them the task of generating 
a ‘‘group’’ probability distribution. Discussion and 
debate can be wide-ranging, presumably resulting in 
a thorough sharing of individual information. 

One of the most well known behavioral approaches 
is the Delphi technique, which was developed in the 
1950s. In this method, experts are asked to anonymously 
judge the assessments made by other experts in a 
panel. Each of the experts is then given a chance to 
reassess his/her initial judgment based on the others’ 
review. Typically, the process is repeated several 
rounds until a smaller spread of experts’ opinions 
is achieved. The Delphi method later incorporated a 
self-rating mechanism, allowing experts to rate their 

expertise. The Nominal Group method is another 
well-known behavioral method, in which experts are 
allowed to discuss their estimates directly with one 
another in a controlled environment.

The expert  panel  typical ly faces one of 
the following three generic types of choice 
problems
1. to agree or disagree or determine the extent 

of its disagreement with one or more policy 
propositions

2. to develop a preference ranking over a set of 
items

3. or to produce quantitative estimates of one or more 
parameters for use in subsequent calculations that 
contribute to a policy recommendation

Regarding (3) it may be that suitable empirical 
information for estimating the parameters by a more 
conventional data driven approach is simply not 
available or else is deemed to be of insufficient quality 
to merit use without “expert judgment” interpretation 
or augmentation.

delphi

Delphi involves an iterative survey of experts. A 
dialectical process, Delphi was designed to provide 
the benefits of a pooling and exchange of opinions 
so that respondents can learn from each other’s 
views, without the sort of undue influence likely in 
conventional face-to-face settings (which are typically 
dominated by the people who talk the loudest or 
have most prestige). Each participant completes a 
questionnaire and then is given feedback on the whole 
set of responses. With this information in hand, (s)

Figure 3: Schematic of flow of information in DELPHI rounds

Figure 3 depicts the flow of information envisaged 
between different dElPHi rounds.
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he then fills in the questionnaire again, this time 
providing explanations for any views they hold that 
were significantly divergent from the viewpoints of 
the other participants. The explanations serve as useful 
intelligence for others. The idea is that the entire group 
can thus weigh dissenting views that are based on 
privileged or rare information. While traditionally 
conducted via mail, other variations of Delphi can be 
online or face-to-face. The area of trying to translate 
scientific knowledge into an informed judgment on 
evaluating and analyzing decision options is clearly a 
potential one for the Delphi method. Usually Delphi, 
whether it be conventional or real-tune, undergoes 
four distinct phases.
1. The first phase is characterized by exploration 

of the subject under discussion, wherein each 
individual contributes additional information he 
feels is pertinent to the issue. 

2. The second phase involves the process of reaching 
an understanding of how the group views the 
issue (i.e., where the members agree or disagree 
and what they mean by relative terms such as 
importance, desirability, or feasibility).

3. If there is significant disagreement, then 
that disagreement is explored in the third 
phase to bring out the underlying reasons 
for the differences and possibly to evaluate 
them. 

4. The last phase, a final evaluation, occurs when all 
previously gathered information has been initially 
analyzed and the evaluations have been fed back 
for consideration.

4. Case Studies

As mentioned earlier, expert elicitation is 
widely applied for finding quantitative estimates 
or forecasting, etc,.  In this section, case studies 
attempting to arrive at expert decisions are presented.  
Though several methods have been presented in 
Section 3 for expert elicitation, in the following only 
those appropriate for a give case are used.

4.1 Example 1: Quantitative estimate

This is a typical example of finding failure 
probability of a component while applying Risk based 
inspection. For those who are not familiar with Risk 
based inspection, it can be briefly explained as a “live” 
process for developing an inspection programme 
considering all critical components by evaluating 
their contribution towards risk. The backbone of Risk 
based inspection is finding the failure probability and 
consequence of failure of all components involved 
and hence evaluates their criticality. In doing so, all 
credible failure scenarios should be considered along 
with all possible degradation mechanisms acting on 
components, which can lead to such scenarios. Since 
evaluation of failure probability is a critical phase, 
but for some scenarios, hampered by lack of data, 
expert judgment is considered as a practical tool for 
conducting risk based inspection.

A simple example is considered, for illustrating 
how expert elicitation in risk based inspection is 
practiced. As discussed earlier, after identifying 
the suitability of problem for expert judgment, next 

table 1 : realization of seed questions based on prior knowledge

Category Prior knowledge on consequential actions 5% 50% 95%
Very high Bearing replacement required/ repair of bearing due to consequential 

damage 0.1 0.2 0.3

High Bearing replacement required, even though no damage is observed 0.03 0.09 0.3
Medium Some observed wear, not yet at critical limits 0.003 0.01 0.03
Low No deviation from specified dimension 0.0001 0.001 0.003

table 2: Expert elicitation for seed variables

Seed variables
Expert 1 Expert 2 Expert 3

5% 50% 95% 5% 50% 95% 5% 50% 95%
Very high 0.1 0.4 0.9 0.01 0.2 0.3 0.1 0.2 0.3

High 0.009 0.05 0.1 0.001 0.005 0.01 0.01 0.05 0.1
Medium 0.003 0.006 0.009 0.0005 0.008 0.001 0.001 0.005 0.01

Low 0.0001 0.0005 0.003 0.0001 0.0003 0.0005 0.0005 0.0008 0.001
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step is selecting appropriate seed variables. Below 
is an example of “Generator failure due to heat”. 
The bearing can overheat, if the lubricant runs or 
dirt penetrates. The friction caused can rise the 
bearing temperature leading to its failure. So “how to 
categorize the failures in bearing” has been considered 
as seed variables, since sufficient data and prior 
knowledge is available

With this prior knowledge, experts are asked to 
provide the 5%, 50% and 95% values for categories 
Very high, high, medium and low, for defining the 
generator failure due to rise in bearing temperature. 
Table 2 shows the some sample values suggested by 
three experts.

As discussed in section 3.2, it is required to find 
the l, h , ql and qh . l and h are computed as given in 
equation (1). Considering 10% as overshoot, ql and qh 
are computed, as per equation (2). The values for these 
parameters are given in Table 3.

table 3: range calculation for estimating the 
weight of experts

l h ql qh
very high 0.01 0.9 -0.079 0.989

high 0.001 0.3 -0.0289 0.3299
medium 0.001 0.03 -0.0019 0.0329

low 0.0001 0.003 -0.00019 0.00329

Assuming uniform distribution, F(x) is computed 
as given in Equation (3). These F(x) values are required 
to compute the parameters r1, r2, r3, r4 for each 
experts, as per equation (6). Using equation 5 & 7, the 
informativeness of the three experts are computed. 
The results are shown in Table 4.

table 4. Computation of informativeness of experts

i(e,i) Expert1 Expert2 Expert3
m1 -0.07 0.79 1.04
m2 0.80 2.88 0.81
m3 1.12 1.47 0.79
m4 0.17 1.51 1.29
I(e) 0.50 1.66 0.98

After the expert calibration, the target variables 
are presented for the following case “Generator 
failure – short circuit fault”. The scenario is as follows: 
Too high temperature of the winding may result in 
melting of the insulation of the winding. Consequently 

a short-circuit fault occurs with sudden stop of the 
generator, possibly catching fire. This is caused by 
the contamination of insulation winding by dirt and 
water. For this scenario, experts gave their observation 
as shown in table. 5.

Using global  weighted decis ion maker 
methodology (equation 11), the failure probability 
values for 5%, 50% and 95% has been evaluated as 
0.02, 0.06 and 0.17 respectively. 

This can be further subjected for Delphi rounds, 
with experts views invited for the aggregated results. 
Again, their views are combined, with appropriate 
justifications, for obtaining result.

Similarly consequence can also be evaluated, 
which are finally utilized in deciding the components 
placement in risk matrix.
4.2 Example 2: forecasting research areas and 

their importance ranking

To illustrate the procedure of “Delphi”, a typical 
problem has been framed. It is common in any research 
area for experts to have diversified approach to tackle 
a particular problem. To be in line with the topic 
under discussion, authors have framed an expert 
elicitation problem on approaches and requirements 
on conducting “Uncertainty analysis”. Accordingly, 
experts are required to comment on following issues 
related with uncertainty analysis:

Issue 1 All variables appearing in the problem need 
to be considered uncertain 

Issue 2 Aleatory uncertainty can be neglected if the 
problem is not amenable

Issue 3 Suitable justification should be provided 
on application of different uncertainty 
propagation methods such as Monte Carlo 
Simulation, Demper Shafer method, Fuzzy 
approach, etc. 

Issue 4 Uncertainy importance measures are an 
integral part of Uncertainty analysis 

Issue 5 More t ime should be dedicated for 
characterization of variables than investigating 
different alternative propagation methods 
while performing uncertainty analysis 

Issue 6 Sensitivity analysis can be considered as a 
complement / replacement of uncertainty 
analysis as problem demands.
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Table 6: Summary of first-round ratings from seven experts

issues in 
Uncertainty analysis

rating given by each expert rating _ 
Mean

rating_ 
Median

Quartile 
deviationE1 E2 E3 E4 E5 E6 E7

Issue 1 5 5 5 5 4 5 5 4.86 5 0

Issue 2 4 3 5 4 4 5 5 4.29 4 0.5

Issue 3 5 4 4 4 5 4 5 4.43 4 0.5

Issue 4 1 2 2 3 3 2 3 2.64 2 0.5

Issue 5 3 4 4 5 4 4 4 4.00 4 0

Issue 6 2 2 3 3 3 2 1 2.29 2 0.5

table 7: Summary of second-round ratings from seven experts

issues in 
Uncertainty analysis

rating given by each expert rating_
Mean

rating_
Median

Quartile 
deviationE1 E2 E3 E4 E5 E6 E7

Issue 1 5 4 5 5 4 5 5 4.71 5 0.5

Issue 2 4 4 5 4 4 5 5 4.43 4 0.5

Issue 3 5 4 4 4 5 4 4 4.29 4 0.5

Issue 4 2 2 3 3 3 2 3 2.57 3 0.5

Issue 5 3 4 4 4 4 4 4 3.86 4 0

Issue 6 2 2 2 3 3 2 1 2.14 2 0.5

A typical rule for analyzing the ratings from multiple experts with Delphi approach is given in Table 8. 

table 8: typical rules for analyzing the ratings from multiple experts

1st round 2nd round 3rd round

Rating_Mean (i) ≥ 3.5 If Rating_Mean (i) ≥ 3.5 and QD ≤ 0.5 and 
Rating_Variant(i)< 15%, the issue is accepted 
and no further discussion is needed

Rating_Mean (i) < 3.5 Rating_Mean (i) ≥ 3.5 or Rating_Variant(i)> 
15%,

If Rating_Mean (i) ≥ 3.5 and QD ≤ 0.5 
and Rating_Variant(i)< 15%, the issue 
is accepted and no further discussion 
is needed

Rating_Mean (i) < 3.5 If Rating_Mean (i)  ≤ 3.5 and QD ≤ 0.5 and 
Rating_Variant(i) < 15%, the issue is rejected 
and no further discussion is needed

table 5: aggregated results after expert judgement

target 
variables

Expert 1 Expert 2 Expert 3

5% 50% 95% 5% 50% 95% 5% 50% 95%

PoF for high 0.01 0.04 0.08 0.007 0.02 0.07 0.008 0.03 0.06
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Experts were asked to rate these issues in the 
scale of {I strongly disagree, I disgree, Neutral, I 
agree, I strongly agree}. Typically the ranking or 
ratings is represented by a Likert scale. Here we 
used a Likert scale of {1, 2, 3, 4, 5} corresponding to 
the above statements. If an expert failed to respond 
to certain criteria statement, the data will not be 
included in the computation of means or standard 
deviations. 

Delphi initially runs into two rounds of expert 
elicitation. Table 6 and 7 shows the summary of first 
and second round ratings given by seven experts 
for the issues in Uncertainty analysis. In table 8, the 
quartile deviation (QD) is half the difference between 
the third (upper) and first (lower) quartiles.

The Delphi questionnaire is ended if one of the 
following situations occurs:
(1) All of the questionnaire items are either accepted 

or rejected 
(2) There still exist some undetermined questionnaire 

items; nevertheless, over 75% questionnaire items 
have their rating_variant values being less than 
15%

According to the above basis, rounds for Delphi 
are decided and based on rules for analyzing the 
rating, it was decided whether to accept or reject a 
particular issue.

Table 9 summarizes the analysis results of the 
ratings given by the seven experts for the two rounds 
of questionnaires.

table 9: Summary of the analysis results of ratings given by experts

issues in Uncertainty 
analysis

rating given by each expert rating_
Mean

rating_
Median

Quartile 
deviation

rating_
variant (%)

E1 E2 E3 E4 E5 E6 E7

Issue 1 5 5 5 5 4 5 5 4.86 5 0 14.29

5 4 5 5 4 5 5 4.71 5 0.5

Issue 2 4 3 5 4 4 5 5 4.29 4 0.5 14.29

4 4 5 4 4 5 5 4.43 4 0.5

Issue 3 5 4 4 4 5 4 5 4.43 4 0.5 14.29

5 4 4 4 5 4 4 4.29 4 0.5

Issue 4 1 2 2 3 3 2 3 2.64 2 0.5 14.29

2 2 3 3 3 2 3 2.57 3 0.5

Issue 5 3 4 4 5 4 4 4 4.00 4 0 14.29

3 4 4 4 4 4 4 3.86 4 0

Issue 6 2 2 3 3 3 2 1 2.29 2 0.5 14.29

2 2 2 3 3 2 1 2.14 2 0.5

From the analysis, issue 4 and issue 6 are rejected 
since Rating_Mean is ≤ 3.5 and QD ≤ 0.5 and Rating_
Variant < 15%. 

Conclusions 

Structured expert judgment has emerged as an 
effective method for bridging the knowledge gap 
between hard evidence and experts’ experience. Since 
the whole process is carried out a systematic manner, it 
has succeeded largely to reduce the scatter in experts’ 
opinions. This paper describes the structured expert 

judgment procedure detailing various tools and 
techniques involved in conducting each step in the 
process. Applications of some of the techniques were 
explained with suitable case studies.

Although empirical evidence indicates that 
mathematical methods of aggregation generally yield 
better results than behavioral methods, the latter 
methods are often perceived appealing, particularly 
when experts have knowledge in different areas 
and the synthesis of their expertise is needed. As 
decision-makers in general tend to use the most 
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convenient aggregation methods of their choice (and 
not necessarily the most appropriate), researchers 
call for formalizing the elicitation process and using 
expert opinion by ensuring the basic principles of 
rational consensus (i.e. satisfying reproducibility, 
accountability, empirical control, neutrality, and 
fairness in resulting assessments), which seems truly 
timely and appropriate. 
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1. introduction

In the traditional deterministic methods of 
analysis, all the parameters of the system are taken 
to be precisely known.  In practice, however, there is 
always some degree of uncertainty associated with 
the actual values for structural parameters.  As a 
consequence of this, the structural system will always 
exhibit some degree of uncertainty. This uncertainty of 
the structural system needs to be rationally taken into 
account during the analysis and design of structures. 
This requires the introduction and application of 
non-deterministic methods of structural analysis and 
design. Consequently, non- deterministic approaches 
are gaining momentum in the field of numerical 
modelling and analysis. The ability to include non-
deterministic properties is of great value for a design 
engineer. It enables realistic reliability assessment 
that incorporates the uncertain aspects in the design. 
Furthermore, the design can be optimized for robust 
behaviour under varying external influences. Recently, 
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abstract

This paper focuses on the static stress analysis of doubly reinforced concrete flexural members 
subject to parametric uncertainty. The uncertainty is located in the properties of the steel 
reinforcement in the concrete beam, and expressed as a fuzzy set for the corresponding Young’s 
modulus. The fuzzy set is represented by a number of intervals using α - sublevel technique. The 
internal moment of resistance of the beam is expressed as a function of the stresses induced by the 
external moment in the concrete and steel. The stress distribution model for the cross section of 
the beam given by IS 456-2000 (Indian standard code of practice for plain and reinforced concrete) 
is applied for this purpose. Due to the interval uncertainties, the stresses in concrete and steel are 
obtained as interval values, resulting correspondingly in an interval moment of resistance. The 
interval analysis is performed using three different approaches. A direct interval computation 
tackles the problem using an interval arithmetic translation of the procedure for obtaining the 
internal moment of resistance. This method is compared to two response surface based approximate 
approaches, i.e. a method based on a local Taylor series approximation, and one based on Kriging 
response surface modelling.

Keywords:  moment of resistance, concrete beam, fuzzy analysis, response surface, interval 
computation, Kriging approach

criticism has arisen regarding the general application 
of the probabilistic concept in this context.  Especially 
when objective information on the uncertainties is 
limited, probabilistic analysis does not always justify its 
high computational cost[1]. Consequently, alternative 
non- probabilistic concepts have been introduced for 
non-deterministic numerical modelling.

In this context, interval and fuzzy approaches 
are becoming increasingly popular for the analysis of 
numerical models that incorporate uncertainty in their 
description. In the interval approach, uncertainties are 
considered to be contained within a predefined range. 
For each uncertainty, the analyst has to provide the 
lower and upper bound. Modelling with intervals 
provides a link between design and analysis where 
uncertainty may be represented by bounded sets 
of parameters. The fuzzy approach extends this 
methodology by introducing a level of membership 
that represents to what extent a certain value is 
member of the range of possible input values. This 
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concept provides the analyst with a tool to express a 
degree of possibility for a certain value. Based on the 
α-sublevel technique, the fuzzy analysis requires the 
consecutive solution of a number of related interval 
problems. For that reason, much attention goes to 
the actual solution and implementation of interval 
analysis.

In recent literature, the application of both the 
interval and the fuzzy concept for the representation 
of parametric uncertainty during a classical finite 
element analysis has been studied extensively. While 
the problem at the core of the analysis, i.e. the solution 
of a set of interval equations, is easily formulated, 
the actual solution of this problem was proven to 
be extremely problematic[1]. Nevertheless, some 
solution schemes of fundamentally different nature 
have been developed. The intention of this paper is 
to present an illustrative example demonstrating the 
applicability of the non-deterministic methods based 
on interval- and fuzzy- concepts to the problems of 
structural mechanics.

In literature, several methods have been proposed 
for the solution of equations with interval parameters. 
Neumaier (1990) [2] discussed several interval 
arithmetic approaches. Systems of linear interval 
equation with dependent parameters and symmetric 
matrix were discussed by Jansson (1991)[3]. Köylüoğlu 
et al, 1995 [3] applied the concept of interval algebra 
to the solution of FEM equations with uncertain 
parameters. Rao and Chen (1998)[5] developed a 
search-based algorithm to solve a system of linear 
interval equations to account for uncertainties in 

engineering problems. The algorithm performs 
search operations with an accelerated step size 
in order to locate the optimal setting of the hull 
of the solution. McWilliam (2001) [6] described 
an anti-optimization approach for the solution of 
interval equations. Orisamolu et al. (2000) [7] used 
a response surface method to approximate the 
solution.  Muhanna and Mullen (2001)[8] handled 
uncertainty in mechanics problems using an interval-
based approach. Muhanna’s algorithm is modified 
by Rama Rao (2006)[9] to study the cumulative effect 
of multiple uncertainties on the structural response. 
Neumaier and Pownuk (2007)[10] explored properties 
of positive definite interval matrices. Skalna, Rama 
Rao and Pownuk (2008)[11] investigated the solution 
of systems of fuzzy equations in structural mechanics. 
Also, specific procedures were developed for fuzzy FE 
analysis in the context of structural dynamic analysis, 
based on hybrid approaches, as well as sub-structuring 
and response surface approaches [12,13,14]. 

In the present work, non-deterministic methods 
are applied for the analysis of the internal moment of 
resistance of a doubly-reinforced beam with uncertain 
structural parameters. Uncertainties are specified as 
fuzzy numbers for the area of steel reinforcement and 
Young’s modulus.  The internal moment of resistance 
of the beam is expressed as a function of the stresses 
induced by the external moment in the concrete and 
steel. 

The stress distribution model for the cross section 
of the beam given by IS 456-2000 (Indian standard code 
of practice for plain and reinforced concrete) is applied 

Figure 1  α-level strategy for a function of two triangular fuzzy numbers
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for this purpose. Post cracking behavior up to limit 
state of serviceability as described by Purushottaman 
(1986)[15] is considered in the present work. Due to 
the interval uncertainties, the stresses in concrete 
and steel are obtained as interval values, resulting 
correspondingly in an interval moment of resistance. 
The interval analysis is performed using three different 
approaches. A direct interval computation tackles the 
problem using an interval arithmetic translation of 
the procedure for obtaining the internal moment of 
resistance. This method is compared to two response 
surface based approximate approaches, i.e. a method 
based on Kriging response surface modelling, and one 
based on local Taylor series expansion.

After a short introduction on implementation 
approaches for fuzzy analysis in section 2, the paper 
focuses on the applied response surface based 
approaches.  Section 3 discusses the Taylor as well as 
Kriging-based response surface approaches.  In section 
4, the doubly-reinforced beam problem is introduced 
and an overview of the deterministic procedure 
for the determination of the internal moment of 
resistance is presented. Finally, section 5 shows how 
this problem can be solved when fuzzy uncertainties 
are present. First, the core problem is translated to an 
equivalent interval arithmetic counterpart. Secondly, 
the response surface based approaches are applied 
and compared.
2. implementation Strategies for fuzzy 

numerical analysis
2.1 from fuzzy to interval analysis

Fuzzy sets were introduced by Zadeh (1965)[16].  
They are capable of describing linguistic and other 
incomplete information in a non-probabilistic way.  
Where classical sets clearly distinguish between 
members and non-members, fuzzy sets introduce a 
degree of membership, represented by a membership 
function. The membership function  describes 
the degree of membership of each element x in the 
domain X to the fuzzy set  :

{( , ( )) ( )( [0,1]}x xx x x x Xµ µ= ∈ ∈
 



                      
(1)

If , x is definitely a member of . If µ
(x) = 0, x is definitely not a member of . In between, 
the membership is uncertain. 

The most used membership function shape is 
the triangular shape. Such a fuzzy number with 
support [a, b] – the interval for which  – and 

core c – the point for which  = 1 – is denoted 
(a/c/b).

A possible implementation of fuzzy functions is 
the α -level strategy.  The intersection of the membership 
function of each input parameter with a discrete 
number of α -levels results in an interval   
for each input parameter and α -level. Using this 
technique, all possible fuzzy sets can be approximated 
by a number of intervals.  With these input intervals, 
an interval analysis is done at each α -level.  Finally, the 
fuzzy solution is assembled from the output intervals 
at each α -level. Figure 1 shows this procedure for 
a function of two triangular parameters. Using this 
procedure, the fuzzy analysis can be implemented as 
a sequence of interval analyses.

In literature, different approaches have been 
proposed for the solution of the interval problem at the 
core of the fuzzy analysis. Basically, two approaches 
can be distinguished. On the one hand, the interval 
arithmetic approach consists of a step-by-step 
translation of a deterministic procedure to a sequence 
of interval operations. This approach in general can 
lead to a very high amount of conservatism in the 
result due to the dependency problem [12] and it is 
only applicable when the core procedure is exactly 
known. In this work, this approach was applied on 
the interval calculation of the internal moment of 
resistance of the reinforced beam (see section 5.1). 
For other types of problems, e.g., problems where the 
source code is not accessible, optimisation approaches 
have been developed in order to solve the interval 
problem.  In this approach, the interval problem is 
converted into a two-fold optimisation problem, 
where the bounds on the interval result are found as 
solutions of the minimisation and maximisation of the 
analysis outcome, considering the space covered by 
the interval uncertainties as search domain. The next 
section gives a general overview of the application of 
these approaches for fuzzy analysis.

2.2. Global optimisation

The global optimisation procedures perform the 
search for the exact bounds on the analysis outcome 
by considering the result as the objective function of an 
optimisation problem. As one of the pioneers of fuzzy 
finite element modelling, Rao et al. apply a directional 
search based algorithm to tackle the optimisation 
[5, 17]. Other global optimisation techniques often 
encountered in the framework of interval finite 
element analysis are linear programming Köylüoğlu 
and Elishakoff, (1998)[18] and genetic algorithms.  
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Recently, the innovative Gα D algorithm was 
introduced by Degrauwe (2007)[19] in this context.

While the optimisation approaches are becoming 
more and more a standard approach for interval 
analysis in an engineering context, the global 
optimisation on the exact goal function can become 
computationally prohibitive whenever the core 
analysis is very costly. For this reason, surrogate 
models of the exact goal function could greatly 
enhance the performance of the global optimisation 
part in the fuzzy procedure. Therefore, response 
surface approaches are becoming more and more 
popular in this context. In this approach, the goal 
function of the optimisation problem is approximated 
by an appropriate surrogate response function, and the 
optimisation is performed on this response function. 
The response surface methodology was first applied 
in the context of interval finite element analysis by 
Orisamolu et al. (2007)[7]. The main advantage of the 
approach consists of the avoidance of an exact goal 
function evaluation at each iteration point of the search 
algorithm, which can be very costly. On the other 
hand, it is clear that the accuracy of the approach relies 
completely on the exactness of the approximation of 
the response function. The next section will discuss 

enable the analysis of large deterministic problems 
with high computational cost in a fuzzy context. 
Furthermore, they also benefit from the high degree 
of similarity between the optimisation problems 
that need to be solved when the α -level technique is 
applied. Indeed, a fuzzy analysis requires the same 
objective functions to be minimised and maximised 
on different α -levels or, in optimisation terms, with 
different bound constraints. Figure 2 shows this for 
two fuzzy uncertain parameters.  The shaded rectangle 
shows the bound constraints for the optimisation at 
α -level 0.0.  Response surfaces valid at this α -level 
should approximate the objective functions inside these 
bounds. The rectangles inside this shaded rectangle 
show the bound constraints for the optimisations at 
higher α -levels. It is clear that the same response 
surfaces approximate the objective functions at these 
α -levels too. Since the construction of the response 
surfaces is by far the computationally most expensive 
part of the algorithm, the computational cost of a fuzzy 
analysis is only slightly higher than the computational 
cost of an interval analysis when using a response 
surface based optimisation technique.

The main question now is how to efficiently 
build this response surface model. Two approaches, 
i.e. the Taylor expansion approach and the Kriging 
approach, both developed by the authors, are now 
briefly reviewed.
3.1. local expansion method: taylor expansion

From mathematical point of view the problem 
of finding extreme values of stress and strain in 
concrete beam model can be described as a constrain 
optimization 
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( , ( )) 0F p u p = is a system of equilibrium equations, ip   are the uncertain parameters which belong 

to the ranges [ , ]i i ip p p∈ .  In order to find upper and lower bound of the objective function ψ  it is 

possible to apply gradient methods (Nocedal and Wright, 1999). Gradient of the objective function 
ψ  can be calculated by using methods which are known in the sensitivity analysis 

j

ji i j i

ud

d p p u p

ψ ψ ψ ∂∂ ∂
= +

∂ ∂ ∂


(3) 

where        can be calculated from the equation of constraints.
(4) 

Sensitivity can be calculated also by using adjoint variable method. In this approach it is possible to 
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where ( , ( ))p u pψ ψ=  is  some objective 
function (e.g. stress in steel, strain in concrete etc.),                         

( , ( )) 0F p u p =  is a system of equilibrium equations, 
ip   are the uncertain parameters which belong to the 

ranges [ , ]i i ip p p∈ .  In order to find upper and lower 
bound of the objective function ψ  it is possible to 
apply gradient methods [20]. Gradient of the objective 
function ψ  can be calculated by using methods which 
are known in the sensitivity analysis
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Figure 2 Illustration of property of fuzzy numbers that the 
feasible region at a higher membership level is a subset of the 

feasible region at a lower membership level

the application of the response surface methodology 
for fuzzy analysis in more detail.
3. fuzzy analysis based on response Surface 

Methodology

Response surface based optimisation techniques 
prove to be extremely useful in the context of fuzzy 
analysis.  As discussed in the previous section, they 
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Sensitivity can be calculated also by using adjoint 
variable method. In this approach it is possible 
to calculate sensitivity as an derivative form the 
Lagrange function L
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The points min max[ , ]p p  correspond to the extreme 
values of the objective function[ , ]ψ ψ . Each extreme 
value [ , ]k kψ ψ  of the objective function correspond  
with     certain      point  min max

1 1[ , ] [ , ] ... [ , ]k k m mp p p p p p∈ × × .  
In the case of N objective functions kψ it is necessary 
to consider 2N points min,1 max,1 min, max,, ,..., ,N Np p p p  . 
Fortunately very often the same point ip    correspond 
with many different extreme values of the function 
ψ . In that case it is necessary to evaluate functions 

kψ only for unique points  (1) (2) ( ), ,..., Nup p p . Now 
extreme values can be calculated by using vectors 
Smin , Smax

                                                                                 (9)
min max

( ) ( )( ), ( )k ks s

k k k kp pψ ψ ψ ψ= =

 
 is an index of the point p(i) which minimize 

objective function .  is an index of the point p(i) 
which maximizes objective function .

If the problem is symmetric then it is necessary to 
evaluate the objective functions kψ  only in two points. 
In the worst case, in which there is no symmetry at 
all it is necessary to evaluate the functions kψ in 2N 
points [21].

Presented method is exact if the relations 
( )k k pψ ψ= are uniformly monotone. According 

to many numerical experiments [11, 21, 22, 23,  
24, 25] even though the function is not monotone 
then presented method is giving good approximation 
of the exact solution set. Using presented approach 
it is possible to create general FEM program with 
the interval parameters ((Pownuk, 2007))[26]. The 
program was implemented as a web application and 
can be run on-line on the author’s web page (http://
www.pownuk.com)
3.2 Global optimisation using Kriging response 

Surface Method

The authors developed a simple but efficient 
adaptive procedure to select the response points.  
The authors use the procedure in combination with 
Kriging response surfaces [27, 28],  but the procedure 
can be used in combination with any response surface 
method which supports error estimations.

In the first step of the procedure, illustrated in 
the left contour plots in Figure 3, a small space filling 

Figure 3 Illustration of the response point selection process on 
an example with two objective functions and two uncertain 

parameters

design (for example a Latin hypercube design) is 
generated and all objective functions are calculated 
at these response points by the FE solver. Using this 
information, initial response surfaces are created. Since 
these response surfaces will be improved in the second 
step, one should not use too many response points. The 
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authors achieved good results with three to four times 
the number of uncertain parameters. Additional points 
are best selected by the adaptive procedure in step two 
instead of being randomly selected in this step.

In the second step, illustrated in the right contour 
plots in Figure 3, a large space filling design is 
calculated.  These points are not yet response points; 
only the few most promising points from this set 
will become real response points for which an FE 
analysis will be performed at the end of this step.  
For each of these points, the function value and the 
expected error on the function value are estimated 
using the calculated response surfaces.  For each of 
these candidate response points, the average maximum 
improvement or AMI is calculated as

 

wt.al., (2004)], but the procedure can be used in combination with any response surface method 
which supports error estimations. 

In the first step of the procedure, illustrated in the left contour plots in figure 3, a small space filling 
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are created. Since these response surfaces will be improved in the second step, one should not use 
too many response points. The authors achieved good results with three to four times the number 
of uncertain parameters. Additional points are best selected by the adaptive procedure in step two 
instead of being randomly selected in this step. 

In the second step, illustrated in the right contour plots in figure 3, a large space filling design is 
calculated.  These points are not yet response points; only the few most promising points from this 
set will become real response points for which an FE analysis will be performed at the end of this 
step.  For each of these points, the function value and the expected error on the function value are 
estimated using the calculated response surfaces.  For each of these candidate response points, the 
average maximum improvement or AMI is calculated as 
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In this formula, f̃k  is an approximation of a finite element output parameter. min( f̃k (x)) is the current 
minimum value of the approximation, f̃k (xnew) is the value of the approximation in the candidate 
response point and ∆ f̃k (xnew) is the error range on the approximation in this point.  
Thus,                                                 tells how much the current minimum can be improved in this 
candidate response point. If the current minimum cannot be improved in this point, this value will be 
negative, and will be set to 0 by the max(x, 0) operation. The sum of squares selects the average 
maximum improvement over all output parameters of interest. The candidate response points with 
the highest AMI are then selected and added to the response point set. Only in these points (the black 
points in figure 3) an FE analysis is performed. For all other points (the grey points in figure 3), only 
simple response surface evaluations are necessary.  Finally, all response surfaces are recalculated 
or updated with the new information. 

This second step of generating a large set of candidate response points and selecting the most 
promising points is repeated until a stopping criterion is met. One should continue the procedure until 
no more improvement can be made, that is, until one does not find any more points with an AMI > 0. 

 

4. Doubly-reinforced beam problem  

4.1. General overview 

In the present work, the stress distribution on the cross section of a doubly-reinforced concrete beam 
is considered. As shown in figure 4, the beam is provided with tension steel reinforcement on the 
bottom face and compression steel reinforcement on the top face. The beam is subjected to a gravity 
loading. As a result of this loading, concrete in the zone above the neutral axis will be subjected to 
compression while the tensile force below the neutral axis will be borne by the steel 
reinforcement. As a result of this, compressive and tensile strains and stresses are induced in 
concrete and steel reinforcement respectively. The beam develops a moment of resistance as a result 
of these stresses and strains such that it equals the bending moment due to the external loads.  

Several models were proposed to describe the stress distribution in the cross section of a concrete 
beam subjected to pure flexure. Initially, the parabolic model was proposed by Hognestad et. Al. 
(1955). This was followed by an exponential model proposed by Smith and Young (1955) and the 
Desai and Krishnan model (1964). These models are applicable to concretes with strength below 
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In this formula, 

wt.al., (2004)], but the procedure can be used in combination with any response surface method 
which supports error estimations. 
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set. Only in these points (the black points in Figure 
3) an FE analysis is performed. For all other points 
(the grey points in Figure 3), only simple response 
surface evaluations are necessary.  Finally, all response 
surfaces are recalculated or updated with the new 
information.

This second step of generating a large set of 
candidate response points and selecting the most 
promising points is repeated until a stopping criterion 
is met. One should continue the procedure until no 
more improvement can be made, that is, until one does 
not find any more points with an AMI > 0.
4. doubly-reinforced beam Problem 
4.1. General overview

In the present work, the stress distribution on the 
cross section of a doubly-reinforced concrete beam is 

considered. As shown in Figure 4, the beam is provided 
with tension steel reinforcement on the bottom face 
and compression steel reinforcement on the top face. 
The beam is subjected to a gravity loading. As a result 
of this loading, concrete in the zone above the neutral 
axis will be subjected to compression while the tensile 
force below the neutral axis will be borne by the steel 
reinforcement. As a result of this, compressive and 
tensile strains and stresses are induced in concrete and 
steel reinforcement respectively. The beam develops a 
moment of resistance as a result of these stresses and 
strains such that it equals the bending moment due 
to the external loads. 

Several models were proposed to describe the 
stress distribution in the cross section of a concrete 
beam subjected to pure flexure. Initially, the parabolic 
model was proposed by Hognestad et. Al. (1955)
[30]. This was followed by an exponential model 
proposed by Smith and Young (1955)[31] and the 
Desai and Krishnan model (1964)[32]. These models 
are applicable to concretes with strength below 40 
MPa. The Indian standard code of practice for plain 
and reinforced concrete IS 456-2000 [29]  allows the 
assumption of any suitable relationship between the 
compressive stress distribution and strain in concrete, 
i.e., rectangular, trapezoidal, parabolic or any other 
shape, which results in prediction of strength in 
agreement with material tests, can be used.

Figure 4 Stress distribution across the cross-section of a doubly-
reinforced beam

The stress distribution model suggested by the 
Indian code IS 456-2000 is followed in the present 
study (Figure 4).
4.2 Moment of resistance of a doubly-reinforced 

beam

The moment of resistance of the doubly reinforced 
concrete section shown in Figure 4 is derived based 
on the analysis of the stresses and strains in concrete 
and steel. The beam has a width b and an effective 
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depth d. The effective cover to the reinforcement 
provided on the top and bottom faces is c. The areas 
of reinforcement in tension and compression are As  
and Asc. The strain-distribution is assumed to be 
linear and εcc  is the strain in concrete at the extreme 
compression fiber and εs  the strain in steel. Let x be 
the neutral axis depth from the extreme compression 
fiber. In order to calculate the moment of resistance, 
the neutral axis depth has to be determined, and 
the stresses both in concrete and in steel have to be 
computed. The compression stress-distribution in 
concrete is parabolic. Stresses in concrete in tension 
are neglected.

The strain εcy  at any level y below the neutral axis 
(y ≤ x) is:

cy cc
y
x

ε ε =  
 

                               
(11)

The resultant compressive force Nc  and its distance 
from the neutral axis y are given by (Purushottaman, 
1986)[15]
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Strain εs  and stress fs  in the tensile steel 
reinforcement As  are given by:

                                                                               
(15)
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Similarly, strain εsc  and stress fsc  in the compressive 
steel reinforcement Asc  are given by:

                                                                                                                              
sc cc

x c
x
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Finally, forces Ns  in tensile steel and Nsc  in 
compressive steel are obtained from:

Ns = As Fs                                                           (19)

Nsc = Asc Fsc                                                           (20)

If there are no external loads, the equation of 
longitudinal equilibrium Ns = Nc + Nsc  leads to:

                                  2
1 2cc cc sc s cc s s cc

x c d xC C x A E A E
x x

ε ε ε ε− −    − + =          
                                                           (21)

After simplification, the above equation leads to 
the quadratic equation:

 2
1 2 ( ) ( ) 0cc sc s s sc s sC C x A A E x cA dA Eε − + + − + =   

                                              (22)

Applying the lever arm z given by

z = (y + d - x)                                                               (23)

the internal resisting moment MR  is given by

MR = Nc z + Nsc (d − c)                                               (24)

The neutral axis depth x can be determined by 
solving equation (22).  This requires εcc to be known.  
An iterative procedure is adopted where εcc is 
gradually increased, and the corresponding values 
of Nc , y and the internal resisting moment MR  are 
obtained by using the above procedure. In order to 
calculate the allowable external bending moment for 
the cross section, this procedure is repeated until a 
failure mode is encountered. All possible modes of 
failure have to be considered:
1. stress in tension reinforcement fs exceeds the 

allowable stress in tension 0.87 fy (equation (16))
2. stress in compression reinforcement fsc  exceeds 

the allowable stress in compression 0.87 fy 
(equation (18))

3. strain at the extreme concrete fiber in compression 
εcc  exceeds the allowable strain εco = 0.002

The first failure mode that is encountered during 
the procedure determines the actual failure. Therefore, 
the moment of resistance at this final iteration 
represents the allowable external bending moment.
5. fuzzy analysis with Uncertain Structural 

Parameters

The effect of multiple uncertainties on the stress 
distribution across the cross section as described in 
the previous section is now analysed.  Rama Rao and 
Pownuk (2007)[33] made the initial efforts to introduce 
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uncertainty in the stress analysis of reinforced concrete 
flexural members by analysing a singly reinforced 
concrete beam subjected to an interval load. In the 
current case, uncertainties are introduced on material 
and geometrical properties.

Consider the case of a doubly reinforced concrete 
beam with interval values of area of compression 
reinforcement ,sc sc scA A A=    and tension reinforcement

,s s sA A A=    with corresponding interval Young’s 
modulus Es . Correspondingly the resulting stresses 
and strains in concrete and steel are also uncertain and 
are modeled using interval numbers. The objective of 
the present study is to determine the resulting interval 
moment of resistance offered by the beam. This part of 
the paper first presents the interval translation of the 
procedure described in section 4.2. The same analysis 
will be performed using the response surface methods 
described in section 3.
5.1 interval arithmetic approach

All the equations developed in section 4 are now 
extended and made applicable to the interval case. 
The neutral axis depth x, compressive force in concrete 
nc , force in tensile reinforcement ns  and force in 
compression reinforcement nsc  are all expressed 
as interval quantities.  Accordingly, the equation 
of horizontal equilibrium given by the quadratic 
equation (22) gets the interval form

                                  2
1 2 ( ) ( ) 0cc sc s s sc s sC C x A A E x cA dA Eε − + + − + =   

                                                                                       (25)

The above equation (25) is a linear quadratic 
equation with interval coefficients and can be solved 
for the interval value of the neutral axis depth x using 
the approach outlined by Hansen (1992)[34], Hansen 
and Walster (2002)[35], provided the value of εcc  is 
known. The interval compressive force in concrete 
nc is expressed as

Nc = [C1εcc − C2 ε 2
cc ]x                                             (26)

The interval compressive force Nsc in steel 
reinforcement is expressed as

sc sc s sc sc s cc
x cN A E A E

x
ε ε− = =  

                             
(27)

The interval value of lever arm z is given by

z = y  + d − x                                                           (28) 

The interval moment of resistance MR is now 
expressed as

MR = Nc × z + Nsc × (d − c)                               (29)

The iterative analysis as discussed in the previous 
section is now repeated on this interval procedure, 
with values of εcc  gradually increased from 0 to εco   
( = 0.002).  At each iteration point, the linear interval 
quadratic equation (25) is solved to obtain the interval 
value of neutral axis depth x. Using this value of x , 
the interval moment of resistance MR  is computed. 
The analysis is stopped whenever one of the failure  
conditions is encountered.  Thus, it is subject to the 
conditions,

fs ≤ 0.87 fy  and fsc ≤ 0.87 fy                               (30)
5.2 taylor expansion using sensitivity analysis

Sensitivity analysis method is described in 
the papers Pownuk (2000)[24] and Rama Rao and 
Pownuk[33]. This is specially optimized gradient 
method which is designed for solution of equations 
with the interval parameters. Equilibrium equations 
of the double reinforced beam can be written in the 
following general form
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Explicit form of the functions F1 , F2  is given in the following equations (30). Equilibrium of the 
axial forces F1 = Ns  Nc  Nsc=0. 
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Equilibrium of the bending moments  is given by F2 = MR  Nc z  Nsc (d  c) = 0.  
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In order to find the solution of the system of equation F (x, εcc ) = 0 the Newton method can be 
applied  
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Formulas for the partial derivatives 1 1 2 2, , ,
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   are given in the equations (41, 42, 44 and 

45). Let us denote uncertain parameter p (i.e. M,As ,Asc  etc.) as pi . Vector of uncertain parameters 
can be written as p = ( p1 , p2 , ..., pm ) where m is a number of uncertain parameters. Derivative of x 
and εcc can be calculated from implicit function theorem 
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In particular, sensitivity with the respect to the Young modulus of steel pi = Es  can be calculated 
from the following system of equations 

              (31)                                                 

Explicit form of the functions F1 , F2  is given in 
the following equations (32). Equilibrium of the axial 
forces F1 = Ns − Nc − Nsc=0.
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Equilibrium of the bending moments  is given by 
F2 = MR − Nc z − Nsc (d − c) = 0. 

The iterative analysis as discussed in the previous section is now repeated on this interval procedure, 
with values of εcc  gradually increased from 0 to εco  ( = 0.002).  At each iteration point, the 
linear interval quadratic equation (25) is solved to obtain the interval value of neutral axis depth x. 
Using this value of x , the interval moment of resistance MR  is computed. The analysis is stopped 
whenever one of the failure  conditions is encountered.  Thus, it is subject to the conditions, 
 

 fs  0.87 fy  and fsc  0.87 fy      (30) 
 

5.2. Taylor expansion using sensitivity analysis 

Sensitivity analysis method is described in the papers [Rama Rao and Pownuk (2007), Pownuk 
(2000)].  This is specially optimized gradi- ent method which is designed for solution of 
equations with the interval parameters.  Equilibrium equations of the double reinforced beam can 
be written in the following general form 
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Explicit form of the functions F1 , F2  is given in the following equations (30). Equilibrium of the 
axial forces F1 = Ns  Nc  Nsc=0. 
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(32) 

Equilibrium of the bending moments  is given by F2 = MR  Nc z  Nsc (d  c) = 0.  
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In order to find the solution of the system of equation F (x, εcc ) = 0 the Newton method can be 
applied  
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Formulas for the partial derivatives 1 1 2 2, , ,
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   are given in the equations (41, 42, 44 and 

45). Let us denote uncertain parameter p (i.e. M,As ,Asc  etc.) as pi . Vector of uncertain parameters 
can be written as p = ( p1 , p2 , ..., pm ) where m is a number of uncertain parameters. Derivative of x 
and εcc can be calculated from implicit function theorem 
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In particular, sensitivity with the respect to the Young modulus of steel pi = Es  can be calculated 
from the following system of equations 

The iterative analysis as discussed in the previous section is now repeated on this interval procedure, 
with values of εcc  gradually increased from 0 to εco  ( = 0.002).  At each iteration point, the 
linear interval quadratic equation (25) is solved to obtain the interval value of neutral axis depth x. 
Using this value of x , the interval moment of resistance MR  is computed. The analysis is stopped 
whenever one of the failure  conditions is encountered.  Thus, it is subject to the conditions, 
 

 fs  0.87 fy  and fsc  0.87 fy      (30) 
 

5.2. Taylor expansion using sensitivity analysis 

Sensitivity analysis method is described in the papers [Rama Rao and Pownuk (2007), Pownuk 
(2000)].  This is specially optimized gradi- ent method which is designed for solution of 
equations with the interval parameters.  Equilibrium equations of the double reinforced beam can 
be written in the following general form 
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Explicit form of the functions F1 , F2  is given in the following equations (30). Equilibrium of the 
axial forces F1 = Ns  Nc  Nsc=0. 
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(32) 

Equilibrium of the bending moments  is given by F2 = MR  Nc z  Nsc (d  c) = 0.  
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In order to find the solution of the system of equation F (x, εcc ) = 0 the Newton method can be 
applied  
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Formulas for the partial derivatives 1 1 2 2, , ,
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   are given in the equations (41, 42, 44 and 

45). Let us denote uncertain parameter p (i.e. M,As ,Asc  etc.) as pi . Vector of uncertain parameters 
can be written as p = ( p1 , p2 , ..., pm ) where m is a number of uncertain parameters. Derivative of x 
and εcc can be calculated from implicit function theorem 
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In particular, sensitivity with the respect to the Young modulus of steel pi = Es  can be calculated 
from the following system of equations 

The iterative analysis as discussed in the previous section is now repeated on this interval procedure, 
with values of εcc  gradually increased from 0 to εco  ( = 0.002).  At each iteration point, the 
linear interval quadratic equation (25) is solved to obtain the interval value of neutral axis depth x. 
Using this value of x , the interval moment of resistance MR  is computed. The analysis is stopped 
whenever one of the failure  conditions is encountered.  Thus, it is subject to the conditions, 
 

 fs  0.87 fy  and fsc  0.87 fy      (30) 
 

5.2. Taylor expansion using sensitivity analysis 

Sensitivity analysis method is described in the papers [Rama Rao and Pownuk (2007), Pownuk 
(2000)].  This is specially optimized gradi- ent method which is designed for solution of 
equations with the interval parameters.  Equilibrium equations of the double reinforced beam can 
be written in the following general form 
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Explicit form of the functions F1 , F2  is given in the following equations (30). Equilibrium of the 
axial forces F1 = Ns  Nc  Nsc=0. 
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(32) 

Equilibrium of the bending moments  is given by F2 = MR  Nc z  Nsc (d  c) = 0.  
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In order to find the solution of the system of equation F (x, εcc ) = 0 the Newton method can be 
applied  
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   are given in the equations (41, 42, 44 and 

45). Let us denote uncertain parameter p (i.e. M,As ,Asc  etc.) as pi . Vector of uncertain parameters 
can be written as p = ( p1 , p2 , ..., pm ) where m is a number of uncertain parameters. Derivative of x 
and εcc can be calculated from implicit function theorem 
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In particular, sensitivity with the respect to the Young modulus of steel pi = Es  can be calculated 
from the following system of equations 

    

  (33)       

In order to find the solution of the system of equation 
F (x, εcc) = 0 the Newton method can be applied 

 

The iterative analysis as discussed in the previous section is now repeated on this interval procedure, 
with values of εcc  gradually increased from 0 to εco  ( = 0.002).  At each iteration point, the 
linear interval quadratic equation (25) is solved to obtain the interval value of neutral axis depth x. 
Using this value of x , the interval moment of resistance MR  is computed. The analysis is stopped 
whenever one of the failure  conditions is encountered.  Thus, it is subject to the conditions, 
 

 fs  0.87 fy  and fsc  0.87 fy      (30) 
 

5.2. Taylor expansion using sensitivity analysis 

Sensitivity analysis method is described in the papers [Rama Rao and Pownuk (2007), Pownuk 
(2000)].  This is specially optimized gradi- ent method which is designed for solution of 
equations with the interval parameters.  Equilibrium equations of the double reinforced beam can 
be written in the following general form 
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Explicit form of the functions F1 , F2  is given in the following equations (30). Equilibrium of the 
axial forces F1 = Ns  Nc  Nsc=0. 
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Equilibrium of the bending moments  is given by F2 = MR  Nc z  Nsc (d  c) = 0.  
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In order to find the solution of the system of equation F (x, εcc ) = 0 the Newton method can be 
applied  
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   are given in the equations (41, 42, 44 and 

45). Let us denote uncertain parameter p (i.e. M,As ,Asc  etc.) as pi . Vector of uncertain parameters 
can be written as p = ( p1 , p2 , ..., pm ) where m is a number of uncertain parameters. Derivative of x 
and εcc can be calculated from implicit function theorem 
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In particular, sensitivity with the respect to the Young modulus of steel pi = Es  can be calculated 
from the following system of equations 

    (34)
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Formulas for the partial derivatives 1 1 2 2, , ,
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are given in the equations (41, 42, 44 and 45). Let us 
denote uncertain parameter p (i.e. M,As ,Asc  etc.) as 
pi . Vector of uncertain parameters can be written as p 
= ( p1 , p2 , ..., pm ) where m is a number of uncertain 
parameters. Derivative of x and εcc can be calculated 
from implicit function theorem

 

The iterative analysis as discussed in the previous section is now repeated on this interval procedure, 
with values of εcc  gradually increased from 0 to εco  ( = 0.002).  At each iteration point, the 
linear interval quadratic equation (25) is solved to obtain the interval value of neutral axis depth x. 
Using this value of x , the interval moment of resistance MR  is computed. The analysis is stopped 
whenever one of the failure  conditions is encountered.  Thus, it is subject to the conditions, 
 

 fs  0.87 fy  and fsc  0.87 fy      (30) 
 

5.2. Taylor expansion using sensitivity analysis 

Sensitivity analysis method is described in the papers [Rama Rao and Pownuk (2007), Pownuk 
(2000)].  This is specially optimized gradi- ent method which is designed for solution of 
equations with the interval parameters.  Equilibrium equations of the double reinforced beam can 
be written in the following general form 
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Explicit form of the functions F1 , F2  is given in the following equations (30). Equilibrium of the 
axial forces F1 = Ns  Nc  Nsc=0. 
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Equilibrium of the bending moments  is given by F2 = MR  Nc z  Nsc (d  c) = 0.  
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In order to find the solution of the system of equation F (x, εcc ) = 0 the Newton method can be 
applied  
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Formulas for the partial derivatives 1 1 2 2, , ,
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   are given in the equations (41, 42, 44 and 

45). Let us denote uncertain parameter p (i.e. M,As ,Asc  etc.) as pi . Vector of uncertain parameters 
can be written as p = ( p1 , p2 , ..., pm ) where m is a number of uncertain parameters. Derivative of x 
and εcc can be calculated from implicit function theorem 
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In particular, sensitivity with the respect to the Young modulus of steel pi = Es  can be calculated 
from the following system of equations 
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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Using the solutions of the system of equations (36) it is possible to get the gradients 
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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be created for εcc. Finally extreme values of x and εcc can be calculated by using specific 
combinations of endpoints. 

x = x( pmin), x = x( pmax ), ε cc = x( pmin ), ε cc = x( pmax )  (48) 

where x = x( p), εcc = εcc( p) are implicit functions which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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Using the solutions of the system of equations (36) it is possible to get the gradients 
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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be created for εcc. Finally extreme values of x and εcc can be calculated by using specific 
combinations of endpoints. 

x = x( pmin), x = x( pmax ), ε cc = x( pmin ), ε cc = x( pmax )  (48) 

where x = x( p), εcc = εcc( p) are implicit functions which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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be created for εcc. Finally extreme values of x and εcc can be calculated by using specific 
combinations of endpoints. 

x = x( pmin), x = x( pmax ), ε cc = x( pmin ), ε cc = x( pmax )  (48) 

where x = x( p), εcc = εcc( p) are implicit functions which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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be created for εcc. Finally extreme values of x and εcc can be calculated by using specific 
combinations of endpoints. 
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where x = x( p), εcc = εcc( p) are implicit functions which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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be created for εcc. Finally extreme values of x and εcc can be calculated by using specific 
combinations of endpoints. 

x = x( pmin), x = x( pmax ), ε cc = x( pmin ), ε cc = x( pmax )  (48) 

where x = x( p), εcc = εcc( p) are implicit functions which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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 A Similar relation can be 
created for εcc. Finally extreme values of x and εcc 
can be calculated by using specific combinations of 
endpoints.
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Using the solutions of the system of equations (36) it is possible to get the gradients 
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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be created for εcc. Finally extreme values of x and εcc can be calculated by using specific 
combinations of endpoints. 

x = x( pmin), x = x( pmax ), ε cc = x( pmin ), ε cc = x( pmax )  (48) 

where x = x( p), εcc = εcc( p) are implicit functions which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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where x = x( p), εcc = εcc( p) are implicit functions 
which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete 
fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. 
Interval moment of resistance can be calculated by 
using sensitivity analysis. In order to do that it is 
necessary to calculate the gradient ∇MR. From the 
equation (29) and chain rule we have
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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be created for εcc. Finally extreme values of x and εcc can be calculated by using specific 
combinations of endpoints. 

x = x( pmin), x = x( pmax ), ε cc = x( pmin ), ε cc = x( pmax )  (48) 

where x = x( p), εcc = εcc( p) are implicit functions which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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If pi = Es  then from the equations (24) and (49) it is possible to derive    
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc
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x
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  (it is necessary to solve this system for all 

interval parameter pi in order to calculate , cc
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x
p p

ε∂ ∂
∂ ∂ 

4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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5. For each objective function find appropriate combination of endpoints, which help us to calcu- 

late extreme values of the objective function ψi . 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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5. For each objective function find appropriate combination of endpoints, which help us to calcu- 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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If pi = Es  then from the equations (24) and (49) it is possible to derive    
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc
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x
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ε∂ ∂
∂ ∂

  (it is necessary to solve this system for all 

interval parameter pi in order to calculate , cc
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x
p p
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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5. For each objective function find appropriate combination of endpoints, which help us to calcu- 

late extreme values of the objective function ψi . 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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If pi = Es  then from the equations (24) and (49) it is possible to derive    
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc

s s

x
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∂ ∂

  (it is necessary to solve this system for all 

interval parameter pi in order to calculate , cc
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x
p p
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 



j j j j cc

i i i cc i

d x
dp p x p p

ψ ψ ψ ψ ε
ε

∂ ∂ ∂ ∂∂= + +
∂ ∂ ∂ ∂ ∂ 

(54)        


 
5. For each objective function find appropriate combination of endpoints, which help us to calcu- 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc
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x
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  (it is necessary to solve this system for all 

interval parameter pi in order to calculate , cc
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 



j j j j cc

i i i cc i

d x
dp p x p p

ψ ψ ψ ψ ε
ε

∂ ∂ ∂ ∂∂= + +
∂ ∂ ∂ ∂ ∂ 

(54)        


 
5. For each objective function find appropriate combination of endpoints, which help us to calcu- 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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If pi = Es  then from the equations (24) and (49) it is possible to derive    
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are the solution of the system of equations (38). 
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc

s s

x
E E

ε∂ ∂
∂ ∂

  (it is necessary to solve this system for all 

interval parameter pi in order to calculate , cc

i i

x
p p

ε∂ ∂
∂ ∂ 

4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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5. For each objective function find appropriate combination of endpoints, which help us to calcu- 

late extreme values of the objective function ψi . 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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 In order 
to improve reliability of the method monotonicity tests 
can be applied [25].
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Using the solutions of the system of equations (36) it is possible to get the gradients 
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Using the sign of the gradient ∇x and ∇εcc  it is possible to get extreme combination of the uncertain 
parameters pi  [  p , pi ]. 
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then min max, .i i i ip p p p= = A Similar relation can 

be created for εcc. Finally extreme values of x and εcc can be calculated by using specific 
combinations of endpoints. 

x = x( pmin), x = x( pmax ), ε cc = x( pmin ), ε cc = x( pmax )  (48) 

where x = x( p), εcc = εcc( p) are implicit functions which are defined by the equation (31). In order to 
calculate extreme stress in steel fs or extreme concrete fiber fcc it is necessary to calculate appropriate 
gradients ∇ fs, ∇ fcc  and repeat the whole procedure. Interval moment of resistance can be calculated 
by using sensitivity analysis. In order to do that it is necessary to calculate the gradient ∇MR. From the 
equation (30) and chain rule we have 
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In order to calculate extreme values of any 
function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be 
applied.

algorithm of the gradient method
1. Calculate midpoint of all interval parameters pi 

= mid(pi ) (e.g. E0 = mid(E)).
2. Find xc, εcc at the midpoint by using Newton 

method [34](or any other method for the solution 
of the system of nonlinear equations ). 

3. From the system of equation (38) find 

where pi is the uncertain parameter, , cc

i i

x
p p

ε∂ ∂
∂ ∂

can be calculate from the system of equation (36).  

If pi = Es  then from the equations (24) and (49) it is possible to derive    
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc

s s

x
E E

ε∂ ∂
∂ ∂

  (it is necessary to solve this system for all 

interval parameter pi in order to calculate , cc

i i

x
p p

ε∂ ∂
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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5. For each objective function find appropriate combination of endpoints, which help us to calcu- 

late extreme values of the objective function ψi . 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 

 min max( ), ( )i i i ip pψ ψ ψ ψ= = (55) 
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If pi = Es  then from the equations (24) and (49) it is possible to derive    
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc
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x
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  (it is necessary to solve this system for all 

interval parameter pi in order to calculate , cc
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p p
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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5. For each objective function find appropriate combination of endpoints, which help us to calcu- 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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4. Calculate sensitivity of the each interval function 

ψ j and each interval parameter pi (e.g. MR, stress 
in Extreme concrete fiber fcc , stress in steel 
reinforcement fs  etc.) from the formula (49)
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc
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x
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  (it is necessary to solve this system for all 

interval parameter pi in order to calculate , cc
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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5. For each objective function find appropriate combination of endpoints, which help us to calcu- 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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5. For each objective function find appropriate 
combination of endpoints, which help us to calcu- 
late extreme values of the objective function ψi .
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
 
Algorithm of the gradient method 

1. Calculate midpoint of all interval parameters pi = mid(pi ) (e.g. E0 = mid(E)). 
2. Find xc , εcc  at the midpoint by using Newton method (Hansen, 1992)(or any other method for 

the solution of the system of nonlinear equations ). 
 
3. From the system of equation (38) find , cc
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 
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Extreme values of the moment of resistance can be calculated as MR = MR ( pmin ), MR = MR ( pmax ). In 
order to improve reliability of the method monotonicity tests can be applied (Pwnuk, 2004). 
In order to calculate extreme values of any function ψ which depend on x and εcc  (e.g. moment 
resistance MR, fcc  etc.) the following method can be applied. 
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4. Calculate sensitivity of the each interval function ψ j  and each interval parameter pi  (e.g. MR , 
stress in Extreme concrete fiber fcc , stress in steel reinforcement fs  etc.) from the formula (49) 
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6. Using appropriate endpoints combinations evaluate the value of the functions ψi 

 min max( ), ( )i i i ip pψ ψ ψ ψ= = (55) 

                                                            
 (55)                                                                                         

In order to evaluate the function ψi  it is necessary 
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In order to evaluate the function ψi  it is necessary to solve system of equations (31) for each 
combinations of endpoints p  = ( * * *

1 2, ,..., mp p p ) 1 2 m 
* * *
1 2( , , , ,..., ) 0c cc mF x p p pε = (56)        

and then find the value 
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1 2 1 2 1 2( ) ( , ,..., , ( , , , ,..., ), ( , , , ,..., ))i i m c c cc m cc c cc mp p p p x x p p p x p p pψ ψ ε ε ε= (57)        

 

5.3. Kriging response surface based optimisation method 

The Kriging response surface based optimisation method described in section 3.2, considers the 
deterministic procedure described in section 4.2 as a black box function with three inputs (the 
area of compression reinforcement Asc  and the area of tension reinforcement As  with the 
corresponding Young’s modulus Es  and three outputs (the moment of resistance MR , the resultant 
compressive force Nc  and its distance from the neutral axis y). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
[Figure 5 is placed here] 

 
In the first step of the procedure, 10 response points are selected using a Latin hypercube design. 
The second step of the procedure is repeated 5 times, each time adding the two most promising 
response points from a set of candidate response points consisting of 20 Latin hypercube points 
and all vertex points.   In the third step of the procedure, the minimum and maximum of the 
response surfaces are located using MCS (Neumaier), a global optimisation algorithm. This step 
does not need any objective function evaluations. 

In total, 20 response points (20 objective function evaluations) are required to model the 
three outputs of the black-box function with three inputs. 

 

5.4. Results and discussion 
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Figure 5 Comparison of fuzzy MR obtained using the three 
approaches

resultant compressive force Nc  and its distance 
from the neutral axis y).

In the first step of the procedure, 10 response 
points are selected using a Latin hypercube design. 
The second step of the procedure is repeated 5 
times, each time adding the two most promising 
response points from a set of candidate response 
points consisting of 20 Latin hypercube points and 
all vertex points.   In the third step of the procedure, 
the minimum and maximum of the response surfaces 
are located using MCS [37], a global optimisation 
algorithm. This step does not need any objective 
function evaluations.

In total, 20 response points (20 objective function 
evaluations) are required to model the three outputs 
of the black-box function with three inputs.

5.4. results and discussion

The results of the different approaches are now 
compared for a specific case, where the beam has the 
dimensions b = 300mm, d = 500mm and the effective 
cover to reinforcement c = 50mm. The beam is 
reinforced with 8 steel bars of 25 mm diameter in 
the tension zone (As = 3929mm2 ) and 4 Tor50 bars 
of 20 mm diameter (Asc = 1257mm2 ). Allowable 
compressive stress in concrete is 13.4×108  N/mm2 
and the corresponding allowable strain in concrete 
is 0.002. The Young’s modulus of steel is 2.0×109 
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N/mm2. The stress-strain curve for concrete and 
steel as detailed in IS 456-2000 is adopted (see 
figure 4).

Fuzzy uncertainty is introduced on the area 
and Young’s modulus of steel reinforcement using 
triangular fuzzy membership functions. These are 
constructed such that the core is the reference value, 
and the support yields intervals of ±5 percent of the 
nominal value. The analysis is performed using the α 
-level strategy applied on 11 levels.  The corresponding 
interval values of neutral axis depth, strain and stress 
in concrete and stress in steel reinforcement as well 
as moment of resistance are computed at various 
levels of uncertainty and membership functions are 
plotted using the procedures outlined in the previous 
sections.

Figure 5 shows the plot of interval moment of 
resistance MR obtained using the three methods 
outlined in the previous section. It is observed that 
there is an excellent agreement among the results 
obtained using the three methods. However, it is also 
observed that the direct interval approach makes a 
slight overestimation of the value of MR. This is owing 
to the problem of dependency of parameters. Also, it is 
observed that both response surface based approaches 
perform very well.  The Kriging approach is able to 
capture the non-linear higher order behaviour in the 
membership function. From a designer’s point of 
view, it can be concluded that under the considered 
uncertainty, an external bending moment of up to 
405 kNm is allowable, yielding safe conditions in the 
worst case.

6. Conclusions

This paper compares the performance of three 
different approaches for the fuzzy analysis of a doubly 
reinforced concrete beam with uncertain structural 
parameters. The approaches all focus on the solution 
of the equations which describe stress and strain in 
a doubly reinforced concrete beam in the presence 
of fuzzy model parameters. At the core of the fuzzy 
solution, the interval problem is solved using either 
optimization algorithms applied on an approximate 
surrogate response surface model, or by interval 
arithmetic translation of the problem.

Both the optimization approaches based on the 
sensitivity method and the Kriging approach perform 
well on this problem. Due to the monotonic behaviour 
of the output quantities of the problem with respect to 
the interval parameters, the sensitivity based approach 

returns the exact results in a very efficient way. The 
Kriging results show that a very close approximation 
of the exact results is obtained. This approach has 
the advantage that it does not require monotonicity. 
Finally, the interval arithmetic approach yields only 
minor conservatism, as in this case, the dependency 
problem did not have a major impact on the applied 
algorithms.
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abstract:

The phenomenon of fatigue is one of the major causes of failure in concrete structures. The rate of 
fatigue crack propagation in concrete depends on a number of parameters, such as load, tensile 
strength, crack length, fracture toughness and the size of specimen. In this work, a fatigue crack 
propagation law is derived from the dissipation potential within a thermodynamic framework 
using the concepts of dimensional analysis and self-similarity. A deterministic as well as a 
probabilistic sensitivity study is carried out to determine which parameter affects fatigue crack 
propagation the most. This study also helps to identify the parameters that can be considered as 
deterministic or random.
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1. introduction

Understanding the mechanism of fatigue in 
concrete and its modeling is still an ongoing research 
field. Fatigue crack growth in concrete is a complex 
phenomenon starting from micro-cracking to 
formation of macro-crack and its propagation leading 
to failure; all this occurring simultaneously at micro, 
meso and macro levels. The energy approach is the 
most viable method to handle complex phenomena 
and is used in this work with thermodynamics 
as the framework. Thermodynamics assumes the 
existence of two kinds of potentials, a thermodynamic 
potential and a dissipation potential [1]. Given a 
thermodynamic system, the state laws are derived 
from the thermodynamic potential. The free energy 
is usually taken as the thermodynamic potential. In 
mechanics terminology, the laws of elasticity can be 
derived from this. In an irreversible process, where 
energy of the system is degraded, the complementary 
laws of evolution are defined by a dissipation 
potential. This potential helps to arrive at an evolution 
equation depending on the internal variable of 
the phenomenon [1]. The available expressions in 
literature for dissipation potential are empirical, 
mostly applicable to metals and are derived using 
the theory of continuum damage mechanics [2-6].  
Analytical expressions for dissipation potential in the 
context of fatigue crack propagation in concrete within 
a fracture mechanics framework are not available in 
literature. In this work, an analytical expression for 

the dual of dissipation potential is derived from which 
a fatigue crack propagation law is obtained. This is 
done using the concepts of dimensional analysis and 
self-similarity. Different parameters that possibly 
affect fatigue crack propagation such as load, tensile 
strength, crack length and fracture toughness are 
chosen.  The possibility of each of these parameters 
being either random or deterministic is discussed. A 
deterministic as well as probabilistic sensitivity study 
is conducted to understand the effect of uncertainty 
in each of the input parameters on the fatigue life 
and also the hierarchy of importance of the input 
parameters. This also helps to decide whether a 
given input parameter is to be considered random or 
deterministic.

2. fatigue Crack Propagation law

In this section, a fatigue crack propagation law is 
derived from the dual of dissipation potential using 
dimensional analysis and self-similarity concepts. A 
thermodynamic system is defined by its state variables 
which include observable variables and internal 
variables. Observable variables include temperature 
and total strain and these are sufficient to define a 
reversible (elastic) process. Internal variables describe 
the internal microstructure of the material and the 
past history is captured in these variables. They are 
necessary to describe an irreversible or a dissipative 
process. The choice of the internal variables is dictated 
by the phenomenon under study and its application. 
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The plastic strain εp, the damage variable D or the 
crack length a are few internal variables depending 
on whether the phenomenon under study is plasticity, 
damage or fracture respectively. Associated with 
the set of independent state variables is a set of 
dependent state variables called the thermodynamic 
properties or associated variables or dual variables. 
The thermodynamic potential allows one to write 
relations between observable variables and its 
associated variables. However, for internal variables it 
allows only the definition of their associated variables. 
On the other hand, a dissipation potential allows one 
to get the relationship between the internal variables 
and its associated variables. In order to describe the 
dissipation process or the evolution of the internal 
variables, a dissipation potential is needed [1].  Let Vk 
be the internal variables and Ak, their corresponding 
associated variables, where k=1,2,.., depending on the 
number of internal variables involved. Dissipation is 
defined as the sum of product of the thermodynamic 
force (associated variable) Ak and the respective flux 
variable ( kV

•

). Dissipation potential Φ is a function 
of the flux variables, the gradient of which gives the 
thermodynamic force causing it.

k

k

A
V

•

∂Φ
=

∂

             
                     (1)

The Legendre-Fenchel transform enables us to 
define the corresponding potential, Φ*( Ak), the dual 
of Φ with respect to the variables kV

•

, such that
*

k
k

V
A

• ∂Φ
=

∂
             

                                   (2)

This equation is called the normality property. The 
dissipation potential and its dual must essentially be 
a positive, convex scalar valued function possessing 
a value zero at the origin to ensure automatic 
satisfaction of second law of thermodynamics [1]. 
Here, an expression for the dual of dissipation 
potential is derived using dimensional analysis, the 
theory of intermediate asymptotics and self similarity. 
The system is a cracked concrete beam under three-
point bending; the thermodynamic process is the 
propagation of crack with increasing number of 
load cycles. This process being irreversible, energy is 
dissipated. Crack length is the internal variable, the 
evolution of the flux of this variable, i.e. the rate of crack 
propagation is the quantity of interest. The conjugate 
of this variable, that is, the thermodynamic force 
causing it is the strain energy release rate G. Since the 
loading alternates between a maximum and minimum 
amplitude, the strain energy release rate range ∆G is 

considered. The dissipation potential is in terms of 
the rate of crack propagation a

•

; when differentiated 
with respect crack rate, it gives the energy release rate 
range ∆G. But it is easier to calculate ∆G rather than 
rate of crack propagation a

•

. Hence, we make use of 
the Legendre-Fenchel transformation and are thus 
interested in deriving the expression for the dual of 
dissipation potential, the differentiation of which with 
respect to ∆G will give the rate of crack propagation 
a
•

. To begin with, a preliminary relationship between 
the various parameters involved in the phenomenon 
is obtained using dimensional analysis. To do so, the 
variables on which the dual of dissipation potential 
depends are selected. The variables on which the 
dissipation potential depends should include a loading 
parameter, material parameters and the state variable 
in whose evolution we are interested in, that is, the 
crack length. First, consider the strain energy release 
rate range ∆G, it is the energy required for unit crack 
propagation. It depends on the loading, crack length, 
specimen geometry and the type of material. During 
fatigue loading, for each cycle, part of the strain energy 
is used for crack propagation and the remaining 
is dissipated. Also, it is the thermodynamic force 
causing crack propagation. Hence, this is one of the 
most important parameters that will affect dissipation 
potential. Sometimes, the variable in the evolution of 
which we are interested can itself become a parameter 
[1]. So, in this problem, the crack length, a is also 
considered as a parameter on which the dissipation 
potential depends. The material parameters included 
are the tensile strength ft and the fracture energy GF. 
Tensile strength is an important parameter to be 
considered because cracking occurs in concrete only 
when the major principal stress exceeds this value. 
Fracture energy is another very important material 
parameter which must be included since it is related 
to the toughness of the material. Concrete exhibits 
strong size effect which is reflected in the value of GF. 
Considering all the above parameters, the dual of the 
dissipation potential Φ∗ can be written as 

* ( , , , )F tf G a G fΦ = ∆                
                      

(3)

Table 1 gives the dimensions of each of these 
quantities. Applying Buckingham’s Π theorem; 
choosing GF and ft as having independent dimensions 
and using them to non-dimensionalize the remaining 
quantities, we obtain,

*

, t

t F F

fG a
f G G

φ
 Φ ∆

=  
                     (4)
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Φ∗ is thus a function of two dimensionless products 
given by,

*
1 2 ( , )tf φΦ = Π Π              

                     
(5)

Where, . 

Dimensional analysis merely transforms f of 
Equation 3 toof Equation 5. Findingdoes not 
belong to the frame of dimensional analysis; this 
must be done by experimental or numerical means. 
Although dimensional analysis is considered as a 
universal tool, however, there are physical problems 
that cannot be solved by dimensional analysis in 
principle. For example, the problem that involves 
information about the initial and boundary conditions, 
the system behavior in the initial times, the details 
of process generation, its behavior near the system 
boundaries, decay via equilibration, energy dispersion 
or dissipation during the process evolution. The 
present problem belongs to this category as it 
deals with energy dissipated during fatigue crack 
propagation. Consequently, more sophisticated tools 
must be employed to cope successfully with these 
problems. The theory of intermediate asymptotics, 
which can be considered as a generic extension 
of dimensional analysis can be adopted [7]. The 
intermediate asymptotic is a time-space dependent 
solution of an evolution equation that has already 
forgotten its initial conditions, but still does not feel 
the limitations imposed by the system boundary. It 
is an approximate solution to a complex problem, 
valid in a certain range. It can be represented by the 
self-similar solution, which is the exact solution to 
a simplified problem, valid in the whole range. The 
consideration of self-similar solutions as intermediate 
asymptotics allows us to understand the role of 
dimensional analysis in establishing self-similarity 
and determining self-similar variables [8]. Two 
kinds of self-similar solutions exist, complete self-
similarity and incomplete self-similarity. For details on 
concepts of self-similarity, one may refer to the book 
by Barenblatt [8]. Complete self-similarity renders 
a quantity non essential. Therefore, considering 
incomplete self similarity in both the dimensionless 
products, we get

1 2*
1 2 b b

tfΦ = Π Π                                               (6)                                                                 

Or ,                                 (7)

Or ,                                                                                                                                                   
                                                         

   (8)

The constants b1 and b2 cannot be obtained from 
dimensional analysis in principle [7]. These constants 
can be obtained from experiments. The dual of 
the dissipation potential Φ∗ represents the energy 
dissipated during the process of fatigue and it is very 
difficult to compute its value over a large number 
of cycles. However, the flux variables and the dual 
variables are quite easy to measure and it is on their 
values that modeling and identification are based. The 
evolution laws are therefore directly identified but the 
dissipation potential is used as guideline for writing 
their analytical expression. It is clear that although  Φ∗ 

is difficult to measure, the flux variable, i.e., the rate 
of crack propagation a

•  and the dual variable, i.e., the 
energy release rate range  ∆G are easy to measure from 
experiments. Hence, on the basis of these values the 
unknown constants are obtained. If the function Φ∗ 

is differentiable, the normality property is preserved 
and the complementary laws of evolution can be 
written as [1]

*daa
dN G

• ∂Φ
= =

∂∆

             
                                    (9)

where, a is the crack length and N is the number 
of cycles. The fatigue crack propagation law is thus 
written as

 
                                (10)

The unknown constants are determined through a 
calibration process using experimental results. In this 
study, the experimental results of Bazant and Xu [9] 
are used. It involves testing concrete beams of three 
different sizes (namely small, medium and large) 
with an initial notch equal to 0.2 times the depth of 
the specimen, subjected to cyclic loads under three 
point bending. The geometry details and material 
properties are given in Table 2. The thickness of all 
three specimens was 38 mm and span to depth ratio 
was 2.5. The maximum load applied was 80% of the 
peak load and minimum load was maintained at zero. 
The tensile strength of concrete used was 2.86 MPa. 
Knowing the load range, crack length, number cycles 
and the geometry details, ∆G and da

dN
 can be computed. 

All the values on the right hand side of Equation 10 
are known except for the constants b1 and b2, and 
also experimental value of da

dN  
is known. Through an 

optimization process, the constants are computed such 
that the error, i.e. difference between the value of da

dN  
as 

predicted by the model and the experimental value is 
minimized. The data of the small specimen is used for 



48 © 2013 SRESA All rights reserved

calibration. The values of the constants b1 and b2 for the 
best fit are found to be 6.7 and -0.7 respectively. Figure 
1 shows the variation of log da

dN with log (∆KI) for the 
small specimen that was used for calibration purpose. 
Here, KI  is the mode I stress intensity factor range. 
The model is used to predict da

dN  
for other specimens. 

Figure 2 shows the variation of log da
dN

with log (∆KI) 
for medium and large specimens. A very good match 
between the predicted and experimental result is 
observed, thereby validating the model.

3. nature of the Parameters affecting fatigue

In this section, the nature of each of the parameters 
that affect fatigue crack growth in concrete is elucidated. 
That is, whether each parameter can be treated as a 
deterministic one or as random is discussed here. The 
parameters that affect fatigue crack growth in concrete 
are load, geometry, material properties namely elastic 
modulus and tensile strength, fracture properties 
namely crack length and fracture toughness. We 
consider below each of these parameters. 

load: Fatigue occurs due to repeated or cyclic load, 
therefore, the load considered here is the load range 
varying between a maximum (Pmax) and minimum 
(Pmin). External loading is highly unpredictable and 
hence must be considered as a random variable.

Geometry: The span, width and depth of the 
member are usually deterministic quantities.

Material properties: The elastic modulus and 
tensile strength for concrete are well known to vary 
from specimen to specimen of the same mix. Hence 
these two parameters will be considered as random 
quantities.

Crack length: Crack length in concrete is a quantity 
that is very difficult to measure. The demarcation 
between the true crack length and the visible crack 
length or the indirectly computed value is not clear 
and all these values differ from each other. Hence 
it is necessary to consider this variable as random. 
Crack length in concrete can be measured directly 
by optical microscopy or high speed photography; 
or it can be measured indirectly using compliance 
technique, ultrasonic measurement or acoustic 
emission technique.

fracture Energy: The fracture energy or the 
fracture toughness is usually regarded as a material 
property and its value is supposed to be a constant. 
But in concrete, this value is dependent on size and 
like other material properties, it varies from specimen 
to specimen and hence, it is appropriate to consider it 
as a random quantity.

Since, most of these parameters are random in 
nature, it is important to study the effect of uncertainty 
in these parameters on fatigue crack growth in 
concrete. In the next section, a sensitivity study is done 
to know the effect of each of the input quantities on 
the fatigue life. 

4. Sensitivity Study

Sensitivity refers to the variation in output of a 
model with respect to changes in the values of the 
model’s inputs. Sensitivity analysis is performed 
to determine which of the input parameters have a 
dominant effect on the output or which parameters 
are the key drivers of a model’s results.  Alternatively, 
it can also be used to infer as to which parameters in 
the model can be considered as random and which 
as deterministic; the most sensitive variables are to 
be considered as random whereas the less sensitive 
ones can be considered as deterministic. Stochastic 
sensitivity analysis on fatigue behaviour of steel 
structures was conducted by Kala [10], where Paris 
law was used to describe fatigue crack growth, In 
Section 2, an expression for the dual of dissipation 
potential was obtained in the context of fatigue, from 
which a fatigue crack propagation law for concrete 
has been proposed. This law takes into consideration 
different parameters such as the crack length, loading 
parameter, fracture energy and the tensile strength. 
The fatigue life or the number of cycles to failure Nf 
is obtained from Equation 10 and is given by

 
                 

(11)

or               (12)

Here, a deterministic as well as probabilistic 
(sampling based) sensitivity study is conducted to 
determine which parameters are more sensitive and 
play a dominant role on dissipation potential and 
fatigue crack propagation. The deterministic as well 
as the probabilistic methods of sensitivity can be 
considered as complementary and it is worthwhile 
to do both [11].

4.1 deterministic sensitivity study

Deterministic Sensitivity analysis is conducted 
and presented as a Tornado diagram, which is more 
commonly used in decision analysis. A tornado 
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diagram consists of a set of horizontal bars, referred 
as swings corresponding to each variable. The length 
of the bar for a given variable represents the extent to 
which the output quantity is sensitive to this variable. 
The swings are displayed in a descending order from 
top to bottom, such that the swings are in a wide to 
narrow arrangement resembling a tornado [12]. The 
most sensitive variable will have the largest swing 
and is at the top and, the least sensitive variable is at 
the bottom and has the shortest swing. To obtain this, 
the following steps are performed.
1. First we obtain the value of Nf for the mean values 

of all the input variables. This is called the base 
value.

2. One of the variables takes the extreme (lowest 
and highest) value possible and all other variables 
are maintained at their mean values. This gives 
the corresponding low/high value of Nf for that 
variable accordingly. The extreme value is obtained 
based on the coefficient of variation given in Table 
3 for each variable. The procedure is repeated for 
all the variables one after the other.

3. The swing value is computed as
           Swing = Max(Low,Base,High)- Min(Low,Base,High)

The tornado diagram is obtained by constructing the 
swing for each variable by plotting the corresponding 
low and high values normalized with the base value. 
The data from experimental results of medium 
specimen [9] are taken for this purpose. Tornado 
diagram is constructed by computing the swing in the 
number of cycles to failure as shown in Figure 3. From 
this figure, it is seen that the load range ∆P is the most 
sensitive parameter followed by the crack length a. The 
material parameter, represented by the fracture energy 
(GF) is the next sensitive parameter, followed by the 
elastic modulus and the structural size. The tensile 
strength ft, is the least sensitive one. The conclusion 
that can be drawn from this study is that it is the load 
range that affects fatigue crack propagation the most 
and hence in fatigue analysis it must be considered as 
a random variable. The material parameters namely 
tensile strength and elastic modulus are comparatively 
less sensitive and can be treated as deterministic. The 
crack length is the second most sensitive parameter 
and hence care should be taken to get this value of 
crack length as accurately as possible.

4.2 Probabilistic sensitivity study

In this section, a probabilistic sensitivity analysis 
is done by computing the sensitivity coefficients. From 

this, the influence in the variation of the number of 
cycles to failure, on the variability of input random 
quantities is studied. Since the number of parameters 
that affect fatigue crack growth which are random 
is high, Monte-Carlo simulation technique is used 
here to generate random samples. By knowing the 
distribution and statistical parameters of the random 
variables, random samples are generated using the 
Latin Hypercube Sampling (LHS) method.  The 
LHS method is used to reduce the sample size. The 
technique involves stratified sampling on each of the 
input variables. The range of each input variable is 
exhaustively divided into m disjoint intervals of equal 
probability.  For each input variable, one observation 
is randomly drawn from each interval. The m values of 
the first variable generated by this process are paired 
at random without replacement with the m values of 
the second variable. The process continues with each 
successive input variable. The advantage of using 
LHS rather than simple sampling is that the statistical 
estimates of the output values from the simulation will 
always have more precision than the latter one [13]. 
Hence with fewer samples one can achieve the desired 
accuracy. Using these randomly obtained samples the 
coefficient of variation is computed. The sensitivity 
coefficient, Pi is  computed by knowing the coefficient 
of variation using

2

2
100 yi

i
y

v
p

v
=                   (13)

Where, vyi is the coefficient of variation of the 
output quantity keeping the ith input parameter as 
random and all other parameters as deterministic and, 
i = 1,2,. . . ,n, where n is the number of input quantities 
examined in the sensitivity analysis. vy is the coefficient 
of variation of the output quantity, considering all the 
input quantities as random ones. The concept is based 
on the assumption that a higher value of sensitivity 
coeffcient pi indicates a higher degree of correlation 
and therefore higher influence of input variable on 
the output [10].  The sensitivity study is performed on 
the medium sized beam specimen [9]. The statistical 
parameters used in the sensitivity analysis for all 
the variables considered are shown in Table 3, along 
with the computed sensitivity coefficients. The mean 
values for each variable are the values reported 
from experimental observations. All the parameters 
are assumed to be normally distributed. A higher 
coefficient of sensitivity value of a given input variable 
indicates a higher influence on the output parameter. 
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table 1: Variables considered and their dimensions

Variable Definition dimension

Φ* Dual of the dissipation 
potential FL−2

∆G Energy release rate range FL−1

a Crack length L
GF Fracture energy FL−1

ft Tensile strength FL−2

table 2: Geometry and load details [8 ]

Specimen depth mm Gf  n/mm Peak load n
Small 38 0.049 1815

Medium 76 0.083 2986
Large 152 0.134 5184

Table 3: Sensitivity coefficients of various 
parameters

Variable Coefficient 
of variation

Sensitivity Coefficient pi 
%

∆P 0.25 92.73
a 0.2 2.53
D 0.05 0.89
GF 0.2 0.16
E 0.15 0.07
ft 0.2 0.0004

Figure 1: Calibration of the model using data of small specimen [8].

Figure 2: Comparison of the fatigue crack propagation rate 
using the proposed model with experimental results [8].

Figure 3: Tornado diagram

From Table 3, it is evident that the load range is the most 
sensitive parameter followed by the crack length and 
specimen size. This is followed by the fracture energy. 
The elastic modulus and the tensile strength are least 
sensitive to fatigue crack growth rate in concrete.

4.3 Probability distribution function

The probability distribution function is another 
way to check the sensitivity of different parameters. 
In this, the ultimate fatigue life Nc is plotted against 
the probability that the computed life Nf is less than 
a particular Nc value. The number cycles to failure 
are computed through a Monte Carlo simulation 
considering one variable random at a time and all 
others deterministic. If the probability distribution 
function depicts a steeper curve for a parameter, 
it implies that this parameter is less sensitive [14]. 
A cumulative distribution function is obtained 
and shown in Figure 4. From this it is seen that the 
curves for tensile strength and elastic modulus are 
almost vertical and hence can be deemed as the least 
sensitive. The fracture energy is the next least sensitive 
parameter. The curves for load range, crack length and 
specimen size are flatter and hence more sensitive in 
affecting fatigue life.
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4.4 Hybrid uncertainty modeling
 Uncertainty in a parameter may be classified into 

two types, namely; randomness and vagueness. The 
probability theory is suitable to deal with randomness 
type of uncertainty, whereas the theory of fuzzy sets is 
more appropriate for vagueness type of uncertainty. 
Uncertainty assessment using only one of the 
approaches may sometimes be incomplete [15]. The 
term fuzziness is generally used to describe processes 
that cannot be given precise definition or precisely 
measured. In the previous subsections, it is seen that 
the crack length is one of the most sensitive parameters 
after the loading parameter. It is difficult to precisely 
define or measure crack length in concrete because of 
the tortuosity of cracks and presence of microcracking 
at the tip of the macrocrack and hence the crack 
length can also be considered as fuzzy. Further work 
needs to be done using a hybrid approach in order to 
understand the effect of uncertainties in fatigue crack 
growth parameters on the fatigue life.

5. Conclusions

In this work, a fatigue crack propagation law 
is derived from the dual of dissipation potential 
using the concepts of dimensional analysis and self-
similarity. The random nature of various parameters 
affecting fatigue crack growth in concrete is discussed. 
Both deterministic as well as probabilistic sensitivity 
studies are conducted and presented in the form 
of Tornado diagram, sensitivity coefficients and 
cumulative distribution curves. All these studies 
together suggest that loading is the most sensitive 
parameter affecting the fatigue crack propagation in 
concrete and therefore must be considered as a random 
quantity in fatigue studies. This observation is obvious 

because it is the parameter that mainly influences the 
thermodynamic force causing crack growth during 
fatigue. The second most sensitive parameter is the 
crack length. The accurate determination of crack 
length is not straightforward hence more focus is 
required to obtain the actual crack length in concrete. 
This observation also signifies the importance of early 
detection of cracks in existing structures as fatigue life 
is significantly affected by this parameter. The fracture 
energy considered in the present study is dependent 
on size and is the next most sensitive parameter. 
Structural size though not explicitly considered in the 
present study to be a parameter affecting crack growth, 
its importance is highlighted albeit indirectly. The 
material properties like elastic modulus and tensile 
strength are the least sensitive and can be assumed to 
be deterministic in fatigue crack growth studies. 
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abstract

To assess the reliability of structures involving both aleatory and epistemic uncertainties, in 
conjunction with multiple design points, every configuration of the interval variables needs to 
be explored. To reduce the computational cost involved, this paper presents a novel uncertainty 
analysis method for estimating the reliability of structural systems involving multiple design 
points in the presence of mixed uncertain variables.  The proposed method involves Multicut-
High Dimensional Model Representation technique for the limit state function approximation, 
transformation technique to obtain the contribution of the fuzzy variables to the convolution 
integral and fast Fourier transform for solving the convolution integral.  In the proposed method, 
efforts are required in evaluating conditional responses at a selected input determined by sample 
points, as compared to full scale simulation methods.  Therefore, the proposed technique estimates 
the failure probability accurately with significantly less computational effort compared to the 
direct Monte Carlo simulation.       
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1. introduction

Reliability analysis taking into account the 
uncertainties involved in a structural system plays an 
important role in the analysis and design of structures.  
Due to the complexity of structural systems the 
information about the functioning of various structural 
components has different sources and the failure of 
systems is usually governed by various uncertainties, 
all of which are to be taken into consideration for 
reliability estimation. Uncertainties present in 
a structural system can be classified as aleatory 
uncertainty and epistemic uncertainty. Aleatory 
uncertainty information can be obtained as a result 
of statistical experiments and has a probabilistic or 
random character.  Epistemic uncertainty information 
can be obtained by the estimation of the experts and 
in most cases has an interval or fuzzy character.  
Therefore, the development of rigorous mathematical 
methods of combining the existing information 
for obtaining general estimates of the reliability of 
the entire structural system represents an actual 
problem. 

When aleatory uncertainty is only present in 
a structural system, then the reliability estimation 

involves determination of the probability that a 
structural response exceeds a threshold limit, defined 
by a limit state function influenced by several 
random parameters. Structural reliability can be 
computed adopting probabilistic method involving 
the evaluation of multidimensional integral [1, 2].  
Broadly two classes of approaches are commonly 
available for the reliability estimation, which can 
be labeled as gradient-based and simulation-based 
methods.  In the first case, there is a need of estimating 
the gradient of the limit state function in a relevant 
point around which the largest concentration of the 
probability mass in the failure region can be found.  
These methods are popularly known as first- or second-
order reliability method (FORM/SORM) [1−3]. A 
crucial point in their application is the need of knowing 
the limit state function explicitly. But, in reality, the 
limit state functions are of implicit nature and highly 
nonlinear. Therefore, a detailed finite element (FE) 
modeling of the structure is necessary in combination 
with reliability analysis tools. FE methods for linear 
and nonlinear structures in conjunction with FORM/
SORM have been successfully applied for structural 
reliability computations [4].  But, such methods are 
effective in evaluating very small probabilities of failure 
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for small-scale problems.  In regard to the large-scale 
problems, merging of FORM/SORM, with commercial 
FE programs is not straight forward especially when 
the nonlinear problems are addressed [5].  

In addition, the main contribution to the reliability 
integral comes from the neighbourhood of design 
points. When multiple design points exist, available 
optimization algorithms may converge to a local 
design point and thus erroneously neglect the main 
contribution to the value of the reliability integral from 
the global design point(s).  Moreover, even if a global 
design point is obtained, there are cases for which 
the contribution from other local or global design 
points may be significant [6].  In that case, multipoint 
FORM/SORM is required for improving the reliability 
analysis [7].

In contrast to the gradient-based methods, 
simulation-based methods [8−10] hinge upon the 
creation of generating synthetic set of basic random 
variables samples and simulating the actual limit state 
function repeated times.  The major disadvantages of 
the Monte Carlo simulation (MCS) are that the results 
are of a statistical value and the random sampling 
error will produce inaccuracy within the results. The 
importance sampling technique [9, 10], a commonly 
used variance reduction technique, requires an 
appropriate importance sampling function in order 
to take full advantage of this method.  Sakamoto et al. 
[11] demonstrated the use of FFT in the probabilistic 
analysis.  In order to use FFT, the limit state function 
must be separable; hence response surface concept 
was adopted to get separable and closed form 
expression of the implicit limit state function [11].  
Penmetsa and Grandhi [12], implemented two-point 
adaptive nonlinear approximation [13] to construct 
the approximate limit state function and used FFT 
technique to estimate the failure probability.  The 
High Dimensional Model Representation (HDMR) 
is used to approximate the limit state function at the 
MPP and FFT techniques are adopted to evaluate the 
convolution integral in probabilistic analysis [14].  
The first-order HDMR component functions are 
approximated using linear and quadratic least-squares 
technique.  In this method, efforts are required in 
evaluating conditional responses at a selected input 
determined by sample points, as compared to full scale 
simulation methods. 

In the presence of only epistemic uncertainty 
in a structural system, possibilistic approaches to 

evaluate the minimum and maximum values of the 
response are available [15−17].  All the reliability 
models discussed above are based on only one kind 
of uncertain information; either random variables or 
fuzzy input, but do not accommodate a combination 
of both types of variables.  However, in reality, for 
some engineering problems in which some uncertain 
parameters are random variables, others are interval 
or fuzzy variables, using one kind of reliability model 
cannot obtain the best results.  To determine the 
bounds of reliability of a structural system involving 
both random and interval or fuzzy variables, every 
configuration of the interval variables needs to be 
explored.  Hence, the computational effort involved 
in estimating the bounds of the failure probability 
increases tremendously in the presence of multiple 
design points and mixed uncertain variables.  Hence 
there is considerable interest in developing efficient 
methods for dealing with problems comprising of 
mixed uncertain variables.  Moller et al. [18] presented a 
methodology for estimating the membership function of 
the safety index by considering fuzzy randomness using 
Fuzzy First Order Reliability Method.  However the 
calculation of the failure probability from the safety index 
values is prone to errors.  Adduri and Penmetsa [19] 
adopted two-point adaptive nonlinear approximation 
to construct the approximate limit state function using 
a second order response surface model, and used FFT 
technique to estimate the bounds on structural reliability 
in the presence of both random and fuzzy variables.  In 
addition other techniques of combining the probabilistic 
and non-probabilistic approaches to calculate the 
structural responses and their bounds can also be found 
in the literature [20−23].  

This paper explores the potential of coupled 
Multicut-HDMR (MHDMR)-FFT technique in 
evaluating the reliability of a structural system with 
multiple design points, for which some uncertainties 
can be quantified using fuzzy membership functions 
while some are random in nature. The paper 
is organized as follows. Section 2 presents a 
brief overview of HDMR and its applicability to 
reliability analysis.  Section 3 describes the concepts 
of MHDMR.  Section 4 presents the mathematical 
formulation for obtaining the membership function 
of failure probability. Section 5 presents three 
numerical examples to illustrate the performance 
of the present method. Comparisons have been 
made with direct MCS method to evaluate the 
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accuracy and computational efficiency of the present 
method.    
2. Concept of HdMr and its application to 

reliability analysis

The fundamental principle underlying the HDMR 
[24−27] is that, from the perspective of the output/
response, the order of cooperative effects between 
the independent variables will die off rapidly.  The 
HDMR is generated by expressing system response 
as a hierarchical, correlated function expansion of a 
mathematical structure and evaluating each term of 
the expansion independently.  One may show that 
the system response, which is a function of N  input 
variables, ( ) ( )1 2, , , Ng g x x x=x 

, can be expressed 
as summands of different dimensions:

                                                                            
                                                                                        

                                                                                 (1)

where 0g  is a constant term representing the mean 
response of ( )g x . The function ( )i ig x  describes 
the independent effect of variable ix  acting alone, 
although generally nonlinearly, upon the output ( )g x .  
The function ( )

1 2 1 2
,i i i ig x x  gives pair correlated effect of 

the variables 
1i

x  and 
2i

x  upon the output ( )g x .  The 
last term ( )12 1 2, , ,N Ng x x x




 contains any residual 

correlated behavior over all of the system variables.  
The expansion functions are determined by evaluating 
the input-output responses of the system relative to 
the defined reference point { }1 2, , , Nc c c=c 

 along 
associated lines, surfaces, subvolumes, etc. (i.e. cuts) 
in the input variable space.  This process reduces to 
the following relationship for the component functions 
in Equation 1.

( )0g g= c                                                              (2)

( ) ( ) 0, i
i i ig x g x g= −c                                                    (3)

 ( ) ( ) ( ) ( )1 2

1 2 1 2 1 2 1 2 1 1 2 2 0, , , i i
i i i i i i i i i i i ig x x g x x g x g x g= − − −c    (4)

where the notation ( ) ( )1 2 1 1, , , , , , , ,i
i i i i Ng x g c c c x c c− +=c   

( ) ( )1 2 1 1, , , , , , , ,i
i i i i Ng x g c c c x c c− +=c   denotes that all the input variables 

are at their reference point values except ix .  The 0g  
term is the output response of the system evaluated 
at the reference point c .  The higher order terms are 
evaluated as cuts in the input variable space through 
the reference point.  Therefore, each first-order term 

( )i ig x  is evaluated along its variable axis through the 
reference point.  Each second-order term ( )

1 2 1 2
,i i i ig x x  is 

evaluated in a plane defined by the binary set of input 
variables 

1 2
,i ix x  through the reference point, etc.  The 

process of subtracting off the lower order expansion 
functions removes their dependence to assure a unique 
contribution from the new expansion function.

Considering terms up to first- and second-order in 
Equation 1 yields first-order and second-order HDMR 
approximations of ( )g x
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respectively.  It can also be noted that, compared 
with FORM (which retains only linear terms) and 
SORM (which retains only quadratic terms), first- 
and second-order HDMR respectively, provide 
more accurate approximation ( )g x  of the original 
implicit limit state function ( )g x .  If first-order HDMR 
approximation is not sufficient second-order HDMR 
approximation may be adopted at the expense of 
additional computational cost.
3. Multicut-HdMr

The main limitation of truncated cut-HDMR 
expansion is that depending on the order chosen 
sometimes it is unable to accurately approximate

( )g x , when multiple design points exist on the limit 
state function or when the problem domain is large.  
In this section, a new technique based on MHDMR is 
presented for approximation of the original implicit 
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Figure 1: Concept of MHDMR approximation of original limit state/
performance function in conjunction with the weight function
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limit state function, when multiple design points exist.  
The basic principles of cut-HDMR may be extended to 
more general cases.  MHDMR is one extension where 
several cut-HDMR expansions at different reference 
points are constructed, and the original implicit limit 
state function ( )g x  is approximately represented not 
by one, but by all cut-HDMR expansions.  In the present 
work, weight function is adopted for identification of 
multiple reference points closer to the limit surface.  
The theme of MHDMR approximation of the original 
implicit limit state function is schematically explained 
through Figure 1.  

Let  1 2, , , dmd d d  be the dm  identified reference 
points closer to the limit state function based on the 
weight function presented later in Section 3.1.  The 
MHDMR approximation of the original implicit 
limit state function is based on the principles of cut-
HDMR expansion, where individual cut-HDMR 
expansions are constructed at different reference 
points 1 2, , , dmd d d

 by taking one at a time as 
follows:  
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The coefficients ( )kλ x  determine the contribution of each locally approximated function to 

the global function.   The properties of the coefficients ( )kλ x  imply that the contribution of 

all other cut-HDMR expansions vanish except one when x is located on any cut line, plane, or 

higher dimensional (≤ l) sub-volumes through that reference point, and then the MHDMR 

expansion reduces to single point cut-HDMR expansion.  As mentioned above, the l-th order 

cut-HDMR approximation does not have error when x is located on these sub-volumes.  

When dm  cut-HDMR expansions are used to construct a MHDMR expansion, the error free 

region in input x space is dm  times that for a single reference point cut-HDMR expansion. 

Therefore, the accuracy will be improved.  
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of each locally approximated function to the global 
function. The properties of the coefficients ( )kλ x  
imply that the contribution of all other cut-HDMR 
expansions vanish except one when x is located 
on any cut line, plane, or higher dimensional (≤ l) 
sub-volumes through that reference point, and then 
the MHDMR expansion reduces to single point 
cut-HDMR expansion. As mentioned above, the 
l-th order cut-HDMR approximation does not have 
error when x is located on these sub-volumes.  When 

dm  cut-HDMR expansions are used to construct a 
MHDMR expansion, the error free region in input 
x space is dm  times that for a single reference point 
cut-HDMR expansion. Therefore, the accuracy will 
be improved. 
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closeness to zero value, which indicates that particular 
sample point is close to the limit state function.

In this study two types of procedures are adopted 
for identification of reference points closer to the 
limit state function, namely: (1) first-order method, 
and (2) second-order method. The procedure for 
identification of reference points closer to the limit 
state function using first-order method proceeds as 
follows: (a) ( ) 3,5,7 or 9n =  equally spaced sample points 

( )1 2i inµ − − σ , ( )3 2i inµ − − σ , …, iµ , …, ( )3 2i inµ + − σ  
( )1 2i inµ + − σ  are deployed along each of the random 

variable axis ix  with mean iµ  and standard deviation 
iσ , through an initial reference point.  Initial reference 

point is taken as mean value of the random variables;  
(b) The limit state function is evaluated at each sample 
point; (c) Using the limit state function responses at 
all sample points, the weight corresponding to each 
sample point is evaluated using the following weight 
function, 
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( )
1 1 1 min
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, , , , , ,
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i i i NI
g c c x c c g

w
g

− +
 −
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x

x
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Second-order method of identification of 
reference points closer to the limit state function, 
proceeds as follows: (a) A regular grid is formed 
by taking ( ) 3,5,7 or 9n =  equally spaced sample 
points ( )

1 1
1 2i inµ − − σ , ( )

1 1
3 2i inµ − − σ , …, 1i

µ , …, 
( )

1 1
3 2i inµ + − σ ,  ( )

1 1
1 2i inµ + − σ  along the random 
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x  axis with mean 1i
µ  and standard 
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1i

σ , and ( ) 3,5,7 or 9n =  equally spaced 
sample points ( )

2 2
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1 2i inµ + − σ  along the random 
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2i
σ , through an initial reference point.  Initial reference 
point is taken as mean value of the random variables;  
(b) The limit state function is evaluated at each sample 
point; (c) Using the limit state function responses at 
all sample points, the weight corresponding to each 
sample point is evaluated using the following weight 
function,

 
 

(17)

Sample points 1 2, , , dmd d d

 with maximum 
weight are selected as reference points closer to the 
limit state function, for construction of dm  individual 
cut-HDMR approximations of the original implicit 
limit state function locally.  

Figure 2: MHDMR approximation of original limit state/
performance function; with (a) FF sampling scheme; and  

(b) SF sampling scheme

3.2 Sampling schemes

In this study, two types of sampling schemes, 
namely FF and SF are adopted, which are schematically 
illustrated in Figures 2(a) and 2(b).  

Figure 2(a) shows FF sampling scheme involving 
first-order method of identification of reference 
points closer to the limit state function and blending 
of locally constructed individual first-order HDMR 
approximations of the original implicit limit state 
function at different identified reference points 

1 2, , , dmd d d
 using the coefficients ( )kλ x  to form  

MHDMR approximation ( )g x  of ( )g x  using 
Equation 14.    Figure 2(b) shows SF sampling scheme 
involving second-order method of identification 
of reference points closer to the limit state function 
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and blending of locally constructed individual first-
order HDMR approximations of the original implicit 
limit state function at different identified reference 
points 1 2, , , dmd d d

 using the coefficients ( )kλ x  to 
form MHDMR approximation ( )g x  of ( )g x  using 
Equation 14.  

4. Estimation of failure Probability bounds in 
Presence of Mixed Uncertain Variables

Let { }1 2, , , Nx x x=x 
 be the N −dimensional 

input variables vector, which comprises of r  number 
of random variables and f  number of fuzzy variables 
with N r f= + . The first-order HDMR approximation 
of ( )g x  can be divided into three parts, the first part 
with only the random variables, the second part 
with only the fuzzy variables and the third part is a 
constant which is the output response of the system 
evaluated at the reference point, as follows  

 
( ) ( ) ( ) ( ) ( )

1 1

, , 1
r N

i i
i i

i i r
g g x g x N g

= = +

≅ + − −∑ ∑x c c c

    
 (18)

The joint membership function of the fuzzy 
variables part is obtained using suitable transformation 
of the variables and interval arithmetic algorithm.  
Using this approach, the minimum and maximum 
values of the fuzzy variables part are obtained at 
each α -cut.  

To obtain  the approximation of the first-order 
HDMR component functions of fuzzy variables part 
of the nonlinear limit state function in Equation 18, 
n  sample points iLx , ( )( ) ( )3 1iM iM iLx n x x n− − − −

( )( ) ( )5 1iM iM iLx n x x n− − − − , … , iMx
, … , ( )( ) ( )5 1iM iU iMx n x x n+ − − − , 

( )( ) ( )3 1iM iU iMx n x x n+ − − − , iUx  are deployed 
along axis of each of the fuzzy variable ix  having 
triangular membership function with the triplet 
number [ ], ,iL iM iUx x x .  Similarly, n  sample 
points ( )1 2i inµ − − σ , ( )3 2i inµ − − σ , …, iµ , …, 

( )3 2i inµ + − σ , ( )1 2i inµ + − σ  are deployed along 
axis of each of the random variable ix  with mean iµ  
and standard deviation iσ .  

Using the bounds of the fuzzy variables part 
at each α -cut along with the constant part and the 
random variables part (which now depends on 
{ }1 2, , , r

rx x x ∈ℜ  alone), the joint density functions 
are obtained by (i) identifying the reference points 

1 2, , , dm r∈ℜd d d

 closer to the limit state function 
and (ii) blending of locally constructed individual 
first-order HDMR approximations in the rotated 

Gaussian space at different identified reference points 
using the coefficients ( )1 2, , ,k rx x xλ 

 to form global 
approximation, and (iii) performing the convolution 
using FFT, which upon integration yields the bounds 
of the failure probability.  As an alternative the 
bounds of the failure probability can also be obtained 
by performing MCS on the global approximation in 
the original { }1 2, , , r

rx x x ∈ℜ
 space, obtained by 

blending of locally constructed individual first-order 
HDMR approximations of the original limit state 
function at different identified reference points.  
4.1 transformation of interval variables

Optimization techniques are required to obtain 
the minimum and maximum values of a nonlinear 
response within the bounds of the interval variables.  
This procedure is computationally expensive 
for problems with implicit limit state functions, 
as optimization requires the function value and 
gradient information at several points in the iterative 
process.  But, if the function is expressed as a linear 
combination of interval variables, then the bounds of 
the response can be expressed as the summation of the 
bounds of the individual variables.  Therefore, fuzzy 
variables part of the nonlinear limit state function in 
Equation 18 is expressed as a linear combination of 
intervening variables by the use of first-order HDMR 
approximation in order to apply an interval arithmetic 
algorithm, as follows 

( ) 1 2
1

,
N

i
i f

i r
g x z z z

= +

= + + +∑ c 

                              
(19) 

  

where ( )i i i iz x κ= β + γ  is the relation between the 
intervening and the original variables with κ  being 
order of approximation taking values 1κ =  for linear 
approximation, 2κ =  for quadratic approximation, 

3κ =  for cubic approximation, and so on.  The bounds 
of the intervening variables can be determined using 
transformations.  If the membership functions of the 
intervening variables are available, then at each α -cut, 
interval arithmetic techniques can be used to estimate 
the response bounds at that level.  

4.2 Estimation of failure probability bounds 
using fft

The concept of FFT can be applied to the problem 
if the limit state function is in the form of a linear 
combination of independent variables and when either 
the marginal density or the characteristic function of 
each basic random variable is known.  To achieve this 
linear function, HDMR concepts are used to express 
the random variables part of the nonlinear limit 
state function along with the values of the constant 

A. S. Balu & B. N. Rao / Life Cycle Reliability and Safety Engineering Vol.2 Issue 1 (2013) 52-68



58 © 2013 SRESA All rights reserved

part and the fuzzy variables part at each α -cut, 
which depends on { }1 2, , , r

rx x x ∈ℜ , as a linear 
combination of lower order component functions.  
The steps involved in the proposed method for failure 
probability estimation are as follows: 
(i) If { }1 2, , ,

T r
ru u u= ∈ℜu   is the standard Gaussian 

variable, let { }* * * *
1 2, , ,

Tk k k k
ru u u= u  be the MPP or 

design point, determined by a standard nonlinear 
constrained optimization.  The MPP has a 
distance HLβ , which is commonly referred to as 
the Hasofer–Lind reliability index.  Construct an 
orthogonal matrix r r×∈ℜR  whose r−th column is 

* *k k
HL= βá u , i . e . , w h e r e 1

1
r r× −∈ℜR  

s a t i s f i e s  * 1 1
1 0k T r× −= ∈ℜá R .  T h e  m a t r i x 

R  can  be  obta ined ,  for  example ,  by 
Gram–Schmidt orthogonalization.  For an 
o r t h o g o n a l  t r a n s f o r m a t i o n  u = R v .  
Let  

1 2{ , , , }T r
rv v v= ∈ℜv  be  the rotated 

Gaussian space with the associated MPP  
{ }* * * *

1 2, , ,
Tk k k k

rv v v= v . The transformed limit 
state function ( )g v  therefore maps the random 
variables part along with the values of the 
constant part and the fuzzy variables part at each 
α -cut, into rotated Gaussian space v .  

(ii) The first-order HDMR approximation of 
( )g v  in the rotated Gaussian space v  with 

{ }* * * *
1 2, , ,

Tk k k k
rv v v= v  as reference point  can be 

represented as follows:
 ( ) ( ) ( ) ( ) ( )* * * * *

1 2 1 1 1
1

, , , , , , , , , 1
r

k k k k k k k k
r i i i r

i
g g v v v g v v v v v r g− +

=

≡ = − −∑
  v v 

 
  

( ) ( ) ( ) ( ) ( )* * * * *
1 2 1 1 1

1

, , , , , , , , , 1
r

k k k k k k k k
r i i i r

i
g g v v v g v v v v v r g− +

=

≡ = − −∑
  v v                           (20)

(iii) In addition to the MPP as the chosen reference 
point, the accuracy of first-order HDMR 
approximation in Equation 20 may depend on 
the orientation of the first r − 1 axes.  In the present 
work, the orientation is defined by the matrix  
R . The terms ( )* * * *

1 1 1, , , , , ,k k k k k
i i i rg v v v v v− + 

 are 
the individual component functions and are 
independent of each other.  Equation 20 can be 
rewritten as, 

 
( ) ( )*

1

,
i

r
k k k k

i
i

g a g v
=

= + ∑ v v                               (21)
where *( 1) ( )k ka r g= − − v . 

(iv) New intermediate variables are defined as

 
( )*,

ik k k
i iy g v= v                                             (22)

 The purpose of these new variables is to transform 
the approximate function into the following form  

( ) 1 2
k k k k k

rg a y y y= + + + +
v                (23)

(v) Due to the rotational transformation in v-space, 
the component functions k

iy  in Equation 23 
are expected to be linear or weakly nonlinear 
function of random variables iv .  In this work 
both linear and quadratic approximations of k

iy  
are considered.  

(vi) The linear and quadratic approximations are 
considered as k

i i i iy b c v= +  and 2k
i i i i i iy b c v e v= + +  

respectively. The coefficients 
ib ∈ℜ , 

ic ∈ℜ  
and ie ∈ℜ  (non-zero)  a re  ob ta ined  by 
least-squares approximation from exact or 
numerically simulated conditional responses 
{ }1 * 2 * *( , ), ( , ), , ( , )

i i i T
k k k k k n k

i i ig v g v g vv v v  a t  n  s a m p l e 
points along the variable axis iv . Then Equation 
20 results in

 ( ) ( )1 2
1

r
k k k k k k

r i i i
i

g a y y y a b c v
=

≡ + + + + = + +∑
v  

 
            ( ) ( )1 2

1

r
k k k k k k

r i i i
i

g a y y y a b c v
=

≡ + + + + = + +∑
v

                      
     (24)

 and,
 ( ) ( )2

1 2
1

r
k k k k k k

r i i i i i
i

g a y y y a b c v e v
=

≡ + + + + = + + +∑
v

 ( ) ( )2
1 2

1

r
k k k k k k

r i i i i i
i

g a y y y a b c v e v
=

≡ + + + + = + + +∑
v                               (25)

(vii) The global approximation is formed by blending 
of locally constructed individual first-order 
HDMR approximations in the rotated Gaussian 
space at different identified reference points using 
the coefficients kλ . 

  
1

( ) ( )
dm

k
k

k
g g

=

= λ∑v v 

                                            

                                                                            
   (26)

(viii) Since iv  follows standard Gaussian distribution, 
marginal density of the intermediate variables iy  
can be easily obtained by simple transformation 
(using chain rule).  

  ( ) ( )
i iY i V i i ip y p v dv dy=                (27)                     

(ix) Now the approximation is a linear combination 
of the intermediate variables iy .  Therefore, the 
joint density of ( )g v , which is the convolution of 
the individual marginal density of the intervening 
variables iy , can be expressed as follows: 

 ( ) ( ) ( ) ( )
1 21 2 rY Y Y rGp g p y p y p y= ∗ ∗ ∗




   (28)

 where ( )Gp g


  represents the joint density of the 
transformed limit state function ( )g v .

(x) Applying FFT on both sides of Equation 28, leads 
to
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1 21 2( ) ( ) ( ) ( )

rY Y Y rGFFT p g FFT p y FFT p y FFT p y       =       




 
1 21 2( ) ( ) ( ) ( )

rY Y Y rGFFT p g FFT p y FFT p y FFT p y       =       


                 (29)

(xi) By applying inverse FFT on both side of Equation 
29, the joint density of the limit state function 

( )g v  is obtained. 

(xii) The probability of failure is given by the following 
equation 

 ( )
0

F GP p g dg
−∞

= ∫ 

 

                                                  (30)

 
                                                        

(xiii) The membership function of failure probability can 
be obtained by repeating the above procedure at all 
confidence levels of the fuzzy variables part.

Figure 3: Flowchart of Coupled MHDMR−FFT based reliability analysis
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Figure 3: Flowchart of Coupled MHDMR−FFT based reliability analysis  
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( ) ( ) ( ) ( ) ( )
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r N
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i i

i i r

g g x g x N g
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= + − −  x c c c  
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( ), ;  1,2,...,i
i iz g x i r N= = +c  

Random variables part 

( ), ;  1,2,...,i
i iy g x i r= =c  

Constant part 

( ) ( )1N g− − c  

Response bounds using 
transformation techniques 

Identify multiple reference points closer to 
limit state function using weight function 

(First order/ second order sampling scheme) 
kd and 

*kv  

Develop linear approximation 
*( , )k k k i

i i i i iy g v b c v= = +v  

Develop quadratic approximation 
* 2( , )k k k i

i i i i i i iy g v b c v e v= = + +v  

( ) ( )
1

dm
k

k
k

g gλ
=

=v v  

Transformation of iy   

( ) ( )
i i

i
Y i V i

i

dv
p y p v

dy
=  

Perform FFT analysis and multiply convolution of marginal densities of iy  

( ) ( ) ( ) ( )
1 21 2 rY Y Y rG

FFT p g FFT p y FFT p y FFT p y       =           

Perform inverse FFT analysis 

( ) ( ) ( ) ( )
1 21 2 rY Y Y rG

p g IFFT FFT p y FFT p y FFT p y        =            

Failure probability estimation by numerical integration 

( )
−∞

=    


      
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the proposed method is expected to increase with increase in the complexity of the structure, 

number of fuzzy variables and number of α -cuts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Flowchart of Coupled MHDMR−MCS based reliability analysis  
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Figure 4: Flowchart of Coupled MHDMR−MCS based reliability analysis
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A flow diagram for MHDMR approximation 
with multiple reference points closer to the limit state 
function, and estimation of membership function of 
failure probability FP  by performing the convolution 
using FFT in conjunction with linear and quadratic 
approximations is shown in Figure 3.

4.3. Estimation of failure probability bounds 
using MCS

The failure probability can be easily estimated 
by performing MCS on the MHDMR approximation  

( )g x  of the original implicit limit state function ( )g x  
and is given by

 ( )
1

1
0

SN
i

F
iS

P g
N =

 = < ∑ x                                            (31)
where ix  is thi realization of X , SN  is the sampling size, 

[.]� is a deciding function of fail or safe state such that 
1= , if ( ) 0ig < x  otherwise zero. A flow diagram for 

the MHDMR approximation with multiple reference 
points closer to the limit state/performance function, 
and estimation of membership function of failure 
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probability 
FP  by performing MCS on the global 

approximation is shown in Figure 4. 

4.4 Computational effort

If N , f , n , m , dm  and SN  respectively denote  
the number of uncertain variables, the number of 
fuzzy variables, the number of sample points taken 
along each of the variable axis, the number of α
-cuts, the number of identified design points and 
the sampling size required for MCS, then using the 
first-order HDMR approximation the total cost of 
original function evaluation entails a maximum of 

( )( 1) 1dm N n× − +  by the proposed method.  It can 
be easily verified that the total computational cost of 
the proposed method is far less than  ( 2 1)f

Sm N⋅ +  
number of function evaluations required for the crude 
method involving the MCS, especially for large finite 
element models.  As a few low order component 
functions of HDMR are used, the sample savings 
due to HDMR are significant compared to traditional 
sampling.  Hence the reliability analysis using HDMR 
relies on an accurate reduced model being generated 
with a small number of full model simulations.  This 
clearly demonstrates the computational efficiency 
of the proposed formulations.  The efficiency and 
robustness of the proposed method is expected 
to increase with increase in the complexity of the 
structure, number of fuzzy variables and number of 
α -cuts.

5. numerical Examples

Three numerical examples involving explicit 
hypothetical mathematical functions and implicit 
functions from structural mechanics problems are 
presented to illustrate the performance of the present 
method.  To evaluate the accuracy and the efficiency 
of the present method, comparisons of the estimated 
membership function of the failure probability FP ,  
both by performing the convolution using FFT and 
MCS on the global approximation, have been made 
with that obtained using direct MCS.  The coefficient of 
variation (COV) δ  of the estimated failure probability 

FP  by direct MCS for the sampling size SN  considered, 
is computed using

( )1 F

S F

P
N P
−

δ =
                                                           (32)

When comparing computational efforts by various 
methods in evaluating the failure probability FP , the 
number of original limit state function evaluations 
is chosen as the primary comparison tool in this 

paper.  This is because of the fact that, number of 
function evaluations indirectly indicates the CPU time 
usage.  For direct MCS, number of original function 
evaluations is same as the sampling size. While 
evaluating the failure probability FP  through direct 
MCS, CPU time is more because it involves number 
of repeated actual finite-element analysis.   

5.1 Parabolic performance function

The limit state function considered is a parabola 
of the form:

( ) 2
1 2 3g x x x= − − +x                                            

 (33)

where 1x  and 2x  are assumed to be independent 
standard normal variables. The variable 3x  is assumed 
to be fuzzy with triangular membership function 
having the triplet [5.0, 7.0, 9.0].

The initial reference point c  is taken as 
respectively the mean values and nominal values 
of the random and fuzzy variables. The first-order 
HDMR approximation, which is constructed over the 
initial reference point, is divided into two parts, one 
with only the random variables, and the other with 
the fuzzy variables.  The joint membership function 
of the fuzzy part of limit state function is obtained 
using suitable transformation of the fuzzy variables.  
In this example, the joint membership function is same 
as the membership function of the fuzzy variable 3x . 
As shown in Figure 5, the limit state function given by 
Equation 33 is symmetric about 2x  for given value of 

3x  (say the nominal value of 3 7x =  at 1α = ), and has 
two design points.  The two actual design points of the 
limit state function shown in Figure 5, obtained using 
recursive quadratic programming (RQP) algorithm 
[29] are (2.54, 0.49) and (−2.54, 0.49) with reliability 
indices 1 2 2.588β = β = .

Table 1 illustrates computational details and 
identification of reference points 1 2,d d  using FF 
sampling scheme with five equally spaced sample 
points ( 5n = ) along each of the variable axis.  In Table 
1 the values corresponding to (L)0α =  and (R )0α =  
respectively indicate the extreme left and right values 
of the limit state function ( )g x  at zero confidence 
level (ie 0α = ).  Table 1 shows two reference points 

( )1 2,0=d  and ( )2 2,0= −d  closer to the function 
(obtained using the bounds of the fuzzy variables 
part at each α -cut and the random variables part in 
Equation 18) producing maximum weight (obtained 
using Equation 16).  After identification of the two 
reference points (2, 0) and (−2, 0), local individual 
first-order HDMR approximations of the original limit 
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Table1: Identification of multiple design points with FF sampling

Sample points ( )g x
min( ) |g x Iw

1x
2x (L)0α = 1α = (R )0α = (L)0α = 1α = (R )0α = (L)0α = 1α = (R )0α =

−2.0 0.0 1.00 3.00 5.00

1.0 3.0 5.0

1.000 1.000 1.000
−1.0 0.0 4.00 6.00 8.00 0.050 0.368 0.549
0.0 0.0 5.00 7.00 9.00 0.018 0.264 0.449
1.0 0.0 4.00 6.00 8.00 0.050 0.368 0.549

2.0 0.0 1.00 3.00 5.00 1.000 1.000 1.000

0.0 −2.0 7.00 9.00 11.00 0.002 0.135 0.301
0.0 −1.0 6.00 8.00 10.00 0.001 0.189 0.368
0.0 0.0 5.00 7.00 9.00 0.018 0.264 0.449
0.0 1.0 4.00 6.00 8.00 0.050 0.368 0.549
0.0 2.0 3.00 5.00 7.00 0.135 0.513 0.670

Table 2: Identification of multiple design points with SF sampling

Sample points
( )g x

min( ) |g x IIw

1x 2x (L)0α = 1α = (R )0α = (L)0α = 1α = (R )0α = (L)0α = 1α = (R )0α =

−2.0 −2.0 3.00 5.00 7.00

−1.0 1.0 3.0

0.018 0.018 0.264
−1.0 −2.0 6.00 8.00 10.00 0.001 0.001 0.097
0.0 −2.0 7.00 9.00 11.00 0.000 0.000 0.069
1.0 −2.0 6.00 8.00 10.00 0.001 0.001 0.097
2.0 −2.0 3.00 5.00 7.00 0.018 0.018 0.264

−2.0 −1.0 2.00 4.00 6.00 0.050 0.050 0.368
−1.0 −1.0 5.00 7.00 9.00 0.002 0.002 0.135
0.0 −1.0 6.00 8.00 10.00 0.001 0.001 0.097
1.0 −1.0 5.00 7.00 9.00 0.002 0.002 0.135
2.0 −1.0 2.00 4.00 6.00 0.050 0.050 0.368

−2.0 0.0 1.00 3.00 5.00 0.135 0.135 0.513
−1.0 0.0 4.00 6.00 8.00 0.007 0.007 0.189
0.0 0.0 5.00 7.00 9.00 0.002 0.002 0.135
1.0 0.0 4.00 6.00 8.00 0.007 0.007 0.189
2.0 0.0 1.00 3.00 5.00 0.135 0.135 0.513

−2.0 1.0 0.00 2.00 4.00 0.368 0.368 0.717
−1.0 1.0 3.00 5.00 7.00 0.018 0.018 0.264
0.0 1.0 4.00 6.00 8.00 0.007 0.007 0.189
1.0 1.0 3.00 5.00 7.00 0.018 0.018 0.264
2.0 1.0 0.00 2.00 4.00 0.368 0.368 0.717

−2.0 2.0 −1.00 1.00 3.00 1.000 1.000 1.000
−1.0 2.0 2.00 4.00 6.00 0.050 0.050 0.368
0.0 2.0 3.00 5.00 7.00 0.018 0.018 0.264
1.0 2.0 2.00 4.00 6.00 0.050 0.050 0.368
2.0 2.0 −1.00 1.00 3.00 1.000 1.000 1.000
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state function are constructed at the two reference 
points by deploying 5n =  sample points along 
each of the variable axis.  Local approximations of 
the original limit state function are blended together 
to form global approximation.  The bounds of the 
failure probability are obtained both by performing 
the convolution using FFT in conjunction with linear 
and quadratic approximations, and MCS on the global 
approximation.  

Figure 6 shows the membership function of the 
failure probability FP   estimated both by performing 
the convolution using FFT in conjunction with linear 
and quadratic approximations, and MCS on the global 
approximation, as well as that obtained using direct 
MCS.  The COV (computed using Equation 32) of the 
lower and upper bounds of the failure probability FP  
obtained using direct MCS, corresponding to 610SN =  at 
zero confidence ( α -cut) level are 0.01761 and 0.00566.  

In addition, effect of SF sampling scheme on 
the estimated membership function of the failure 
probability FP  is studied, and Table 2 presents 
computational details and identification of reference 
points closer to the limit state function using SF 
sampling scheme.  Table 2 shows two reference points 

( )1 2, 2= −d  and ( )2 2, 2=d  closer to the function (obtained 
using the bounds of the fuzzy variables part at each 
α -cut and the random variables part in Equation 18) 
producing maximum weight (obtained using Equation 
17).  The bounds of the failure probability are obtained.  
Figure 6 also shows the membership function of the 
failure probability estimate obtained by the proposed 
method based on SF sampling scheme.  

The effect of number of sample points is studied 
by varying n  from 3 to 9.  When compared with direct 
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Figure 6 shows the membership function of the failure probability FP   estimated both 

by performing the convolution using FFT in conjunction with linear and quadratic 

approximations, and MCS on the global approximation, as well as that obtained using direct 
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In addition, effect of SF sampling scheme on the estimated membership function of 

the failure probability FP  is studied, and Table 2 presents computational details and 

identification of reference points closer to the limit state function using SF sampling scheme.  

Table 2 shows two reference points ( )1 2, 2= −d  and ( )2 2,2=d  closer to the function 

(obtained using the bounds of the fuzzy variables part at each α -cut and the random variables 

part in Equation 18) producing maximum weight (obtained using Equation 17).  The bounds 

of the failure probability are obtained.  Figure 6 also shows the membership function of the 

failure probability estimate obtained by the proposed method based on SF sampling scheme.   

Figure 6: Membership function of failure probability for parabolic limit state function Figure 6: Membership function of failure probability for 
parabolic limit state function

MCS, maximum absolute error in the membership 
function of failure probability estimated both by 
performing the convolution using FFT in conjunction 
with linear and quadratic approximations, and MCS 
on the global approximation is tabulated in Table 
3.  The computational effort in terms of number of 
function evaluations for various methods is tabulated 
in Table 4.  

Tables 3 and 4 clearly demonstrate the computational 
efficiency of the proposed methodology.  It is observed 
that 7n =  provides the optimum number of function 
calls with acceptable accuracy in evaluating the failure 
probability with the present method. 
5.2 Cantilever steel beam

A cantilever steel beam of 1.0 m with cross-
sectional dimensions of  (0.1 × 0.01) m is considered 
as shown in Figure 7, to examine the accuracy and 
efficiency of the proposed method for the membership 
function of failure probability estimation.  The beam 
is subjected to an in-plane moment at the free end and 
a concentrated load at 0.4 m from the free end.  The 
structure is assumed to have failed if the square of 
the von Mises stress at the support (at A in Figure 7) 
exceeds specified threshold maxV .  Therefore, the limit 
state function is defined as

( ) ( )maxg V V= −x x                                             (34)

where ( )V x  is the square of the von Mises stress, 
expressed as a quadratic operator on the stress 
vector. 

In this example, loads 1x  and 2x , modulus of 
elasticity of the beam E  and threshold quantity maxV  
are taken as uncertain variables.  The variations of 
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 The initial reference point c  is taken as respectively the mean values and nominal 

values of the random and fuzzy variables.  The first-order HDMR approximation, which is 

constructed over the initial reference point, is divided into two parts, one with only the 

random variables, and the other with the fuzzy variables.  The joint membership function of 

the fuzzy part of limit state function is obtained using suitable transformation of the fuzzy 

variables.  In this example, the joint membership function is same as the membership 

function of the fuzzy variable 3x .  As shown in Figure 5, the limit state function given by 

Equation 33 is symmetric about 2x  for given value of 3x  (say the nominal value of 3 7x =  at 

1α = ), and has two design points.  The two actual design points of the limit state function 

shown in Figure 5, obtained using recursive quadratic programming (RQP) algorithm [29] are 

(2.54, 0.49) and (−2.54, 0.49) with reliability indices 1 2 2.588β = β = . 

 

 

 

 

 

 

 

 

 

 

 

Table 1 illustrates computational details and identification of reference points 1 2,d d  

using FF sampling scheme with five equally spaced sample points ( 5n = ) along each of the 

variable axis.  In Table 1 the values corresponding to (L)0α =  and (R )0α =  respectively 

Figure 5: Limit state function of parabolic performance function  
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Figure 5: Limit state function of parabolic performance function
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table 3: Maximum absolute error (%) (Parabolic 
function)

Method 3=n 5=n 7=n 9=n

MHDMR-FF-MCS 0 0 0 0

MHDMR-FF-FFT-
Lin. 1.1047 1.1047 1.1047 1.1047

MHDMR-FF-FFT-
Quad. 0.6683 0.6683 0.6683 0.6683

MHDMR-SF-MCS 0 0 0 0

MHDMR-SF-FFT-
Lin. 1.1047 1.1047 1.1047 1.1047

MHDMR-SF-FFT-
Quad. 0.6683 0.6683 0.6683 0.6683

table 4: no. of function evaluations (Parabolic 
function)

Method 3=n 5=n 7=n 9=n
Direct MCS 21×106 21×106 21×106 21×106

MHDMR-FF-
MCS 15 27 39 51

MHDMR-FF-
FFT-Lin. 19 43 75 115

MHDMR-FF-
FFT-Quad. 15 27 39 51

MHDMR-SF-
MCS 15 27 39 51

MHDMR-SF-
FFT-Lin. 19 43 75 115

MHDMR-SF-
FFT-Quad. 19 43 75 115

E  and maxV  are expressed as ( )0 31E E xε= +  and 
( )max max0 41V V xε= + . Here, ε  is small deterministic 

quantity representing the coefficient of variation 
of the random variables and are taken to equal to 
0.05, 5 2

0 2 10  N/mE = ×  denotes the deterministic 
c o m p o n e n t  o f  m o d u l u s  o f  e l a s t i c i t y  a n d 

9 2
max 0 6.15 10  N/mV = ×  denotes the deterministic 

component of threshold quantity.  All variables are 
assumed to be independent.  The properties of the 
mixed uncertain variables are defined in Table 5.

table 5: Properties of the uncertain variables 
(Cantilever beam)

Uncertain 
variable

type of variable
random

fuzzy
Mean Std. 

dev.
distribution 

type

1x 1 1 Normal

2x 0 1 Normal

3x [0.0 2.0 4.0]

4x [0.0, 0.1, 0.2]

The limit state function given in Equation 34 is 
approximated using first-order HDMR by deploying 

5n =  sample points along each of the variable axis 
and taking respectively the mean values and nominal 
values of the random and fuzzy variables as initial 
reference point (1.0, 0.0, 2.0, 0.1).  The approximated 
limit state function is divided into two parts, one 

with only the random variables along with the 
value of the constant part, and the other with the 
fuzzy variables. The joint membership function of 
the fuzzy part of approximated limit state function 
is obtained using suitable transformation of the 
fuzzy variables.  

Using FF sampling scheme the sample point 
( )1, 2= −d  is identified as reference point closer to the 

limit state function producing maximum weight.  In this 
case since only one reference point is identified, local 
approximation is same as the global approximation.  
The bounds of the failure probability are obtained 
both by performing the convolution using FFT in 
conjunction with linear and quadratic approximations, 
and MCS on the global approximation.  

Figure 8 shows the membership function of the 
failure probability estimated both by performing 
the convolution using FFT in conjunction with 
linear and quadratic approximations, and MCS on 
the global approximation, as well as that obtained 
using direct MCS.  The COV of the lower and upper 
bounds of the failure probability obtained using 
direct MCS, corresponding to 610SN =  at zero 
confidence level are 0.31623 and 0.00361.

In addition the membership function of the 
failure probability obtained by the proposed 
method based on SF sampling scheme is also 
shown in Figure 8.  The effect of number of sample 
points is studied by varying n from 3 to 9.  When 
compared with direct MCS, maximum absolute 
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5.2. Cantilever Steel Beam 

A cantilever steel beam of 1.0 m with cross-sectional dimensions of  (0.1 × 0.01) m is 

considered as shown in Figure 7, to examine the accuracy and efficiency of the proposed 

method for the membership function of failure probability estimation.  The beam is subjected 

to an in-plane moment at the free end and a concentrated load at 0.4 m from the free end.  

The structure is assumed to have failed if the square of the von Mises stress at the support (at 

A in Figure 7) exceeds specified threshold maxV .  Therefore, the limit state function is defined 

as 

 ( ) ( )maxg V V= −x x . (34) 

where ( )V x  is the square of the von Mises stress, expressed as a quadratic operator on the 

stress vector.  

 

 

 

 

 

In this example, loads 1x  and 2x , modulus of elasticity of the beam E  and threshold 

quantity maxV  are taken as uncertain variables.  The variations of E  and maxV  are expressed as 

( )0 31E E xε= +  and ( )max max0 41V V xε= + .  Here, ε  is small deterministic quantity 

representing the coefficient of variation of the random variables and are taken to equal to 

0.05, 5 2
0 2 10  N/mE = ×  denotes the deterministic component of modulus of elasticity and 

9 2
max 0 6.15 10  N/mV = ×  denotes the deterministic component of threshold quantity.  All 

variables are assumed to be independent.  The properties of the mixed uncertain variables are 

defined in Table 5. 

Figure 7: Cantilever steel beam 
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Figure 7: Cantilever steel beam

error in the membership function of the failure 
probability estimated both by performing the 
convolution using FFT in conjunction with linear 
and quadratic approximations, and MCS on the 
global approximation is tabulated in Table 6.  The 
computational effort is tabulated in Table 7.  

table 6: Maximum absolute error (%)  
(Cantilever beam)

Method 3=n 5=n 7=n 9=n
MHDMR-FF-MCS 8.3333 1.0909 1.0909 1.0909
MHDMR-FF-FFT-Lin. 6.1174 1.0068 1.0068 1.0068
MHDMR-FF-FFT-
Quad. 3.7651 0.8680 0.8680 0.8680

MHDMR-SF-MCS 5.000 0.9091 0.9091 0.9091
MHDMR-SF-FFT-Lin. 2.1744 0.6785 0.6785 0.6785
MHDMR-SF-FFT-
Quad. 1.8639 0.4993 0.4993 0.4993

table 7: no. of function evaluations  
(Cantilever beam)

Method 3=n 5=n 7=n 9=n
Direct MCS 21×106 21×106 21×106 21×106

MHDMR-FF-MCS 10 18 26 34

MHDMR-FF-FFT-Lin. 14 34 62 98

MHDMR-FF-FFT-
Quad. 10 18 26 34

MHDMR-SF-MCS 10 18 26 34

MHDMR-SF-FFT-
Lin. 14 34 62 98

MHDMR-SF-FFT-
Quad. 14 34 62 98

Tables 6 and 7 clearly demonstrate the compu-
tational efficiency of the proposed methodology.  
It is observed that 7=n  provides the optimum 
number of function calls with acceptable accuracy 
in evaluating the failure probability with the present 
method.

5.3. 80-bar 3d-truss structure

A 3D-truss, shown in Figure 9, is considered in 
this example to examine the accuracy and efficiency 
of the proposed method for the membership function 
of failure probability estimation.  The loads at various 
levels are considered to be random while the cross-
sectional areas of the angle sections at various levels 
are assumed to be fuzzy as given in Table 8.  The 
maximum horizontal displacement at the top of the 
tower is considered to be the failure criterion, as given 
below.

( ) ( )limg = ∆ − ∆x x ,                                            (35)

The limiting deflection 
lim∆  is assumed to be  

0.15 m.  The limit state function given in Equation 35 is 
approximated using first-order HDMR by deploying 

5n =  sample points along each of the variable 
axis and taking respectively the mean values and 
nominal values of the random and fuzzy variables 
as initial reference point.  The approximated limit 
state function is divided into two parts, one with 
only the random variables along with the value of the 
constant part, and the other with the fuzzy variables.  
The joint membership function of the fuzzy part of 
approximated limit state function is obtained using 
suitable transformation of the fuzzy variables.  

The two reference points closer to the function 
producing maximum weights, 1.0 and 0.977 are 
identified.  After identification of the two reference 
points, local first-order HDMR approximations are 
constructed at the reference point by deploying 5n =  
sample points along each of the variable axis.  The 
bounds of the failure probability are obtained both by 
performing the convolution using FFT in conjunction 
with linear and quadratic approximations and MCS 
on the global approximation.  

Figure 10 shows the membership function of the 
failure probability estimated both by performing 
the convolution using FFT and MCS on the global 
approximation, as well as that obtained using direct 
MCS.  The COV of the lower and upper bounds of 
the failure probability obtained using direct MCS, 
corresponding to 610SN =  at zero confidence level 
are 0.31622 and 0.01274.

In addition, effects of SF sampling scheme 
and the number of sample points on the estimated 
membership function of the failure probability are 
studied.  Figure 10 also shows the membership 
function of the failure probability estimate obtained 
by the proposed method based on SF sampling 
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In addition the membership function of the failure probability obtained by the 

proposed method based on SF sampling scheme is also shown in Figure 8.  The effect of 

number of sample points is studied by varying n from 3 to 9.  When compared with direct 

MCS, maximum absolute error in the membership function of the failure probability 

estimated both by performing the convolution using FFT in conjunction with linear and 

quadratic approximations, and MCS on the global approximation is tabulated in Table 6.  The 

computational effort is tabulated in Table 7.   

Table 6: Maximum absolute error (%) (Cantilever beam) 
 

Method 3=n  5=n  7=n  9=n  

MHDMR-FF-MCS 8.3333 1.0909 1.0909 1.0909 

MHDMR-FF-FFT-Lin. 6.1174 1.0068 1.0068 1.0068 

MHDMR-FF-FFT-Quad. 3.7651 0.8680 0.8680 0.8680 

MHDMR-SF-MCS 5.000 0.9091 0.9091 0.9091 

MHDMR-SF-FFT-Lin. 2.1744 0.6785 0.6785 0.6785 

MHDMR-SF-FFT-Quad. 1.8639 0.4993 0.4993 0.4993 
 

Figure 8: Membership function of failure probability for cantilever steel beam 
Figure 8: Membership function of failure probability for 

cantilever steel beam

Figure 9: 80-bar 3D-truss structure
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function is divided into two parts, one with only the random variables along with the value of 

the constant part, and the other with the fuzzy variables.  The joint membership function of 

the fuzzy part of approximated limit state function is obtained using suitable transformation 

of the fuzzy variables.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two reference points closer to the function producing maximum weights, 1.0 and 

0.977 are identified.  After identification of the two reference points, local first-order HDMR 

approximations are constructed at the reference point by deploying 5n =  sample points along 

each of the variable axis.  The bounds of the failure probability are obtained both by 

performing the convolution using FFT in conjunction with linear and quadratic 

approximations and MCS on the global approximation.   
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scheme. When compared with direct MCS, maximum 
absolute error in the membership function of the 
failure probability estimated both by performing the 
convolution using FFT in conjunction with linear 
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clearly demonstrate the computational efficiency of the proposed methodology.  It is 

observed that 7=n  provides the optimum number of function calls with acceptable accuracy 

in evaluating the failure probability with the present method. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Table 9: Maximum absolute error (%) (3-D truss) 
 

Method 3=n  5=n  7=n  9=n  

MHDMR-FF-MCS 7.1307 6.2745 4.5777 4.5777 

MHDMR-FF-FFT-Lin. 6.0013 4.462 1.7241 1.7241 

MHDMR-FF-FFT-Quad. 4.8920 2.7653 0.9818 0.9818 

MHDMR-SF-MCS 4.2763 3.0140 1.8182 1.8182 

MHDMR-SF-FFT-Lin. 2.7133 1.1785 0.9740 0.9740 

MHDMR-SF-FFT-Quad. 2.4553 1.1021 0.7103 0.7103 

 
 
 
 
 
 
 

Figure 10: Membership function of failure probability for 80-bar 3D-truss structure 

Figure 10: Membership function of failure probability for 80-bar 
3D-truss structure

table 8: Properties of the uncertain variables  
(3-d truss)

Uncertain 
variable

type of variable
random fuzzy

Mean CoV distribution 
type

1P  (N)
1000 0.1 Normal

2P  (N)
2000 0.1 Normal

3P  (N)
3000 0.1 Normal

4P  (N)
4000 0.1 Normal

5P  (N)
5000 0.1 Normal

1A (mm2)
[6867 7630 

8393]

2A (mm2)
[5571 6190 

6809]

3A (mm2)
[3870 4300 

4730]

4A (mm2)
[2088 2320 

2552]

5A (mm2) [1539 1710 
1881]

and quadratic approximations, and MCS on the 
global approximation is tabulated in Table 9.  The 
computational effort in terms of number of function 
evaluations for various methods is tabulated in 
Table 10.  Tables 9 and 10 clearly demonstrate 
the computational efficiency of the proposed 
methodology.  It is observed that 7=n  provides the 
optimum number of function calls with acceptable 
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part at each confidence level along with the constant 
part and the random variables part, the joint density 
functions are obtained by (i) identifying the reference 
points closer to the limit state function and (ii) 
blending of locally constructed individual first-order 
HDMR approximations in the rotated Gaussian space 
at different identified reference points to form global 
approximation, and (iii) performing the convolution 
using FFT, which upon integration yields the bounds 
of the failure probability.  As an alternative the bounds 
of the failure probability are estimated by performing 
MCS on the global approximation in the original 
space, obtained by blending of locally constructed 
individual first-order HDMR approximations of the 
original limit state function at different identified 
reference points.  

The results of three numerical examples 
involving explicit hypothetical mathematical 
function and structural mechanics problems indicate 
that the proposed method provides accurate and 
computationally efficient estimates of the membership 
function of the failure probability.  The results obtained 
from the proposed method are compared with those 
obtained by direct MCS.  The numerical results show 
that the present method is efficient for structural 
reliability estimation involving any number of fuzzy 
and random variables with any kind of distribution.

Two types of sampling schemes, namely FF, and SF, 
are adopted in this study for MHDMR approximation 
of the original limit state function construction. 
MHDMR approximation using FF sampling scheme 
provides desired accuracy to the predicted failure 
probability with least number of function evaluations. 
In order to reduce the approximation error further, 
SF sampling based MHDMR approximation of the 
original limit state function could be used in reliability 
analysis, but the number of function evaluations 
increases significantly compared to FF sampling.  
A parametric study is conducted with respect to 
the number of sample points n  used in FF and SF 
sampling based MHDMR approximation and its effect 
on the estimated failure probability is investigated.  An 
optimum number of sample points n  must be chosen 
in approximation of the original limit state function. It 
can be observed from the reported results that 5n =  
or 7 works very well for all problems in this paper.
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