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Guest Editorial
International Symposium on Engineering under Uncertainty: Safety Assessment and Management 

(ISEUSAM - 2012) was organised during January 4 to 6 to facilitate the discussion for a better understanding 
and management of uncertainty and risk, encompassing various aspects of safety and reliability of engineering 
systems. Thirteen Selected papers were selected to be compiled in two special issues of Society for Reliability 
and Safety (SRESA) Journal of Life Cycle Reliability and Safety Engineering to provide a snapshot of the various 
papers discussed during ISEUSAM - 2012. Six papers were already published in the third issue. All the seven 
papers included in this fourth issue are revised versions of those presented in the symposium. The first paper 
deals with a novel approach to obtain the seismic fragility curves for a primary containment structure using 
incremental dynamic analysis. The seismic fragility curves obtained by using the proposed approach are 
found to be more realistic than those obtained using the conventional approach considering an elastic response 
spectrum and a linear elastic seismic analysis of the structure. The second paper deals with computational studies 
of pressurized air flow through cracks in concrete. The statistical crack model available in the literature has been 
refined to incorporate local tortuosity of the crack due to the smallest material inhomogeneity that can affect 
the airflow rates. The local tortuosity is introduced using fractal geometry based curves. The third paper deals 
with estimating the rain-flow fatigue damage in wind turbine blades using the polynomial chaos expansion 
approach. The turbine blade is modelled as a two-dimensional airfoil and is subjected to stationary Gaussian 
loading. The fatigue damage due to this loading is described through the rain-flow cycle counting method. 
The fourth paper deals with safety evaluation of a pressure vessel made of titanium alloy based on the data 
collected during manufacturing and operation. An attempt has also been made to carry out multi objective 
design analysis to suggest optimum design parameters for design operating conditions taking into account 
the effect of variation of design parameters.  The fifth paper focuses on the stochastic response surface method 
to evaluate the reliability index. The implicit limit state is modelled using a series expansion of standard 
normal random variables. Once the order of the polynomial and subsequently the coefficients are evaluated, 
the reliability index is obtained by a gradient- based approach. The sixth paper is the inaugural keynote paper 
that presents the author’s perspective of engineering under uncertainty. The past, present and future trends 
of reliability assessment methods, applicable to many branches of engineering including reliability evaluation 
of very large structures are discussed, covering cases with both explicit and implicit limit state functions. The 
necessity of estimating risks for both strength and serviceability limit states isdiscussed. Risk management in 
the context of decision analysis framework is also brieflypresented. The use of artificial neural networks and 
soft computing, incorporation of cognitive sources of uncertainty, developing necessary computer programs, 
and education-related issues are discussed towards future directions. The last paper summarizes the growth 
in the area of structural health assessment from infancy (i.e. hitting something with a hammer and listening 
to sound) to the most recent development of wireless sensors and the associated advanced signal processing 
algorithms. Studies by the authors are also discussed, and some of the future challenges in structural health 
assessment are identified. Since this is a relatively new multi-disciplinary area, the education component is 
also highlighted at the end.

The Guest Editors would like to express their deep gratitude to all authors for their time and efforts devoted 
to the completion of their contributions. We also would like to specially thank Professor Achintya Haldar, Chair, 
Scientific Committee of ISEUSAM 2012 for his in-depth reviews and recommendations. In addition, we are 
most appreciative of the Editors of SRESA Journal of Life Cycle Reliability and Safety Engineering, for their kind 
invitation to edit this Special Issue.
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Seismic fragility analysis of a Primary Containment Structure 
using ida

tushar K. Mandal1, Siddhartha Ghosh1, ajai S Pisharady2 

1Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India 
2 Siting & Structural Engineering Division, Atomic Energy Regulatory Board, Mumbai, India 

E-mail: sghosh@civil.iitb.ac.in

abstract

The seismic fragility of a structure is the probability of exceeding certain limit state of performance 
given a specific level of hazard. This fragility is typically estimated for multiple hazard levels 
considering monotonically increasing intensity measures, such as peak ground acceleration (PGA). 
The seismic safety of the primary/inner containment structure, which is the most important civil 
engineering structure in a nuclear power plant (NPP) housing the reactor and other major safety 
related components, is of utmost concern for both old and new NPP. This paper presents a novel 
approach of obtaining the seismic fragility curves for a primary containment structure using 
incremental dynamic analysis (IDA). The limit state of performance selected for these fragility 
estimations is based on the collapse of the structure. In order to reduce the computation involved, 
a simple ‘stick model’ of the containment structure is used for the nonlinear response-history 
analyses in the multi-earthquake IDA. The seismic fragility curves obtained using the proposed 
approaches are compared with those obtained using the conventional approach considering an 
elastic response spectrum and a linear elastic seismic analysis of the structure. The IDA based 
fragilities are found to be more realistic than those obtained using conventional methods.

Keywords:  fragility analysis, probabilistic seismic risk analysis, nuclear containment, inner 
containment, incremental dynamic analysis
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1. introduction

The objective of seismic probabilistic safety 
assessments (PSA) for nuclear power plants is to 
examine the existence of vulnerabilities against 
postulated earthquake hazards [1]. It involves assessing 
the plant’s (or, its components’) safety numerically, in a 
probabilistic framework, so that appropriate measures 
can be taken to enhance a NPP’s safety level, if needed. 
One of the major components in the seismic PSA of 
a NPP, is the seismic fragility evaluation. Seismic 
fragility is defined as the conditional probability 
of failure for a given seismic intensity level. These 
fragilities are typically expressed using fragility plots, 
where these conditional probabilities are plotted 
against varying values of seismic intensity. Seismic 
fragility can be defined both at the component level 
and at the system level in a NPP. Fragility definitions 
also depend on how failure is defined while estimating 
the probability of failure.

India has 20 operational nuclear reactor units, 
18 of which are pressurized heavy water reactor 
(PHWR) with the earliest dating back to 1973. All of 

these are located in moderate seismic zones (Zones 2 
and 3 as per the current seismological intensity map 
of India), except for those in Narora, UP, which is in 
Zone 4 (IS 1893-2002). Seismic re-evaluation of these 
reactors, including those in moderate seismic zones, 
is an extremely important task, considering several 
factors, such as:
(i) A change in the seismicity of the site based on 

newer information.
(ii) Requirement of checking the safety level for 

greater seismic hazard than the original design 
basis.

(iii) Lack of seismic design or, more commonly, poor 
seismic design and detailing not meeting current 
standards.

(iv) Low level analysis adopted in the original 
qualification (many a times owing to a lack of 
computational tools necessary to perform high 
level analyses)

2. Conventional Seismic fragility analysis

Seismic fragility analyses of nuclear power plant 
structures and other critical components typically 
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adopt the method proposed by Kennedy and Ravindra 
[2]. In their pioneering work on seismic fragility 
analysis, they stated that the objectives of a seismic 
PSA were to estimate the frequencies of occurrence 
of earthquake-induced accidents and to identify the 
key risk contributors, so that necessary risk reductions 
could be achieved. They identified the component 
fragility analysis to be a major part of the seismic PSA 
(other parts being seismic hazard analysis, system-
level analysis, accident sequence identification, etc.). 
Among many others, two major achievements of this 
work were in the identification of different levels of 
damage, and in the treatment of system-level fragilities 
separately from component-level fragilities.

In this fragility analysis approach, the conditional 
probability of failure is computed as:
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F1 is a factor representing ratio of capacity to 
demand, and is a strength factor. F2 corresponds to 
the level of conservatism in assessing the capacity; it 
depends primarily on the energy absorption capacity 
of structure, system or component (SSC) beyond 
elastic limit. F3 represents the conservatism associated 

with calculating demand. Different methodologies for 
fragility analysis are all about determining the median 
values of F1, F2 and F3, and selection of corresponding 
β.

There are numbers of components of a NPP which 
should remain functional during a seismic event, so 
it is very difficult to check the seismic qualification of 
each component individually. So all the components 
the NPP are grouped in number of categories and 
different methods are recommended for their seismic 
qualification [3].

2.1 drawbacks of conventional methods

The conventional methodologies for seismic 
fragility analysis have the following drawbacks [4, 
5]:
i) Though these methods are easy to implement, but 

they require considerable engineering judgement 
especially in case of selecting of parameters for 
aleatory and epistemic uncertainties.

ii) The use of a double lognormal model is 
mathematically feasible but doesn’t have too 
strong theoretical basis/background.

iii) The use of response spectrum based methods 
introduces epistemic uncertainties:

(a) Response contribution from different 
modes depends on the accuracy of different modal 
combination rules.

(b) In case of nonlinear system modal analysis are 
not applicable.

Thus fragility estimated using conventional 
methods are not very realistic specifically for nonlinear 
response of structure.

3. the Proposed Method of fragility analysis

This paper presents a novel approach of obtaining 
the seismic fragility curves for a primary containment 
structure using incremental dynamic analysis (IDA). 
The response of the IC structure, modelled as a 
2-D stick, is studied for different types of ground 
motions.

The important assumptions made for fragility 
analysis are:
i) Randomness associated with the seismic forces 

is much more compared to that for structural 
parameters [6]. Hence, the randomness in 
seismic forces is considered only and structural 
parameters are considered to be deterministic. 
The reason behind it is as we are considering the 
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IC structure and a better quality control is done 
for these kind of important structures.

ii) The structure will behave linearly in shear even 
while it behaves non-linearly in flexure. It is done 
as we don’t want the stick-model to be failed in 
shear.

iii) Pre-stressing forces are considered as uniaxial 
compression for the simplified stick-model.

iv) Reinforcement orientation in the dome portion 
is taken vertical for each element though it is 
not the case in actual, assuming that this will 
not affect too much in final result of the analysis 
as maximum strain and inter-storey-drift ratio 
usually occurs at the base of the cantilever kind 
of structure.

v) Openings are not considered for the stick-model 
though it can be done by manually selecting 
some equivalent reduced sectional properties 
at the location opening. The reason behind 
that procedure of taking reduced section will 
work well during Linear behaviour of structure 
but it will not work beyond that as non-linear 
behaviour depends largely on the actual section 
geometry which cannot be resembled using 
equivalent reduced section and our main motive 
is to do nonlinear response history analysis 
(NLRHA).

3.1 the basic steps of fragility analysis are:
i) Choose the ground motion data comparing its 

response spectrum with the design spectrum of 
the site and the seismological location of the site 
i.e. either intra-plate or at plate boundary.

ii) Prepare the mathematical model appropriate for 
NLRHA.

iii) Do the incremental dynamic analysis which is 
basically a set of NLRHA, for all ground motion 
data.

iv) Calculate the probability of exceedance of 
particular limit states from the output of IDAs 
and plot it to obtain fragility plot.

4. Modelling of the Structure

4.1 description of structure

The IC structure considered for this study consists 
of a prestressed concrete cylindrical wall capped by 
a segmental pre-stressed concrete dome through a 
massive ring beam. The containment shell is supported 
on a circular raft. The typical containment structure 
considered for the study is depicted in Fig. 1(A). The 
containment structure responds to seismic excitation 
like a cantilever beam with a circular cross-section. 
The segmental dome along with the ring beam acts to 
stiffen the circular cross section and also adds to the 
mass of the system.

4.2 Mathematical model

The inner containment structure is idealized as 
a system of lumped masses at elevations of mass 
concentrations, connected by 2-dimensional Beam 
Column elements with actual section geometry 
other than the zone of openings. The structure is 
assumed to be fixed at the top of the raft foundation. 
The earthquake excitation is constrained along a 
single horizontal direction only. The stick model of a 
containment structure so developed is also shown in 
Fig. 1(B). Nonlinearity of the system is modelled in 
the program OpenSees [7] using NonLinearBeamColumn 
element. Concrete is modelled using Concrete01 and 
reinforcing steel as steel01 in OpenSees. Sections at 

Fig. 1: (A) Containment Structure and (B) its stick model, (C) sample fiber section (not to scale)
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different level are defined as fiber sections (Fig. 1(C)) 
with circular concrete patch and circular layer of 
reinforcements. As stick-model made of single fiber 
section at each level cannot directly take the shear 
deformation, the shear deformation behaviour is 
incorporated using SectionAggregator command. A 
different uniaxial elastic material is defined as the 
slope of stress-strain plot as GAs, where, G is the 
shear modulus of concrete and As is the shear area of 
the containment cross section. The Section Aggregator 
command is used to combine this material with fiber 
section previously defined with actual geometrical 
properties. This section is used to model the element 
at that level. The gravity load is calculated for each 
element and applied as nodal load on the upper node 
of each 2-noded element. The average prestress is 
taken as 10 MPa. Total prestressing force is calculated 
by multiplying the prestress with the average cross 
section area and it is applied as compressive force at 
top-most and bottom-most node.

5. incremental dynamic analysis

Incremental dynamic analysis is an emerging 
analysis method offering detailed seismic demand 
and capacity prediction capability through a series of 
NLRHA for multiple scaled ground motion. Results 
of IDA are presented as IDA plots. A single IDA 
plot is basically the variation of maximum structural 
response at different intensity of a scaled ground 
motion. Maximum structural response is known as 
damage measure (DM) and intensity of ground motion 
is known as intensity measure (IM). After analyzing 

the structure for multiple ground motion data, the 
results are plotted on a single paper and the generated 
plot is known as multi-IDA plot.

5.1 Ground motions considered

The containment is assumed to be in the stable 
continental region of Indian peninsula. Considering 
this, ground motion records selected for performing 
a multi-IDA of this containment structure are sourced 
from recorded earthquakes in similar seismic regions 
across the world. 5% damped elastic response spectra 
of these records are compared with the design 
spectrum of the site, and those varying significantly 
from this design spectrum are filtered out. Details of 
ground motions considered for study are provided in 
Table 1. The PGA of a ground motion data is adopted 
to be the intensity measure (IM) for the IDA. Based 
on previous literature on fragility analysis of nuclear 
containment structures, a maximum PGA of 5.0g 
is considered. For successive NLRHA the PGA is 
incremented by 0.075g on a trial basis. For numerical 
convergence this increment is modified as discussed 
later.

5.2 Structural limit states considered

The limit states of the containment structure 
subjected to seismic loading considered in the study 
are tensile cracking of concrete, crushing of concrete in 
compression, interstorey drift ratio (IDR) and plastic 
rotation of section.
i) The tensile and compressive strains developed 

at the inner-most and the outer-most fiber of 

table 1: Summary of ground motion data considered

record name no. of records Event Component Epicentral distance, km PGa-range, g

GM-1 to 2 2 Bhuj, 2001 Horizontal unknown 0.08-0.08

GM-3 1 Koyna, 1967 Horizontal unknown 0.474

GM-4 to 25 22 Saguenay,  1988 Horizontal 45-167 0.002-0.174

GM-26 to 32 7 Miramichi, 1982 Horizontal 11-23 0.125-0.575

table 2: limit States

damage Measure  lS-1  lS-2  lS-3  reference
Drift 0.004 0.006 0.0075 FEMA-356 

Plastic Rotation (θP) 0.0015 0.005 0.005 FEMA-356 

Curvature (obtained from θP ) 0.00015 0.00025 0.00025 FEMA-356 and Priestley (1997)

Compressive Strain 0.002 0.0035 0.005 IS-456 and Priestley (1997)

Tensile Strain 0 0.00014 0.013 OpenSees Concrete02 model
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Fig. 2: IDA flow-chart 
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Fig. 2: IDA flow-chart

each section are stored for each scale factor of 
ground motion and compared with limiting 
valued specified by FEMA-356 [8]. As FEMA-356 
doesn’t consider any tensile strength of concrete, 
the limiting values for tensile strain are adopted 
from the material model Concrete02.

ii) The allowable total (elastic and plastic) IDR 
values are adopted from Table 6-19 of FEMA-
356.

iii) The allowable plastic rotation values are adopted 
from Table 6-7 of FEMA-356. Using Preistley’s 
equation [9] limiting values in terms of curvature 
is calculated since Opensees provides curvature as 
output not plastic rotation.

5.3 numerical convergence of ida

As stated by Vamvatsikos and Cornell [10, 11] 
numerical convergence is a very critical issue in 
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performing IDA especially in the zone of higher PGA 
levels when the structure may reach a state of global 
dynamic instability. To deal with this following steps 
are adopted:
1. The structure is modelled with nonlinear 

NonLinearBeamColumn element which has 
capability to track the distributed plasticity 
across the member section and the length of the 
member.

2. Instead of single algorithm for solving nonlinear 
equations, a number of algorithms in sequence 
are tried. The following algorithms are used in 
sequence if one fails next one is used:

 i) Newton-Raphson
 ii) Modified Newton-Raphson
 iii) KrylovNewton -with different combinations 

of tangents: initial and current.
 iv) Broyden
 v) Newton with Line search (for different 

constants)
3. For a specific ground motion if all algorithm fails 

at a particular PGA, it may be due to: i) global 
dynamic instability or ii) Numerical failure. Here, 
if all the algorithm fails at any particular scale 
factor, it is assumed that it is global dynamic 
instability situation not only numerical failure 
and the control is sent back to the previous scale 
factor with updated increment of scale factor 
equal to 1/10th of the regular increment of scale 
factor. The procedure of obtaining multi-IDA is 
illustrated in detail in Fig. 2.

6. results and discussion

Eigen value analysis is done only to get an 
overview of the dynamic properties of the primary 
containment structure (Table 3). 

table 3: natural period and frequencies of 
different modes

Mode t, s f, Hz
Mode-1 0.1826 5.48
Mode-2 0.0988 10.12
Mode-3 0.0595 16.82
Mode-4 0.0473 21.13
Mode-5 0.0385 25.96

6.1 ida plots from raw data and its correction

If the raw data obtained from a IDA are plotted 
it is sometimes found that there are unexpected large 

rebounds at high PGA level. Such a rebound is due 
to single data point being located far off from the 
other data points of the same IDA (Fig. 3(C)). This is 
inconsistent even with the previous and the next data 
points from structural perspective. Such problematic 
data points are considered to be points of numerical 
failure, which has not been detected by the algorithm. 
The IDA is replotted by removing these points causing 
large rebounds by placing some limiting conditions 
on rate of change in slope of the IDA plot (Fig. 3(C-1)). 
The other plots (Fig. 3(A), 3(B)) are quiet normal as 
per literature review. 

6.2 fragility Plots

Seismic Fragility of a structure, which is the 
probability of a pre-defined damage measure (DM) 
exceeding certain pre-defined limit states (LS) for 
a given intensity measure (IM), is calculated as the 
fraction of IDA curves exceeding the LS at the selected 
PGA. Fragility analysis results in a set of P(DM > 
LS|IM) vs. IM plots. All the fragility plots so obtained 
are stepped since a discrete number of ground 
motion data are used for multi-IDA. The stepped 
plots are smoothened using weighted cubic spline 
approximation. By increasing the number of ground 
motion records and reducing the PGA increment for 
each IDA.

Fig. 4 shows fragility plots based on various 
performance limit states as mentioned earlier in 
Table 2. Fig. 4(B) and 4(D) also show fragility curves 
based on Eq. (1). Some major observations from these 
fragility plots are:

i)  Based on IDR, the fragility is zero up to PGA 
= 5g (Fig. 4(A)).

ii) The fragility, based on plastic rotation 
(or curvature) limits, is zero up to 2g for 
LS-1 and up to 3g for LS-2 and LS-3 (Fig. 
4(B)). 

iii) The fragility based on tensile strain at the 
inner-most fiber, which indicates a through 
crack along the thickness, is almost zero up to 
PGA = 0.5g for LS-1(zero tensile strain) & LS-2 
(cracking strain) and up to PGA = 5g for LS-3. 
It reaches almost 0.95 for LS-1 & LS-2 at PGA 
= 5g (Fig. 4(C)).

iv) Fragility curve for concrete crushing is almost 
zero up to PGA = 5g for all limit states.

Tushar K. Mandal et al. / Life Cycle Reliability and Safety Engineering Vol. 1 Issue 4 (2012) 01-09
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Fragilities are also computed for the same 
containment using Eq. (1). ARBGM is adopted as 0.214g 
for this PHWR. The median value of F1 is obtained 
from a linear elastic analysis. The standard deviations 
for uncertainties and randomness are based on the 
recommendations of Pisharady and Basu [3]. The 
fragility plots obtained this way are significantly 

different from those obtained using multi-IDA (e.g. 
Fig. 4(B), 4(D)). Since the linear elastic analysis shows 
no tensile strain at the RBGM or design PGA level, the 
through crack fragility based on conventional method 
is zero even at PGA = 5g. This shows the unrealistic 
nature of the fragility curves using the conventional 
method.

Fig. 3: Sample IDA plots: (A) without any rebound (B) with realistic rebound (C) with unrealistic sharp rebound (C-1) corrected 
IDA plot with rebound removed

Tushar K. Mandal et al. / Life Cycle Reliability and Safety Engineering Vol. 1 Issue 4 (2012) 01-09
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7. Conclusions

Primary containment structures are found to 
have almost zero fragility considering limit states 
based on IDR and crushing of concrete. But these 

Fig. 4: Fragility Plots (IDA-based and conventional methods)

structures have very high probability of failure in 
terms of through crack formation, which results in 
radiation leakage. The IDA based fragility curves are 
found to be more realistic than fragility curve obtained 
using conventional method. This is primarily due to 

Tushar K. Mandal et al. / Life Cycle Reliability and Safety Engineering Vol. 1 Issue 4 (2012) 01-09
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the fact that the effect of nonlinearities are directly 
incorporated in IDA based estimation of fragility. 
However, it should be noted that the IDA based 
fragilities shown here do not include uncertainties 
associated with structural modelling. Future works 
in this area should focus on reducing the model 
uncertainty by using detailed structural model, soil-
structure interaction and larger number of earthquake 
records.
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abstract

Cracks may appear in the pressurized concrete containment of a nuclear power plant during a 
severe accident and provide leak paths for release of radioactive aerosols dispersed in the contained 
air. In this study, numerical results for air leakage through concrete cracks are reported for a 
range of pressure gradients and crack widths relevant to containment atmosphere during a severe 
accident scenario. Crack geometry in 2D is generated using statistical crack model to account 
for crack tortuousness. While airflow predictions through such models provide good agreement 
with experimental results reported in literature, the computational results generally provide 
over-prediction of airflow. The statistical crack models account for the gross tortuousness of 
the concrete cracks based on experimental studies. The local tortuousness of the order of grain 
size that can deflect the crack from straight path is not accounted in these models. In this study, 
fractal geometry based curves are used to introduce the local tortuousness within the global crack 
segments represented by straight lines in the statistical models. Comparison of pressurized airflow 
rates obtained from such refined crack model with the experimental values reported in literature 
for plain concrete shows very good agreement. The effect of local tortuousness on the pressurized 
airflow rates was accounted indirectly in 3D crack models for reinforced concrete with modified 
crack morphology due to reinforcing steel. The computational results with corrections due to local 
tortuousness compared well with the experimental values for pressurized airflow through cracks 
in reinforced concrete panels reported in literature.

Keywords: severe accident; containment; concrete cracks; tortuousness; fractal geometry; 
airflow 

  Life Cycle Reliability and Safety Engineering 
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1. introduction

A major fraction of the airborne radioactivity 
within nuclear reactor containment, consequent 
to a postulated severe accident involving reactor 
core meltdown, consists of aerosols generated 
by condensation of volatile fission products. The 
containment envelope becomes pressurized during 
a severe accident and there is a possibility of cracks 
through concrete shell of the containment, which can 
provide leak paths for pressurized air and aerosol 
release to the outside atmosphere. 

Rizkalla et al. [1] reported experimental data for 
leakage rate through cracks in reinforced concrete 
test panels and suggested correlations. Riva et al. 
[2] performed finite element analysis of reinforced 
concrete test panels to calculate equivalent average 
single crack width for evaluating leakage rate with 

different correlations and reported good match of 
the test leakage rate with the calculated rate using 
correlation of Rizkalla et al. [1]. Gelain and Vendel [3] 
performed experiments on plain concrete panels and 
computed crack geometry as an equivalent rectangular 
channel, which would have the same flow rate as the 
experimental data. Boussa et al. [4] generated cracks in 
a large number of test specimens of different concrete 
grades, modeled the crack profile in terms of statistical 
parameters and reported good agreement of the 
crack profile obtained from the statistical model with 
the experimental data. Bishnoi et al. [5] conducted 
computational studies for airflow and aerosol transport 
through cracks in plain concrete using statistical crack 
model of Boussa et al. [4] and reported good match 
between the computational and experimental results. 
Bishnoi et al. [6] studied effect of reinforcing steel on 
air flow through cracks in reinforced concrete using 
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computational models incorporating modified crack 
morphology due to reinforcing steel derived from 
stress analysis of reinforced concrete panels.  

In this study, numerical results for air leakage 
through concrete cracks are reported for a range 
of pressure gradients and crack widths relevant to 
containment atmosphere during a severe accident 
scenario. Crack geometry is generated using statistical 
crack model of Boussa et al. [4] to account for crack 
tortuousness. While airflow predictions using such 
computational model provide good agreement 
with experimental results reported in literature, the 
numerical results generally provide over-prediction 
of airflow. The Boussa crack model defines gross 
tortuousness of the concrete cracks in statistical terms 
derived from experimental studies. Local tortuousness 
of the order of grain size that can deflect the crack from 
straight path is not accounted in these models. 

The Boussa crack model is refined in this study by 
using fractal geometry based curves to introduce the 
local tortuousness within the global crack segments 
represented by straight lines. The airflow study results 
from such refined model are compared again with 
the experimental values. The comparison shows very 
good agreement between computational values from 
the refined crack model and the experimental values 
of Gelain and Vendel [3] for cracks in plain concrete. 
The computational airflow studies through cracks in 
reinforced concrete also shows very good agreement 
with experimental results of Rizkalla et al. [1] when the 
effect of local tortuousness is accounted along with the 
effect of reinforcing steel on the crack morphology.  

Statistical crack model including refinement 
of the crack morphology to represent the local 
tortuousness using fractal geometry methods were 
implemented in MATLAB. FLUENT (version 6.2.16, 

2005) was used for airflow computations through 
the crack models.

2. numerical Procedure

The crack model parameters were chosen to 
represent concrete grade in the range of M50-M60, 
typically used to construct containment structures. 
The range of pressure gradients and crack widths 
for the study has been reported in Bishnoi et al. [5]. 
These parameters were chosen to be representative 
of air leakage through containment leak paths, which 
are likely to exist under postulated severe accident 
conditions in water-cooled reactor based nuclear 
power plants.

The 2D crack profile is defined in terms of straight 
segments and deviation of these segments from 
horizontal line by specifying mean value and standard 
deviation separately for these two parameters as per 
the approach suggested by Boussa et al. [4]. Two 
identical profiles placed at a constant spacing equal 
to the crack width represent two lips of the crack 
in 2D. Details of statistical crack model in 2D are 
reported in Bishnoi et al. [5]. Refinement of the 2D 
crack model was done to represent roughness due to 
local tortuousness, introduced by crack tip deflecting 
material grains using fractal geometry, for each of the 
straight segments. Random midpoint displacement 
method [7] was used to approximate local deflection 
of the crack due to micrometer size concrete material 
grains as approximate fractal Brownian motion 
representation. 

A typical statistical crack model geometry 
representing global tortuousness of the crack is 
shown in Fig. 1. Typical global tortuousness and 
local tortuousness in portion ‘A’ of the global crack 
model geometry, derived using random midpoint 
displacement method, are depicted in Fig. 2.

Figure 1: Typical 2D crack model representing global tortuousness (all dimensions in mm)

L.R. Bishnoi et al. / Life Cycle Reliability and Safety Engineering Vol. 1 Issue 4 (2012) 10-16
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To construct the fractal geometry representing 
local tortuousness in a straight segment of the 
crack, displaced y-value of the midpoint (based 
on x-coordinates of the end points) of the straight 
line is calculated as the average of the y-values of 
the endpoints plus a random offset. The process is 
repeated by calculating a displaced y-value for the 
midpoint of each half of the subdivided line. The 
subdivision is continued until the subdivided line 
segments are less than a preset value, slim. 

The random offset, r, is calculated as follows:

gr sr L= 〈 〉
                                                                                

(1)

Where, s is a selected ‘surface roughness’ factor, 
rg is a Gaussian random value with mean zero and 
variance one, and L is the length of the straight line. 

(a) Global tortuousness

Crack Profile in X-Y Plane

(b) Enlargement of portion ‘a’ in (a) to view local tortuousness

Figure 2: Depiction of typical global and local tortuousness (all dimensions in mm)

Nominal diameter of the capillary pores in cement 
paste varies from about 0.3 to 3 µm [8]. Assuming 
water cement ratio of 0.45, porosity of cement paste 
works out to be about 11.5% [8]. Considering average 
size of capillary pores in the range of 1 to 1.5 µm, 
the material inhomogeneity affecting crack path (i.e. 
effective grain size for crack deflection) was taken 
in the range of 7.5 to 15 µm. The surface roughness 
(i.e. deviation from straight path) was considered to 
be in the range of ¼ to ½ of the grain size, the actual 
variation was approximated to be 2.5 to 5 µm. The 
values adopted in the current study are 3 micron 
and 10 micron for s and slim respectively, which were 
arrived at from parametric airflow computations on 
crack models with varying values of s and slim in the 
size ranges stated above.

Stress analyses were performed on finite element 
(FE) model of a reinforced concrete experimental 
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test specimen (L4) from Rizkalla et al. [1] to derive 
morphology and extent of crack surfaces to be used 
for airflow calculations. Specimen L4 was selected 
because complete details of geometry, reinforcement, 
cracking and airflow results are reported for this 
specimen only. Uniaxial tensile load was applied to 
reinforcing steel bars in the stress analysis models as 
was done in the experimental study. Two nonlinear 
analyses were conducted; one with reinforcing 
steel and another with plain concrete without 
reinforcement to see the effect of reinforcing steel 

on crack surface pattern growth compared to the 
plain concrete. These analyses indicated sudden 
spread of the concrete damage in plain concrete from 
exterior faces to the entire cross section whereas the 
reinforcement does not allow spread of the damage 
over the entire cross section even at ultimate load, 
though the extent of damage  keep increasing with 
load increments. Typical damage spread over the 
cross section of the test specimen for plain concrete 
and reinforced concrete are shown in Fig. 3 (a) and 
(b) respectively. 

Linear stress analysis was conducted with a priori 
crack in the form of a slit of finite width to obtain the 
likely morphology of the crack around reinforcing 
steel bars under uniaxial tensile load. Typical crack 

Figure 3: Concrete damage spread over the X-sections of plain and reinforced concrete specimen models at typical load steps

surface contours due to the effect of reinforcing steel 
are depicted in Fig. 4. Details of these analyses and the 
modified 3D crack geometry are reported in Bishnoi 
et al. [6].

Figure 4: Crack surface contours around rebar (a) cross section along crack path through rebar (b) typical crack profile across the flow 
path between two rebar at the edge (c) typical crack surface contour in plan around a rebar.

The standard Navier-Stokes and continuity 
equations are solved for the flow domain defined by 
the crack morphology using the finite volume method 

(FVM) with SIMPLEC algorithm for pressure-velocity 
coupling and second order upwind scheme with under 
relaxation factor of 0.5 for discretization of momentum 

Legends    (a)                                                   (b)
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equations. Atmospheric pressure was assumed at 
outlet and inlet pressure was calculated according 
to the specified pressure gradient. No-slip condition 
was imposed at crack wall boundaries. All case 
studies were conducted for a constant temperature 
of 300 K. Since the pressure drop across the crack 
is not large the flow is assumed incompressible and 
confirmed by checking the flow Mach numbers, 
which remained much below unity for all the 
cases. The constant air density was assumed to be 
1.225 kg/m3. Details of optimized computational 
grid and validation of the crack model for 2D 
airflow computations are reported in Bishnoi et 
al. [5]. Typical grids for numerical computation of 
pressurized airflow in the crack model with (a) the 
global tortuousness alone and (b) the refined crack 
model incorporating the local tortuousness are 
depicted in Fig. 5.

Numerical procedure established for airflow 
through 2D crack path was extended to 3D crack 
surfaces for airflow computations through cracks in 
reinforced concrete.

3. results and discussion

3.1 Airflow through Cracks in Plain Concrete

Considering enormous computational resources 
and convergence issues associated with large size 
models, a comparative study of flow rate was 
conducted for crack lengths of 15mm, 40mm and 
70mm and crack widths of 0.1mm 0.2mm and 0.3 mm 
with same model parameters to explore feasibility of 
restricting crack length for computational model. The 
study confirms that a crack length as small as 15 mm 
could also be considered as a representative sample for 
air flow studies. In view of this, an intermediate crack 
length of 40mm was chosen for airflow computations 

Figure 5: Typical grids used for numerical computation of pressurized airflow using FVM
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with the global tortuousness. The crack length was 
restricted to 15 mm for the refined model incorporating 
the local tortuousness because of computational 
constraints arising due to model size.

The results in terms of friction factor (f) as a 
function of Reynolds number (Re) for the Boussa 
crack model representing the global tortuousness 
of the crack are shown in Fig. 6 (a). Several different 
pressure gradients (0.25-1 bar/m) were used in the 
computations to generate the plot. The results reported 
by Gelain and Vendel [3] for plain concrete are 
superposed in the figure and the comparison is noticed 
to be within 25% for majority of the data points. Fig. 6 
(b) depicts f versus Re along with a curve fit.

The computational study was repeated with 
the refined crack model incorporating the local 
tortuousness besides the global tortuousness. 
The results are shown in Fig. 7 (a) along with the 
experimental results of Gelain and Vendel [3].

While most of the data points from refined model 
computation and experimental values are within 9%, 
the maximum difference in friction factor (f) values is 
within 16%. Fig. 7 (b) depicts f versus Re along with a 
curve fit for the results from the refined model.

3.2 Airflow Through Cracks In Reinforced 
Concrete

Airflow calculations were performed, with the 
same flow parameters as used in the experimental 
study by Rizkalla et al. [1], for pressure difference 
of 106 kPa across the specimen thickness of 178 
mm (i.e. pressure gradient of 5.96bar/m) and 
specified average crack width of 0.06 mm, using 
the computational model generated for 3D crack 
morphology of the test specimen (L4) of Rizkalla et 
al. [1] as well as with refined 2D crack model. Details 
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Figure 6: Plot of f versus Re for the crack model with global tortuousness alone
(a)             (b)

   Figure 7: Plot of f versus Re for the refined crack model incorporating local tortuousness

Table-1: Experimental and computational air flow rates through cracks in RC

Measured 
flow through 

reinforced 
concrete test 

specimen l4 (m3/s) 

flow calculated 
from 2d plane 
crack Model 

(m3/s)

3d plane crack model 
without modified 

morphology due to 
rebar 

3D plane crack model with modified 
morphology due to rebar 

Calculated 
flow (m3/s)

diff. w.r.t. 
(2) (%) 

Calculated 
flow (m3/s)

diff. w.r.t. 
(1) (%) 

diff. w.r.t. 
(2) (%) 

diff. w.r.t. 
(3) (%) 

(1) (2) (3) (4) (5) (6) (7) (8) 
5.18e-4 10.68e-4 11.05e-4 + 3.46 5.7e-4 +10 -46.63 -48.42 

of the airflow computational models are reported in 
Bishnoi et al. [6]. 

Parametric study was conducted on three crack 
models of 0.06 mm crack width with different 2D 
crack morphologies derived using Boussa model 
[4] and the morphology was refined by introducing 
the local tortuousness (slim and s as 10 µm and 3 
µm respectively) in all the three cases. The study 
was conducted for pressure gradients of 1.5-10 

bar/m.  There was a reduction of mass flow rate 
computed from the refined models with respect 
to the Boussa model [4] for all three sample cases. 
The flow reduction varied from 29% to 35% for all 
the pressure gradients and all three sample cases 
considered in the study. The average flow reduction 
was about 32% for pressure gradient of 5.96 bar/m 
representing airflow test parameters of specimen L4 
of Rizkalla et al. [1]. A comparison of the airflow rate 
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through a plane crack and the three sample crack 
morphologies incorporating the global tortuousness 
based on the Boussa model [4] for pressure gradients 
of 1.5-10 bar/m was also carried out. The air flow rate 
through all the three crack samples with the global 
tortuousness was lower by about 7.5% with respect to 
the plane crack model for crack width of 0.06 mm.

The flow rate computed from the 3D crack model 
for RC test specimen (L4) with modified morphology 
around reinforcing bars was compared with flow rate 
through another 3D plane crack model in which two 
plane surfaces were separated by the average crack 
opening of 0.06 mm throughout without incorporating 
the actual crack morphology around reinforcing bars. 
The computed airflow from the 3D crack model with 
the modified morphology around the reinforcing 
steel was corrected to account for the global and the 
local tortuousness based on the parametric studies 
mentioned above as these effects could not be 
accounted directly in the 3D crack model. Airflow 
calculated from a 2D plane crack channel (without 
any tortuousness) is also included for comparison. Air 
density was assumed to be a constant value of 1.225 
kg/m3. The comparison of flow rates from different 
models is provided in Table-1.

From the above comparison, it is seen that the 
3D crack model incorporating the crack morphology 
derived by considering the local constriction effect 
of rebar provide very good comparison with the 
flow obtained experimentally. The difference in the 
computed and the experimental values of flow rates is 
about 10%. This difference is well within the statistical 
variation among different crack samples based on 
Boussa model with the same model parameters. There 
is also a very good comparison between the 2D and 
the 3D models of a plane concrete channel without any 
tortuousness, the difference being only about 3.5%. It 
is seen that for the present case of a crack width of 0.06 
mm and pressure gradient of 5.96 bar/m, the crack 
tortuousness together with the effect of the reinforcing 
steel causes flow rate reduction of about 50% through 
cracks in RC elements compared to flow through a 
plane channel. 

4. Conclusions

Results of computational studies for pressurized 
airflow through cracks in concrete are reported. The 
statistical crack model available in the literature has 
been refined to incorporate local tortuousness of the 
crack due to the smallest material inhomogeneity that 

can affect the airflow rates. The local tortuousness 
is introduced using fractal geometry based curves. 
The computational results for pressurized airflow 
through refined crack models are compared with the 
experimental values reported in the literature for 
cracks in plain concrete and reinforced concrete. The 
comparison shows very good agreement between 
the computational results and the experimental 
values.

These studies have certain limitations. The 
parameters considered for fractal curve approximation 
of the crack tortuousness are the surface roughness 
and the limiting value of straight crack segment, which 
are considered to be functions of the level of material 
inhomogeinity affecting the crack propagation and its 
deflection from the straight path. These parameters 
have been approximated from the knowledge of 
cement paste properties and parametric studies 
for airflow were conducted to arrive at the most 
appropriate values. Further studies are required to 
establish these parameters for different grades of 
concrete and sensitivity of the airflow results to these 
parameters. Additional studies are also required in 
case of reinforced concrete to establish the effect of 
reinforcing bar spacing on leakage rates.
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abstract
Modern wind turbine blades are slender structures whose increased flexibilities have led to unforeseen 
aero-elastic instabilities leading to failures. In this study, the turbine blade is modeled as a two-
dimensional airfoil and is subjected to random loading. The airfoil is assumed to oscillate only in 
the rotational degree of freedom. The loading is assumed to be stationary and Gaussian. The fatigue 
damage due to this loading is described through the rain-flow cycle counting method. An approach 
based on polynomial chaos expansion is used to obtain the response of the nonlinear oscillator.
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1 introduction

The increased pace of economic development 
throughout the world has led to an enormous 
increase in the demand for energy. Consequently, 
the focus in recent times has been on exploring 
alternative sources of clean energy. Among these, 
wind energy being a clean, renewable form of 
energy, has gained popularity. The focus has been on 
increasing the efficiency in harnessing wind energy. 
This has led to the construction of wind turbines 
of enormous dimensions. However, the increased 
flexibility of the wind turbine blades, which are of 
enormous dimensions, has led to unforeseen failures. 
These failures have been attributed to aero-elastic 
instabilities. To develop robust designs to withstand 
these instabilities, a thorough understanding of 
the fluid-structure interaction mechanisms of these 
turbine blades is necessary.

The modeling of the turbine blade leads to a 
set of highly nonlinear differential equations. It has 
been observed that beyond a critical value of the 
mean wind velocity, known as the flutter velocity, 
the system exhibits self-sustained oscillations. These 
oscillations significantly contribute to fatigue damage. 
From the design perspective, it is therefore desirable 
that the system be designed such that the operating 
conditions do not lead to self-sustained oscillations. 
The critical wind speed beyond which the system 
exhibits self-sustained oscillations is referred to as 
the bifurcation point. However, in real life situations, 
the wind flow has random fluctuations about a 

mean value. This implies that the bifurcation point 
cannot be quantified in deterministic terms. Instead, 
the bifurcation point needs to be characterized in a 
probabilistic sense. To have a robust design, these 
random effects must be realistically represented 
in the modeling stage itself. However, doing so 
would increase the complexity in the mathematical 
model as these random fluctuations enter as model 
parameters in the governing equations of motion for 
the dynamical system.

Traditionally, Monte-Carlo simulations(MCS) 
have been used in the analysis of dynamical systems 
with stochastic uncertainties wherein a large number 
of realizations of response are obtained for a given 
distribution of the random process. However, MCS 
is a computationally expensive approach, especially 
for problems involving significant non-linearity and 
high dimensions.

2 Problem Statement

We consider a two dimensional model for the wind 
turbine blade. The wind turbine blade is modeled as 
an airfoil with two degrees of freedom in the pitch and 
heave directions. The schematic diagram of the two-
dimensional airfoil is shown in Fig. 2. The governing 
equations of motion for the airfoil can be expressed 
as [3]

 

CNP017

2 PROBLEM STATEMENT

We consider a two dimensional model for the wind turbine blade. The wind turbine blade is modeled
as an airfoil with two degrees of freedom in the pitch and heave directions. The schematic diagram of
the two-dimensional airfoil is shown in Fig. 2. The governing equations of motion for the airfoil can be
expressed as [3]

mḧ+ Sα̈+Khh = Qh,

Sḧ+ Iαα̈+Kαα = Qα. (1)

Figure 1: Schematic diagram of the wind-turbine blade modeled as a 2-D airfoil

Here, h is the heave displacement, α is the pitch angle, m is the total mass per unit span, S is the
mass static moment, Iα is the mass moment of inertia, Kh is the heaving stiffness co-efficient, Kα is
the pitching stiffness, ahb denotes the distance of the elastic axis from the mid chord and xαb is the
distance of the center of mass from the elastic axis; see Fig.1 for a schematic. The non-homogeneous
terms Qα and Qh represent the forcing terms and are usually represented as a set of coupled second
order differential equations which are functions of α and h [2]. Thus, these equations constitute a set of
fluid-structure interaction problems. The over-dots represent differentiation with respect to time. Here,
the coefficients Kα and Kh could be nonlinear functions of α and h. If only the pitching motion is
considered a simplified form for the above system could be represented in the form of the differential
equation

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ). (2)

Here, η is the damping ratio, ωn denotes the natural frequency of the system and µ represents the non-
linear stiffness coefficient and x represents the pitching degree of freedom. Note that the nonlinearity in
Eq.(2) is cubic and can be considered to be an approximation of the free play nonlinearity that typically
exists in these systems. The coefficient µ determines the extent of nonlinearity. The excitation f(t, θ) is
assumed to be a stationary Gaussian random process with the following auto-correlation function

Rff (τ) = σ2
fe

−c0τ
2

, (3)

where, σf is the standard deviation of the process and c0 denotes the inverse of the correlation length. The
response of the system can be obtained by solving Eq.(2). As the excitations are random processes, the
response are also random processes. However, as the equations of motion are nonlinear, even though the
excitations are Gaussian, the response constitute non-Gaussian random processes. Estimating the fatigue
damage due to these non-Gaussian response processes require characterization of the joint probability
density of the response and its instantaneous time derivative. This is explained in the following section.

                                      (1)
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Here, h is the heave displacement, a is the pitch 
angle, m is the total mass per unit span, S is the mass 
static moment, Ia is the mass moment of inertia, Kh is 
the heaving stiffness co-efficient, Ka is the pitching 
stiffness, ahb denotes the distance of the elastic axis 
from the mid chord and xab is the distance of the center 
of mass from the elastic axis; see Fig.1 for a schematic. 
The non-homogeneous terms Qa and Qh represent the 
forcing terms and are usually represented as a set of 
coupled second order differential equations which 
are functions of a and h [2]. Thus, these equations 
constitute a set of fluid-structure interaction problems. 
The over-dots represent differentiation with respect 
to time. Here, the coefficients Ka and Kh could be 
nonlinear functions of a and h. If only the pitching 
motion is considered a simplified form for the above 
system could be represented in the form of the 
differential equation
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 (2)

Here, h is the damping ratio, wn denotes the natural 
frequency of the system and m represents the nonlinear 
stiffness coefficient and x represents the pitching 
degree of freedom. Note that the nonlinearity in Eq.(2) 
is cubic and can be considered to be an approximation 
of the free play nonlinearity that typically exists in 
these systems. The coefficient m determines the extent 
of nonlinearity. The excitation f(t,q) is assumed to 
be a stationary Gaussian random process with the 
following auto-correlation function
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                                                 (3)

where, s f is the standard deviation of the process 
and c0 denotes the inverse of the correlation length. 

Figure 1: Schematic diagram of the wind-turbine blade modeled 
as a 2-D airfoil

The response of the system can be obtained by solving 
Eq.(2). As the excitations are random processes, the 
response are also random processes. However, as the 
equations of motion are nonlinear, even though the 
excitations are Gaussian, the response constitute non-
Gaussian random processes. Estimating the fatigue 
damage due to these non-Gaussian response processes 
require characterization of the joint probability density 
of the response and its instantaneous time derivative. 
This is explained in the following section.

3 rain flow Cycle Counting Method

The rain flow cycle counting method is a method 
for extracting and counting equivalent load cycles 
from a random time history. It is a technique which 
enables us to estimate the fatigue damage using 
Palmgren- Miner’s rule [6, 7]. It leads to the best 
estimate of fatigue life [9]. Let Y (t) be the load acting 
on the system and let it be a random process. The 
accumulated linear fatigue damage due to Y(t) is 
denoted by DT . Since Y (t) is a random process, DT 
will be a random variable. Therefore, expectation of 
DT given by E[DT ] is to be evaluated. The process of 
evaluating suitable approximations for E[DT] using 
rain flow count is presented in the following section. 

Figure 2: Definition of rain flow cycle [4]

3.1 Fatigue damage estimation using rain flow 
counting

A schematic of the rain-flow cycle counting as 
discussed in [4, 9] is presented through Fig.2. Here, 
each local maximum of the load process, say vi, is 
paired with a particular local minimum, vi, determined 
as follows:
• From the local maximum value (vi), the lowest 

value is determined in forward and backward 
directions between the time point of the local 
maximum and the nearest points at which the 
load exceeds the value vi.
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• The larger of the two values determined above 
is the rain-flow minimum paired with vi and is 
denoted by ui

rfc in Fig.2. In other words, the rain-
flow minimum is the least drop before reaching 
the value of local maximum (vi) again on either 
side. Thus, the ith rain-flow pair is (ui

rfc , vi).

• The cycle range, h, is the difference between 
the local maximum and the paired rain-flow 
minimum.

In case the local minimum, ui
rfc lies outside the 

time interval chosen, the incomplete cycle thus formed 
is known as the residual and it has to be handled 
separately. 

Using the Palmgren-Miner’s rule [6, 7], the 
accumulated linear rain-flow damage is expressed as
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Using the Palmgren-Miner’s rule [6, 7], the accumulated linear rain-flow damage is expressed as

DT =
�

f(urfci , vi) +Dres, (4)

where, f(urfci , vi) is the fatigue damage due to the rain-flow pair (urfci , vi) and Dres is the damage due to
the cycles constituting the residual. An alternative definition of rain-flow damage is as follows:

DT =

�

∞

−∞

� v

−∞

f12(u, v)N(u, v)dudv +

�

∞

−∞

f2(u, u)N(u)du. (5)

Here, f2(u, v) = ∂f(u,v)
∂v

and f12(u, v) = ∂2f(u,v)
∂u∂v

. In the above equation, for a random time history
X(t), the number of up-crossings of level u by X(t), t ∈ [0, T ] is given by N(u). N(u, v) denotes the
number of up-crossings of an interval [u, v] by X(t).

                              (4)

where, f (ui
rfc , vi) is the fatigue damage due to the 

rain-flow pair (ui
rfc , vi) and Dres is the damage due to 

the cycles constituting the residual. An alternative 
definition of rain-flow damage is as follows:
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The rain flow cycle counting method is a method for extracting and counting equivalent load cycles from
a random time history. It is a technique which enables us to estimate the fatigue damage using Palmgren-
Miner’s rule [6, 7]. It leads to the best estimate of fatigue life [9]. Let Y (t) be the load acting on the
system and let it be a random process. The accumulated linear fatigue damage due to Y (t) is denoted
by DT . Since Y (t) is a random process, DT will be a random variable. Therefore, expectation of DT

given by E[DT ] is to be evaluated. The process of evaluating suitable approximations for E[DT ] using
rain flow count is presented in the following section.
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A schematic of the rain-flow cycle counting as discussed in [4, 9] is presented through Fig.2. Here, each
local maximum of the load process, say vi, is paired with a particular local minimum, ui, determined as
follows:

• From the local maximum value (vi), the lowest value is determined in forward and backward
directions between the time point of the local maximum and the nearest points at which the load
exceeds the value vi.

• The larger of the two values determined above is the rain-flow minimum paired with vi and is
denoted by urfci in Fig.2. In other words, the rain-flow minimum is the least drop before reaching
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As mentioned earlier, the quantity of interest, here, is the expected fatigue damage E[DT ], where, E[· ] is
the expectation operator. This can be obtained by changing the order of integration in Eq.(5) as

E[DT ] =
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f12(u, v)E[N(u, v)]dudv. (6)

The expected damage increase in period T can be shown to be proportional to loading time duration T ,
and is expressed as

E[DT ] = T
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f12(u, v)µ(u, v)dudv, (7)

where, µ(u, v) is known as the intensity of interval up-crossings. As it is difficult to estimate µ(u, v),
bounds for intensity crossings can be evaluated. It can be shown that [9]

µ(u, v) ≤ min[µ(u, u), µ(v, v)] = µ̂(u, v), (8)

where, µ(u, u) = µ(u). Now, the bounds for expected damage can be given as follows

E[DT ] ≤ T
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f12(u, v)µ̂(u, v)dudv. (9)

The mean crossing rate µ(u) can be easily computed using the Rice’s formula [8], which is given by

µ(u) =

�

∞

0
ẋpXẊ(u, ẋ)dẋ, (10)

where, pXẊ(x, ẋ) is the joint probability density function (pdf) of the process, X(t), and its instanta-
neous time derivative, Ẋ(t). The focus of this study is on quantifying the joint pdf of the process, X(t)
and its instantaneous time derivative. Analytical closed form expressions for pXẊ(x, ẋ) is not easy to
estimate, especially if the governing differential equations of motion exhibit significant nonlinearities.
An alternative procedure for estimating pXẊ(x, ẋ) would be to obtain approximations by Monte Carlo
simulations. This would necessitate generating an ensemble of realizations of the excitations {f(t)i}Ni=1,
compute an ensemble of the response state {X(t)i}Ni=1, and {Ẋ(t)i}Ni=1, and subsequently estimate
pXẊ(x, ẋ) by statistical processing. To obtain reasonable accuracies at the tail regions of pXẊ(x, ẋ), N
has to be large. This would imply N numerical solutions of the governing equations of motion. For more
complicated forms of differential equations , such as Eq. (2), this would be computationally expensive.
The focus of this study is on the development of a technique by which the computational effort could
be minimized. To achieve this, we employ the polynomial chaos representation of the response. This is
discussed further in the following sections.

4 KARHUNEN-LOEVE EXPANSION(K-L EXPANSION)

A continuous random process can be represented as a series expansion involving sets of discrete ran-
dom variables and deterministic basis functions. While there can be many such representations, for
example, the spectral representation where the trigonometric functions are the basis functions [10], the
Karhunen-Loeve expansion is the most optimal representation. The K-L expansion is based on the eigen-
decomposition of the auto-covariance function. The deterministic basis functions, which are orthonor-
mal, are the eigenfunctions of the auto-covariance function and their magnitudes are the eigenvalues.
The Karhunen-Loeve expansion converges in the mean-square sense for any distribution of the stochas-
tic process [8]. A K-L representation of a zero-mean stochastic process f(t, θ) can be represented in the
form

f(t, θ) =
∞
�

i=0

ξi(θ)
�

λiφi(t), (11)

where, the coefficients λi and the functions φi(t) respectively are the eigenvalues and the eigenfunctions
of the covariance function and are evaluated by solving the following Fredholm integral equation of the
second kind:

� T

0
Rff (t, s)φi(s)ds = λiφi(t). (12)

     
(6)

The expected damage increase in period T can be 
shown to be proportional to loading time duration T, 
and is expressed as
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where, pXẊ(x, ẋ) is the joint probability density function (pdf) of the process, X(t), and its instanta-
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has to be large. This would imply N numerical solutions of the governing equations of motion. For more
complicated forms of differential equations , such as Eq. (2), this would be computationally expensive.
The focus of this study is on the development of a technique by which the computational effort could
be minimized. To achieve this, we employ the polynomial chaos representation of the response. This is
discussed further in the following sections.

4 KARHUNEN-LOEVE EXPANSION(K-L EXPANSION)

A continuous random process can be represented as a series expansion involving sets of discrete ran-
dom variables and deterministic basis functions. While there can be many such representations, for
example, the spectral representation where the trigonometric functions are the basis functions [10], the
Karhunen-Loeve expansion is the most optimal representation. The K-L expansion is based on the eigen-
decomposition of the auto-covariance function. The deterministic basis functions, which are orthonor-
mal, are the eigenfunctions of the auto-covariance function and their magnitudes are the eigenvalues.
The Karhunen-Loeve expansion converges in the mean-square sense for any distribution of the stochas-
tic process [8]. A K-L representation of a zero-mean stochastic process f(t, θ) can be represented in the
form

f(t, θ) =
∞
�

i=0

ξi(θ)
�

λiφi(t), (11)

where, the coefficients λi and the functions φi(t) respectively are the eigenvalues and the eigenfunctions
of the covariance function and are evaluated by solving the following Fredholm integral equation of the
second kind:

� T

0
Rff (t, s)φi(s)ds = λiφi(t). (12)

 
compute an ensemble of the response state 

CNP017

As mentioned earlier, the quantity of interest, here, is the expected fatigue damage E[DT ], where, E[· ] is
the expectation operator. This can be obtained by changing the order of integration in Eq.(5) as

E[DT ] =

�

∞

−∞

�

∞

−∞

f12(u, v)E[N(u, v)]dudv. (6)

The expected damage increase in period T can be shown to be proportional to loading time duration T ,
and is expressed as

E[DT ] = T

�

∞

−∞

�

∞

−∞

f12(u, v)µ(u, v)dudv, (7)

where, µ(u, v) is known as the intensity of interval up-crossings. As it is difficult to estimate µ(u, v),
bounds for intensity crossings can be evaluated. It can be shown that [9]

µ(u, v) ≤ min[µ(u, u), µ(v, v)] = µ̂(u, v), (8)

where, µ(u, u) = µ(u). Now, the bounds for expected damage can be given as follows

E[DT ] ≤ T

�

∞

−∞

� v

−∞

f12(u, v)µ̂(u, v)dudv. (9)

The mean crossing rate µ(u) can be easily computed using the Rice’s formula [8], which is given by

µ(u) =

�

∞

0
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pXẊ(x, ẋ) by statistical processing. To obtain reasonable accuracies at the tail regions of pXẊ(x, ẋ), N
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neous time derivative, Ẋ(t). The focus of this study is on quantifying the joint pdf of the process, X(t)
and its instantaneous time derivative. Analytical closed form expressions for pXẊ(x, ẋ) is not easy to
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pXẊ(x, ẋ) by statistical processing. To obtain reasonable accuracies at the tail regions of pXẊ(x, ẋ), N
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The parameter ’t’ indicates time and q represents 
the random sample. In Eq.(12), Rf f (t, s) denotes the 
auto-correlation function of the process f (t,q). In 
Eq.(11), {xi(q)} is a vector consisting of uncorrelated 
random variables with zero-mean and unit variance. 
The eigenfunctions are orthonormal and satisfy the 
identity

                                                (13) 
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The parameter ’t’ indicates time and θ represents the random sample. In Eq.(12), Rff (t, s) denotes the
auto-correlation function of the process f(t, θ). In Eq.(11), {ξi(θ)} is a vector consisting of uncorrelated
random variables with zero-mean and unit variance. The eigenfunctions are orthonormal and satisfy the
identity

� T

0
φi(t)φj(t)dt = δij (13)

where, δij is the Kronecker-delta function defined as

δij =

�

1 if i = j
0 otherwise.

Since Eq.(11) is an infinite series, it becomes imperative to decide on the number of terms to be retained
in the expansion of f(t, θ). It is seen that not all terms have a significant contribution in the expansion.
The number of significant terms depend on various factors such as the form of auto-correlation function,
length of the interval T and correlation length of the stochastic process [5]. Some of these issues have
been considered in this paper to truncate the series expansion to appropriate number of terms. The K-L
expansion is usually employed for a Gaussian process. For non-Gaussian process, a generalization of the
K-L expansion is the polynomial chaos expansion also known as PCE. This is discussed in the following
section.

5 POLYNOMIAL CHAOS EXPANSION

Polynomial chaos expansion is a spectral representation of the random process in terms of orthonormal
basis functions and deterministic coefficients. Wiener [11] introduced the homogeneous chaos theory
based on Cameron and Martin theorem [1]. The homogeneous chaos theory, in its original form, employs
Hermite polynomials with Gaussian random variables, from the Askey scheme, as orthonormal bases.The
exponential convergence of the polynomial chaos expansion has been extended to several other types of
commonly used probability distributions in the generalized polynomial chaos by Xiu and Karniadakis
[12]. A random process X(t, θ) can be represented according to Cameron-Martin theorem as follows [1]:

X(t, θ) = x̂0Γ0 +

∞
�

i1=1

x̂i1Γ1(ξi1(θ)) +

∞
�

i1=1

i1
�

i2=1

x̂i1i2Γ2(ξi1(θ), ξi2(θ)) + ..., (14)

where, Γn(ξi1 , ξi2 , ..., ξin) denotes the Hermite polynomials of order n in terms of n-dimensional in-
dependent standard Gaussian random variables ξ = (ξi1 , ξi2 , ....ξin) with zero mean and unit variance.
The above equation is a discrete form representation of the Wiener polynomial chaos expansion. A
generalization of Eq.(14) can be obtained by rewriting it in the form

X(t, θ) =
∞
�

i=0

xi(t)Ψi(ξ(θ)), (15)

where, Ψi denotes the basis functions and xi(t) are the deterministic coefficients. The polynomials Ψi’s
are mutually orthogonal and the satisfy the following identity:

�ΨiΨj� = �Ψi
2�δij , (16)

where, δij is the Kronecker delta function and �·� is the expectation operator of the form

�x� =
�

Ω
xw(x)dx. (17)

Here, w(x) is an appropriate weighting function. The one dimensional Hermite polynomials can be
shown to be related in the recursive form

Γn+1 = ξΓn−1 − (n− 1)Γn−2, (18)

where, dij is the Kronecker-delta function defined as
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xi(t)Ψi(ξ(θ)), (15)

where, Ψi denotes the basis functions and xi(t) are the deterministic coefficients. The polynomials Ψi’s
are mutually orthogonal and the satisfy the following identity:
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where, δij is the Kronecker delta function and �·� is the expectation operator of the form
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Ω
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Here, w(x) is an appropriate weighting function. The one dimensional Hermite polynomials can be
shown to be related in the recursive form

Γn+1 = ξΓn−1 − (n− 1)Γn−2, (18)

                

Since Eq.(11) is an infinite series, it becomes 
imperative to decide on the number of terms to be 
retained in the expansion of f (t, q). It is seen that 
not all terms have a significant contribution in the 
expansion. The number of significant terms depend 
on various factors such as the form of auto-correlation 
function, length of the interval T and correlation 
length of the stochastic process [5]. Some of these 
issues have been considered in this paper to truncate 
the series expansion to appropriate number of terms. 
The K-L expansion is usually employed for a Gaussian 
process. For non-Gaussian process, a generalization of 
the K-L expansion is the polynomial chaos expansion 
also known as PCE. This is discussed in the following 
section.

5. Polynomial Chaos Expansion

Polynomial chaos expansion is a spectral 
representation of the random process in terms of 
orthonormal basis functions and deterministic 
coefficients. Wiener [11] introduced the homogeneous 

chaos theory based on Cameron andMartin theorem 
[1]. The homogeneous chaos theory, in its original 
form, employs Hermite polynomials with Gaussian 
random variables, from the Askey scheme, as 
orthonormal bases. The exponential convergence of 
the polynomial chaos expansion has been extended 
to several other types of commonly used probability 
distributions in the generalized polynomial chaos 
by Xiu and Karniadakis [12]. A random process  
X(t, q) can be represented according to Cameron-
Martin theorem as follows [1]:
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The parameter ’t’ indicates time and θ represents the random sample. In Eq.(12), Rff (t, s) denotes the
auto-correlation function of the process f(t, θ). In Eq.(11), {ξi(θ)} is a vector consisting of uncorrelated
random variables with zero-mean and unit variance. The eigenfunctions are orthonormal and satisfy the
identity

� T

0
φi(t)φj(t)dt = δij (13)

where, δij is the Kronecker-delta function defined as

δij =

�

1 if i = j
0 otherwise.
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where, Ψi denotes the basis functions and xi(t) are the deterministic coefficients. The polynomials Ψi’s
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2�δij , (16)

where, δij is the Kronecker delta function and �·� is the expectation operator of the form
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Here, w(x) is an appropriate weighting function. The one dimensional Hermite polynomials can be
shown to be related in the recursive form

Γn+1 = ξΓn−1 − (n− 1)Γn−2, (18)
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where, Gn(xi1, xi2, ..., xin) denotes the Hermite 
polynomials of order n in terms of n-dimensional 
independent standard Gaussian random variables  
x = (xi1, xi2, ..., xin) with zero mean and unit variance. The 
above equation is a discrete form representation of the 
Wiener polynomial chaos expansion. A generalization 
of Eq.(14) can be obtained by rewriting it in the form

 

CNP017

The parameter ’t’ indicates time and θ represents the random sample. In Eq.(12), Rff (t, s) denotes the
auto-correlation function of the process f(t, θ). In Eq.(11), {ξi(θ)} is a vector consisting of uncorrelated
random variables with zero-mean and unit variance. The eigenfunctions are orthonormal and satisfy the
identity

� T

0
φi(t)φj(t)dt = δij (13)

where, δij is the Kronecker-delta function defined as

δij =

�

1 if i = j
0 otherwise.

Since Eq.(11) is an infinite series, it becomes imperative to decide on the number of terms to be retained
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                                  (15)

where, yi denotes the basis functions and xi(t) are 
the deterministic coefficients. The polynomials yi ’s 
are mutually orthogonal and the satisfy the following 
identity:
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where, dij is the Kronecker delta function and 
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been considered in this paper to truncate the series expansion to appropriate number of terms. The K-L
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based on Cameron and Martin theorem [1]. The homogeneous chaos theory, in its original form, employs
Hermite polynomials with Gaussian random variables, from the Askey scheme, as orthonormal bases.The
exponential convergence of the polynomial chaos expansion has been extended to several other types of
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where, Γn(ξi1 , ξi2 , ..., ξin) denotes the Hermite polynomials of order n in terms of n-dimensional in-
dependent standard Gaussian random variables ξ = (ξi1 , ξi2 , ....ξin) with zero mean and unit variance.
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where, the first few polynomials are of the form
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)
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The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)

     
      

   (19)
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The two dimensional Hermite polynomials can 
be expressed as
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)

                        (20)

Truncating Eq.(15) to p terms, we approximate 
X(t, q) as
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)

                                  (21)

The number of terms up to which the series is 
truncated, p, is known as the order of expansion. For 
n number of random variables and polynomial order 
np, p is given by the following :
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)

                                                  (22)

A number of methods can be used for finding the 
coefficients in the polynomial chaos expansion, two 
of which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE 
approach is presented here. In this approach, a Galerkin 
projection of the orthogonal polynomials is performed 
to modify the governing equation to a system of 
deterministic coupled nonlinear equations in terms 
of the polynomial chaos coefficients. The governing 
equation is rewritten below for convenience:
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)

            (23)

As mentioned in the previous section, f (t, q) is 
approximated as a K-L expansion, truncated up to M 
terms, as shown below:
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)

                                 (24)

The solution to the governing equation is assumed 
to be in the form
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)

                                      (25)

where, xi(t) are the deterministic functions to be 
evaluated and yi represent the polynomial chaoses. 
Substituting Eq.(24) and Eq.(25) in Eq.(23), the 
governing equation of motion can now be written as 
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)
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where, the first few polynomials are of the form

Γ0 = 1, Γ1 = ξ, Γ2 = ξ2 − 1, Γ3 = ξ3 − 3ξ, Γ4 = ξ4 − 6ξ2 + 3. (19)

The two dimensional Hermite polynomials can be expressed as

Ψ0(ξ) = Γ0(ξ1)Γ0(ξ2) = 1,

Ψ1(ξ) = Γ1(ξ1)Γ0(ξ2) = ξ1,

Ψ2(ξ) = Γ0(ξ1)Γ1(ξ2) = ξ2,

Ψ3(ξ) = Γ2(ξ1)Γ0(ξ2) = ξ1
2 − 1,

Ψ4(ξ) = Γ1(ξ1)Γ1(ξ2) = ξ1ξ2. (20)

Truncating Eq.(15) to p terms, we approximate X(t, θ) as

X(t, θ) =

p
�

i=0

xi(t)Ψi(ξ(θ)). (21)

The number of terms up to which the series is truncated, p, is known as the order of expansion. For n
number of random variables and polynomial order np, p is given by the following :

p =
(n+ np)!

n!np!
− 1. (22)

A number of methods can be used for finding the coefficients in the polynomial chaos expansion, two of
which are presented.

5.1 Galerkin PCE solution of the equation of motion

The solution of Eq.(2), by the Galerkin PCE approach is presented here. In this approach, a Galerkin
projection of the orthogonal polynomials is performed to modify the governing equation to a system of
deterministic coupled nonlinear equations in terms of the polynomial chaos coefficients. The governing
equation is rewritten below for convenience:

ẍ+ 2ηωnẋ+ ωn
2x(1 + µx2) = f(t, θ),

x(0) = ẋ(0) = 0. (23)

As mentioned in the previous section, f(t, θ) is approximated as a K-L expansion, truncated up to M
terms, as shown below:

f(t, θ) =
M
�

i=0

ξi(θ)
�

λiφi(t). (24)

The solution to the governing equation is assumed to be in the form

X(t, θ) =

N
�

i=0

xi(t)Ψi(ξ), (25)

where, xi(t) are the deterministic functions to be evaluated and Ψi represent the polynomial chaoses.
Substituting Eq.(24) and Eq.(25) in Eq.(23), the governing equation of motion can now be written as

N
�

i=0

(ẍi(t)Ψi(ξ) + 2ηẋi(t) + xi(t)) + µ

N
�

i=0

N
�

j=0

N
�

k=0

xi(t)xj(t)xk(t)Ψi(ξ)Ψj(ξ)Ψk(ξ) =

M
�

i=0

fi(t)ξi,

(26)

                                                                               

(26)
  

where,
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where,
fi(t) =

�

λiφi(t). (27)

Multiplying Eq.(26) by Ψm(ξ) and taking expectation, a set of nonlinear deterministic differential equa-
tions is obtained, which is of the form

ẍm(t) + 2ηẋm(t) + xm(t) + µ

N
�

i=0

N
�

j=0

N
�

k=0

cijkm
�Ψ2

m�xi(t)xj(t)xk(t) = fm(t). (28)

Here,

cijkm = �ΨiΨjΨkΨm� =
�

∞

−∞

ΨiΨjΨkΨmw(ξ)dξ. (29)

The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form

w(ξ) =
1√
2π

e−( 1
2
ξT ξ). (30)

It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula

xj(t) =
�X(t, ξ(θ)),Ψj�

�Ψ2
j�

, (31)

where, xj is the PCE coefficient and the inner product in the numerator is given by the following multi-
dimensional integral

�x(t, ξ(θ)),Ψj� =
�

∞

−∞

...

�

∞

−∞

X(t, ξ(θ))Ψjw(ξ)dξ. (32)

The dimension of the integral is equal to the dimension of the vector ξ. The above multidimensional
integral can be solved by suitable quadrature rules. Since the weight is a Gaussian probability den-
sity function and the domain of integration is (−∞,∞), Gauss-Hermite quadrature is used here. The
multidimensional integral in Eq.(32) can now be approximated using the following expression:

�x(t, ξ(θ)),Ψj� =
N0
�

k1=1

...

N0
�

kn=1

X(t, ξk1 , ..., ξkn)(Wk1 ...Wkn), (33)

where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form
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ξT ξ). (30)

It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula

xj(t) =
�X(t, ξ(θ)),Ψj�

�Ψ2
j�

, (31)

where, xj is the PCE coefficient and the inner product in the numerator is given by the following multi-
dimensional integral
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X(t, ξ(θ))Ψjw(ξ)dξ. (32)

The dimension of the integral is equal to the dimension of the vector ξ. The above multidimensional
integral can be solved by suitable quadrature rules. Since the weight is a Gaussian probability den-
sity function and the domain of integration is (−∞,∞), Gauss-Hermite quadrature is used here. The
multidimensional integral in Eq.(32) can now be approximated using the following expression:

�x(t, ξ(θ)),Ψj� =
N0
�

k1=1

...

N0
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kn=1

X(t, ξk1 , ..., ξkn)(Wk1 ...Wkn), (33)

where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form
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It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula
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where, xj is the PCE coefficient and the inner product in the numerator is given by the following multi-
dimensional integral
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The dimension of the integral is equal to the dimension of the vector ξ. The above multidimensional
integral can be solved by suitable quadrature rules. Since the weight is a Gaussian probability den-
sity function and the domain of integration is (−∞,∞), Gauss-Hermite quadrature is used here. The
multidimensional integral in Eq.(32) can now be approximated using the following expression:
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where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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Multiplying Eq.(26) by Ψm(ξ) and taking expectation, a set of nonlinear deterministic differential equa-
tions is obtained, which is of the form
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The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form

w(ξ) =
1√
2π

e−( 1
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ξT ξ). (30)

It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula

xj(t) =
�X(t, ξ(θ)),Ψj�

�Ψ2
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, (31)

where, xj is the PCE coefficient and the inner product in the numerator is given by the following multi-
dimensional integral
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X(t, ξ(θ))Ψjw(ξ)dξ. (32)

The dimension of the integral is equal to the dimension of the vector ξ. The above multidimensional
integral can be solved by suitable quadrature rules. Since the weight is a Gaussian probability den-
sity function and the domain of integration is (−∞,∞), Gauss-Hermite quadrature is used here. The
multidimensional integral in Eq.(32) can now be approximated using the following expression:

�x(t, ξ(θ)),Ψj� =
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where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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The weight function, w(x), in Eq.(29), is the Gaussian 
probability density function for Hermite polynomials 
and is of the form
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where,
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Multiplying Eq.(26) by Ψm(ξ) and taking expectation, a set of nonlinear deterministic differential equa-
tions is obtained, which is of the form
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The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form

w(ξ) =
1√
2π

e−( 1
2
ξT ξ). (30)

It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula

xj(t) =
�X(t, ξ(θ)),Ψj�

�Ψ2
j�

, (31)

where, xj is the PCE coefficient and the inner product in the numerator is given by the following multi-
dimensional integral
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The dimension of the integral is equal to the dimension of the vector ξ. The above multidimensional
integral can be solved by suitable quadrature rules. Since the weight is a Gaussian probability den-
sity function and the domain of integration is (−∞,∞), Gauss-Hermite quadrature is used here. The
multidimensional integral in Eq.(32) can now be approximated using the following expression:
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where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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It is to be noted that the orthogonality property 
of the Hermite polynomials given by Eq.(16) has 
been made use of while arriving at Eq. (28). Eq. (28) is 
solved for various values of m and the corresponding 
coefficients are obtained. Once the coefficients are 
evaluated, the solution is reconstructed by substituting 
them in Eq.(25).

Although the Galerkin method minimizes the 
error due to truncation accurately, it has some 
serious drawbacks. The process of evaluating the 
inner products and arriving at the set of nonlinear 
deterministic equations is computationally expensive 
and can become tedious. The complexity increases 
with type and extent of nonlinearity, the distribution 
of random variables used and the number of terms 
included in the expansion. In order to circumvent 
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these difficulties, several alternative methods are 
available in literature. One among those, known 
as the non-intrusive projection method, is used 
in this work. This is discussed in the following 
section.

5.2 non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the 
polynomial chaos coefficients are evaluated by solving 
the governing equation at certain collocation points 
and then substituting them in a projection formula. 
In contrast to the Galerkin method, the polynomial 
chaos expansions are not substituted in the governing 
equation and hence it is known as non-intrusive. It is 
also referred to as the pseudo Monte-Carlo approach 
as a number of runs of the deterministic equation 
are  required, but not as large as in Monte-Carlo 
simulations [2]. A Galerkin projection of Eq.(15) by 
taking 
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where,
fi(t) =
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Multiplying Eq.(26) by Ψm(ξ) and taking expectation, a set of nonlinear deterministic differential equa-
tions is obtained, which is of the form
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ΨiΨjΨkΨmw(ξ)dξ. (29)

The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form

w(ξ) =
1√
2π

e−( 1
2
ξT ξ). (30)

It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula

xj(t) =
�X(t, ξ(θ)),Ψj�

�Ψ2
j�

, (31)

where, xj is the PCE coefficient and the inner product in the numerator is given by the following multi-
dimensional integral

�x(t, ξ(θ)),Ψj� =
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∞

−∞

...
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∞

−∞

X(t, ξ(θ))Ψjw(ξ)dξ. (32)

The dimension of the integral is equal to the dimension of the vector ξ. The above multidimensional
integral can be solved by suitable quadrature rules. Since the weight is a Gaussian probability den-
sity function and the domain of integration is (−∞,∞), Gauss-Hermite quadrature is used here. The
multidimensional integral in Eq.(32) can now be approximated using the following expression:

�x(t, ξ(θ)),Ψj� =
N0
�

k1=1

...

N0
�

kn=1

X(t, ξk1 , ..., ξkn)(Wk1 ...Wkn), (33)

where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form
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It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula

xj(t) =
�X(t, ξ(θ)),Ψj�

�Ψ2
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, (31)

where, xj is the PCE coefficient and the inner product in the numerator is given by the following multi-
dimensional integral
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X(t, ξ(θ))Ψjw(ξ)dξ. (32)

The dimension of the integral is equal to the dimension of the vector ξ. The above multidimensional
integral can be solved by suitable quadrature rules. Since the weight is a Gaussian probability den-
sity function and the domain of integration is (−∞,∞), Gauss-Hermite quadrature is used here. The
multidimensional integral in Eq.(32) can now be approximated using the following expression:
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where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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where, xj is the PCE coefficient and the inner 
product in the numerator is given by the following 
multidimensional integral

 

CNP017

where,
fi(t) =

�

λiφi(t). (27)

Multiplying Eq.(26) by Ψm(ξ) and taking expectation, a set of nonlinear deterministic differential equa-
tions is obtained, which is of the form
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The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form
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It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula

xj(t) =
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where, xj is the PCE coefficient and the inner product in the numerator is given by the following multi-
dimensional integral
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The dimension of the integral is equal to the dimension of the vector ξ. The above multidimensional
integral can be solved by suitable quadrature rules. Since the weight is a Gaussian probability den-
sity function and the domain of integration is (−∞,∞), Gauss-Hermite quadrature is used here. The
multidimensional integral in Eq.(32) can now be approximated using the following expression:

�x(t, ξ(θ)),Ψj� =
N0
�

k1=1

...

N0
�

kn=1

X(t, ξk1 , ..., ξkn)(Wk1 ...Wkn), (33)

where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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where,
fi(t) =
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λiφi(t). (27)

Multiplying Eq.(26) by Ψm(ξ) and taking expectation, a set of nonlinear deterministic differential equa-
tions is obtained, which is of the form

ẍm(t) + 2ηẋm(t) + xm(t) + µ

N
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The weight function ,w(ξ), in Eq.(29), is the Gaussian probability density function for Hermite polyno-
mials and is of the form

w(ξ) =
1√
2π

e−( 1
2
ξT ξ). (30)

It is to be noted that the orthogonality property of the Hermite polynomials given by Eq.(16) has been
made use of while arriving at Eq. (28). Eq. (28) is solved for various values of m and the corresponding
coefficients are obtained. Once the coefficients are evaluated, the solution is reconstructed by substituting
them in Eq.(26).

Although the Galerkin method minimizes the error due to truncation accurately, it has some serious
drawbacks. The process of evaluating the inner products and arriving at the set of nonlinear deterministic
equations is computationally expensive and can become tedious. The complexity increases with type and
extent of nonlinearity, the distribution of random variables used and the number of terms included in the
expansion. In order to circumvent these difficulties, several alternative methods are available in literature.
One among those, known as the non-intrusive projection method, is used in this work. This is discussed
in the following section.

5.2 Non-intrusive Projection Method

In the non-intrusive polynomial chaos method, the polynomial chaos coefficients are evaluated by solving
the governing equation at certain collocation points and then substituting them in a projection formula.
In contrast to the Galerkin method, the polynomial chaos expansions are not substituted in the governing
equation and hence it is known as non-intrusive. It is also referred to as the pseudo Monte-Carlo ap-
proach as a number of runs of the deterministic equation are required, but not as large as in Monte-Carlo
simulations [2]. A Galerkin projection of Eq.(15) by taking � .,Ψj� gives the following formula
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where, N0 is the number of quadrature points and Wk1 . . .Wkn are the weighting functions.
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Table 1: Magnitude of eigenvalues
Eigenvalue Magnitude

λ1 7.2105
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λ4 0.8031
λ5 0.2356
λ6 0.0569
λ7 0.0116
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Now the numerator in Eq.(30) is evaluated as follows

�X(t, ξ(θ))Ψj� =
N0
�

k1=1

N0
�

k2=1

X(t, ξ1k1 , ξ2k1 )Ψ(ξ1k1 , ξ2k1 )W1k1
W2k2

. (35)

The coefficients thus evaluated are substituted in Eq.(26) to obtain the response process. The number
of quadrature points, N0, is chosen to be 24 for each random variable making a total of 576 colloca-
tion points at which the deterministic equation is to be solved. This is much less than the number of
deterministic runs performed in a Monte-Carlo simulation which is generally higher than 1000.

The analysis explained in the preceding sections is performed with the auto-correlation function given
by Eq.(2) and for a duration of 10s. The excitation is represented in the form given by Eq.(24) and
the response is obtained as a 12th order polynomial chaos expansion. A damping factor of η = 0.1
has been chosen and the inverse of correlation length, c0, is 0.1. The natural frequency of the system,
ωn, is 200rad/s. The deterministic differential equations are solved using an adaptive 4th order Runge-
Kutta algorithm. The polynomial chaos expansion response has been compared with the Monte-Carlo
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Now the numerator in Eq.(30) is evaluated as 
follows
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deterministic runs performed in a Monte-Carlo simulation which is generally higher than 1000.
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the response is obtained as a 12th order polynomial chaos expansion. A damping factor of η = 0.1
has been chosen and the inverse of correlation length, c0, is 0.1. The natural frequency of the system,
ωn, is 200rad/s. The deterministic differential equations are solved using an adaptive 4th order Runge-
Kutta algorithm. The polynomial chaos expansion response has been compared with the Monte-Carlo

 
                                                                                      

(34)

The coefficients thus evaluated are substituted 
i n Eq.(26) to obtain the response process. The 
number of quadrature points, N0, is chosen to 
be 24 for each random variable making a total of 
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than 1000.

The analysis explained in the preceding sections 
is performed with the auto-correlation function given 
by Eq.(2) and for a duration of 10s. The excitation 
is represented in the form given by Eq.(24) and the 
response is obtained as a 12th order polynomial chaos 
expansion. A damping factor of  h = 0.1 has been 
chosen and the inverse of correlation length, c0, is 0.1. 

Figure 5: Variance of response; μ = 2 Figure 6: Variance of response; μ = 10

Figure 7: Marginal pdf of response X(t); μ = 2 Figure 8: Marginal pdf of response X(t); μ = 10

The natural frequency of the system, wn, is 200rad/s. 
The deterministic differential equations are solved 
using an adaptive 4th order Runge- Kutta algorithm. 
The polynomial chaos expansion response has been 
compared with the Monte-Carlo

simulation response. 1000 realizations of the 
response process are generated. Fig. 3 shows the 
mean of the response process calculated at each time 
instant from 0 to 10 with m = 2 whereas Fig. 4 shows 
the mean response with m = 10. The variance of the 
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response for the two levels of nonlinearities is shown 
in Fig. 5 and Fig. 6. The marginal probability density 
functions of response at 110th time step corresponding 
to the two cases are shown in Fig. 7 and Fig. 8. Figs. 
9-10 show the joint pdf, 
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As mentioned earlier, the quantity of interest, here, is the expected fatigue damage E[DT ], where, E[· ] is
the expectation operator. This can be obtained by changing the order of integration in Eq.(5) as

E[DT ] =

�

∞

−∞

�

∞

−∞

f12(u, v)E[N(u, v)]dudv. (6)

The expected damage increase in period T can be shown to be proportional to loading time duration T ,
and is expressed as

E[DT ] = T

�

∞

−∞

�

∞

−∞

f12(u, v)µ(u, v)dudv, (7)

where, µ(u, v) is known as the intensity of interval up-crossings. As it is difficult to estimate µ(u, v),
bounds for intensity crossings can be evaluated. It can be shown that [9]

µ(u, v) ≤ min[µ(u, u), µ(v, v)] = µ̂(u, v), (8)

where, µ(u, u) = µ(u). Now, the bounds for expected damage can be given as follows

E[DT ] ≤ T

�

∞

−∞

� v

−∞

f12(u, v)µ̂(u, v)dudv. (9)

The mean crossing rate µ(u) can be easily computed using the Rice’s formula [8], which is given by

µ(u) =

�

∞

0
ẋpXẊ(u, ẋ)dẋ, (10)

where, pXẊ(x, ẋ) is the joint probability density function (pdf) of the process, X(t), and its instanta-
neous time derivative, Ẋ(t). The focus of this study is on quantifying the joint pdf of the process, X(t)
and its instantaneous time derivative. Analytical closed form expressions for pXẊ(x, ẋ) is not easy to
estimate, especially if the governing differential equations of motion exhibit significant nonlinearities.
An alternative procedure for estimating pXẊ(x, ẋ) would be to obtain approximations by Monte Carlo
simulations. This would necessitate generating an ensemble of realizations of the excitations {f(t)i}Ni=1,
compute an ensemble of the response state {X(t)i}Ni=1, and {Ẋ(t)i}Ni=1, and subsequently estimate
pXẊ(x, ẋ) by statistical processing. To obtain reasonable accuracies at the tail regions of pXẊ(x, ẋ), N
has to be large. This would imply N numerical solutions of the governing equations of motion. For more
complicated forms of differential equations , such as Eq. (2), this would be computationally expensive.
The focus of this study is on the development of a technique by which the computational effort could
be minimized. To achieve this, we employ the polynomial chaos representation of the response. This is
discussed further in the following sections.

4 KARHUNEN-LOEVE EXPANSION(K-L EXPANSION)

A continuous random process can be represented as a series expansion involving sets of discrete ran-
dom variables and deterministic basis functions. While there can be many such representations, for
example, the spectral representation where the trigonometric functions are the basis functions [10], the
Karhunen-Loeve expansion is the most optimal representation. The K-L expansion is based on the eigen-
decomposition of the auto-covariance function. The deterministic basis functions, which are orthonor-
mal, are the eigenfunctions of the auto-covariance function and their magnitudes are the eigenvalues.
The Karhunen-Loeve expansion converges in the mean-square sense for any distribution of the stochas-
tic process [8]. A K-L representation of a zero-mean stochastic process f(t, θ) can be represented in the
form

f(t, θ) =
∞
�

i=0

ξi(θ)
�

λiφi(t), (11)

where, the coefficients λi and the functions φi(t) respectively are the eigenvalues and the eigenfunctions
of the covariance function and are evaluated by solving the following Fredholm integral equation of the
second kind:

� T

0
Rff (t, s)φi(s)ds = λiφi(t). (12)

 at time , t = 5.53s for 

different values of m and these are compares with the 
corresponding joint pdfs obtained from MCS in Figs. 
11-12. It is observed that a fairly good agreement 
between the results obtained from MCS and those 
from PCE are obtained. This lends promise for 

Figure 9: Joint pdf 
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estimate, especially if the governing differential equations of motion exhibit significant nonlinearities.
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Figure 11: Contour plots for joint pdf 
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where, pXẊ(x, ẋ) is the joint probability density function (pdf) of the process, X(t), and its instanta-
neous time derivative, Ẋ(t). The focus of this study is on quantifying the joint pdf of the process, X(t)
and its instantaneous time derivative. Analytical closed form expressions for pXẊ(x, ẋ) is not easy to
estimate, especially if the governing differential equations of motion exhibit significant nonlinearities.
An alternative procedure for estimating pXẊ(x, ẋ) would be to obtain approximations by Monte Carlo
simulations. This would necessitate generating an ensemble of realizations of the excitations {f(t)i}Ni=1,
compute an ensemble of the response state {X(t)i}Ni=1, and {Ẋ(t)i}Ni=1, and subsequently estimate
pXẊ(x, ẋ) by statistical processing. To obtain reasonable accuracies at the tail regions of pXẊ(x, ẋ), N
has to be large. This would imply N numerical solutions of the governing equations of motion. For more
complicated forms of differential equations , such as Eq. (2), this would be computationally expensive.
The focus of this study is on the development of a technique by which the computational effort could
be minimized. To achieve this, we employ the polynomial chaos representation of the response. This is
discussed further in the following sections.

4 KARHUNEN-LOEVE EXPANSION(K-L EXPANSION)

A continuous random process can be represented as a series expansion involving sets of discrete ran-
dom variables and deterministic basis functions. While there can be many such representations, for
example, the spectral representation where the trigonometric functions are the basis functions [10], the
Karhunen-Loeve expansion is the most optimal representation. The K-L expansion is based on the eigen-
decomposition of the auto-covariance function. The deterministic basis functions, which are orthonor-
mal, are the eigenfunctions of the auto-covariance function and their magnitudes are the eigenvalues.
The Karhunen-Loeve expansion converges in the mean-square sense for any distribution of the stochas-
tic process [8]. A K-L representation of a zero-mean stochastic process f(t, θ) can be represented in the
form

f(t, θ) =
∞
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λiφi(t), (11)

where, the coefficients λi and the functions φi(t) respectively are the eigenvalues and the eigenfunctions
of the covariance function and are evaluated by solving the following Fredholm integral equation of the
second kind:
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estimate, especially if the governing differential equations of motion exhibit significant nonlinearities.
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ẋpXẊ(u, ẋ)dẋ, (10)
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Karhunen-Loeve expansion is the most optimal representation. The K-L expansion is based on the eigen-
decomposition of the auto-covariance function. The deterministic basis functions, which are orthonor-
mal, are the eigenfunctions of the auto-covariance function and their magnitudes are the eigenvalues.
The Karhunen-Loeve expansion converges in the mean-square sense for any distribution of the stochas-
tic process [8]. A K-L representation of a zero-mean stochastic process f(t, θ) can be represented in the
form
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the developed methodology for estimating the 
expected fatigue damage in nonlinear vibrating 
problems. The efficiency of the developed method 
in terms of computational costs would obviously 
increase as the complexity and the nonlinearity of 
the method increases. This study is currently in 
progress.

7. Concluding remarks

The response of a nonlinear vibrating oscillator 
has been analyzed using the polynomial chaos 
expansion approach. The application of PCE for 
approximating the response of nonlinear vibrating 

systems has been investigated. A non-intrusive 
method has been used to obtain the PCE coefficients. 
Numerical simulations on simple nonlinear oscillator 
show reasonable agreement in the mean, variance 
and marginal probability distribution functions of 
the response obtained from the PCE approximations 
and full scale MCS. The approximated probability 
density functions can be used to estimate mean rain-
flow fatigue damage. More studies along these lines 
are currently in progress.
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abstract
Structural safety is one of the most important factors of any aerospace product. Until recently, 
a design is considered to be robust if all the variables that affect its life has been accounted for 
and brought under control. The meaning of robustness is changing. Designer and engineers have 
traditionally handled variability with safety factors. In this paper, in the first phase, a pressure 
vessel made of titanium alloy is considered for safety index (structural reliability) study. The 
safety index is evaluated based on the data collected during manufacturing and operation. Various 
methods like mean value and moment methods are used for safety evaluation and same have been 
discussed. In the second phase of the paper, an attempt has been made to carry out multi objective 
design analysis taking into account the effect of variation of design parameters. Multiple objective 
of interest include structural weight, load induced stress, deflection and structural reliability. 
The design problem is formulated under nonlinear constrained optimization and has been solved. 
Nonlinear regression relations are used for various performance functions. Nonlinear regression 
model is validated & found to be in good agreement with experimental results.  Finally, optimum 
design parameters are suggested for design operating conditions.

Keywords: Structural reliability, safety index, nonlinear regression, reliability optimization
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1. introduction

Probabilistic structural design evaluation method 
is fast growing in aerospace engineering. In this 
method, all uncertainties like variability in material 
properties, geometry and loads are considered 
during design which enables a product to have better 
reliability compared to deterministic design. The 
study of reliability engineering is also developing 
very rapidly. The desire to develop and manufacture a 
product with superior performance and reliability than 
its predecessor is a major driving force in engineering 
design. The design of any engineering system requires 
the assurance of its reliability and quality. Traditional 
deterministic method have accounted for uncertainties 
through empirical safety factor. Such safety factors do 
not provide a quantitative measure of safety margin in 
design and are not quantitatively linked to influence 
different design variables and their uncertainties on 
over all system performance. In this paper a Titanium 
Air bottle (pressure vessel) is identified for structural 
safety index study. These Air bottles are extensively 
used in Aerospace and ground operations. The 
detailed safety index evaluation is discussed in this 
paper.

Generally, the objective & constraint functions, 
load conditions, failure modes, structural parameters 
and design variables are treated in a deterministic 
manner. The problem with this approach is that, in 
many cases, deterministic optimization gives designs 
with higher failure probability than optimized 
structures. Therefore, since uncertainties are always 
present in the design for engineering structure, it 
is necessary to introduce reliability theory in order 
to achieve a balance between cost and safety for 
optimal design. A straightforward approach for the 
modeling and analysis of uncertainties is to introduce 
probabilistic models in which structural parameters 
and /or design variables are considered stochastic in 
nature. Then, by the combination of reliability based 
design procedures and optimization technique, it is 
possible to devise a tool to obtain optimal designs.

The aim of this work to establish a simple 
methodology, which will be useful to pressure 
vessel designer during design and development. 
The present paper deals with analysis of a typical 
Titanium pressure vessel that is used to store high-
pressure air, nitrogen or inert gas to run turbine to 
generate power as well as for pneumatic actuation for 
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control system. These bottles have to be safe, reliable 
and shall be of lower weight. The optimum design 
problem formulated under nonlinear constrained 
optimization using nonlinear regression has been 
solved as “Nonlinear Constrained Minimization” 
optimization. Optimum parameters of Air bottle are 
suggested for design operating pressure.

2. nomenclature 

a,b,c : Regression Coefficient
g(x) : Performance Function
P : Pressure
pf : Probability of Failure
R : Reliability
R2

adj : Adjusted R-square
R2 : Regression Square
Ri : Internal Radius
R0 : External Radius
s,M : Material Strength
t : Thickness
U,u, Z : A Vector of Statistically Independent 

Random Variables with Zero Mean and 
Unit Standard Deviation

V : Volume
W : Weight
β : Safety Index
β0 : Design Safety Index Requirement
γ : Poisson’s Ratio
δ : Deformation
mM : Mean Material Strength
ms : Mean Induced Stress
ρ : Density
σ : Stress /Standard Deviation
sM : Standard Deviation of  Material 

Strength
ss : Standard Deviation of Induced Stress
Ф : Normal cdf

3. Problem Statement and Methodology adapted

Weight optimization is one of the prime 
requirements of any aerospace product. Aerospace 
product has to be optimum in respect of weight, size, 
volume, cost etc. Any weight saving results in increase 
in pay load capacity. Similarly, packaging density 
can be increased with volume optimization. But all 
these design optimizations should not be at the cost of 
safety and reliability. In this paper we have identified 
a pressure vessel which has already been designed, 
developed and successfully used in various ground 

and space vehicles applications. These air bottles 
operate at very high pressure and are filled with dry 
air, nitrogen or inert gas.  Due to its higher operating 
pressure, it has to be totally safe as ground personnel 
handle these bottles in fully charged condition.

In the first phase, safety index (structural 
reliability) is evaluated using Mean Value Method 
(MVM) and Advanced First Order Second Moment 
(AFOSM) Method, using data collected during 
manufacturing and testing. In the second phase an 
attempt is made to optimize the weight of the air bottle 
to meet the target reliability. Finite Element Analysis 
(FEA) is carried out to generate maximum stress, 
strain and deformation for various design parameters 
and operating conditions. Nonlinear performance 
functions (regression relations) are established for 
stress, and deflection. 

4. Safety index Evaluation

4.1 Mean value method

This method [1-3] is commonly referred to as the 
Mean Value First Order - Second Moment (MVFOSM 
or simply MV) method since it involves a first order 
expansion about the mean to estimate the first and 
second moments. MV method involves developing 
the Taylor series expansion of g(x) about the nominal 
or mean value of the individual random variables. 
The moments of the resulting approximating function 
are found using which approximate statements can be 
made regarding the probability of failure.
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The failure surface is mapped onto the corresponding failure surface in the reduced space. The point 
on this surface with minimum distance from the origin is the most probable failure point and the 
geometric distance to the origin is equal to the safety index . The failure surface is generally a 
nonlinear function and the point with minimum distance to the origin can be evaluated by solving the 
following optimization problem i.e. 
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5. Optimization Formulation 
 
The present paper deals with a practical problem of high pressure air bottles. In the first phase of the 
study, we have evaluated the safety index (structural reliability) of these air bottles. After confirming 
that these air bottles have enough margins of safety, an attempt has been made to optimize the weight 
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Where mg and σg are the mean and standard 
deviation of performance function.

4.2 Advanced first - order second -moment

Hasofer and Lind (HL) [4-6] proposed a method 
for evaluating the safety index (β). According to HL 
approach, the constraint is linearized by using Taylor 
Series expansion retaining up to the first order terms. 
The linearization point selected is that of maximum 
likelihood of occurrence and is known as the most 
probable failure point. This method is called Advanced 
First-Order Second-Moment (AFOSM) method. 
The most probable failure point is determined by 
transforming original random variables to normalized 
and independent set of reduced variables as shown 
in Fig.1.
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The failure surface is mapped onto the 
corresponding failure surface in the reduced space. 
The point on this surface with minimum distance from 
the origin is the most probable failure point and the 
geometric distance to the origin is equal to the safety 
index β. The failure surface is generally a nonlinear 
function and the point with minimum distance to 
the origin can be evaluated by solving the following 
optimization problem i.e.
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Where g(U) is the failure function or limit state 
equation in reduced space. Using AFOSM, this 
optimization can be solved by using nonlinear 
optimization or iterative algorithms.

5. optimization formulation

The present paper deals with a practical problem 
of high pressure air bottles. In the first phase of the 
study, we have evaluated the safety index (structural 
reliability) of these air bottles. After confirming that 
these air bottles have enough margins of safety, an 
attempt has been made to optimize the weight of the 
air bottle. These air bottles are at present under serial 
production and are being used in various ground and 
space applications. Static linear strength, deformation 
and safety index have been considered as design 
constraints. The brief optimization formulation of this   
problem is discussed below.

5.1 nonlinear performance functions

Nonlinear Regression Relations

The regression relations [7] are established for 
induced stress and deformation due to internal load. 

Fig: 1 Transformation of coordinate into Standard Space

In many engineering situations the relationship 
between dependent and independent variable may 
not be linear but exponential, Weibull, logarithmic or 
inverse type. These types of equations generally fall 
under the category of having nonlinear parameter. 
In order to apply the principles of least squares, 
the equation should be reduced to linear form. The 
process of transforming the nonlinear equation into 
a linear form is called linear transformation. It is 
observed from ANSYS output data Table 1, that the 
hoop stress and deflection have nonlinear relation 
with its wall thickness and outer radius. A logarithmic 
relation has been established and tested statistically 
for significance. The regression relations considered 
are as below
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deformation

The spherical air bottle will dilate radially outward 
due to internal pressure. In no case the airbottle shall 
deform beyond maximum allowable deflection, i.e.
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Where 0 is design safety index requirement.  
        
‘’ is achieved safety index and is evaluated using strength-stress interference model. In this present 
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6. Nonlinear Performance Function Generation 
 
6.1 Finite Element Analysis 
 
To establish the performance function relations, the ANSYS output is generated for each set of design 
input parameters i.e. wall thickness and outer radius of spherical shell. The details of ANSYS output 
is given in Table 1. 
 

Table –1:   ANSYS Output 
 

Thickness 
(t) 

Outer 
radius (R0) 

Design Load 40 MPa 
Hoop stress 

() MPa 
Deformation 

() mm 
2.5 
3.0 
3.5 
4.0 
4.5 

152.0 
152.5 
153.0 
153.5 
154.0 

1233 
1007 
885 
746 
665 

1.0555 
0.8819 
0.7567 
0.6644 
0.5927 
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 l & u are lower and upper design limit

6. nonlinear Performance function Generation

6.1 finite element analysis

To establish the performance function relations, 
the ANSYS output is generated for each set of design 
input parameters i.e. wall thickness and outer radius 
of spherical shell. The details of ANSYS output is 
given in Table 1.

table –1:   anSyS output

thickness 
 (t)

outer 
radius (r0)

design load 40 MPa

Hoop stress 
(σ) MPa

deformation 
(δ) mm

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

152.0

152.5

153.0

153.5

154.0

154.5

155.0

155.5

156.0

156.5

157.0

157.5

158.0

1233

1007

885

746

665

599

544

500

461

428

399

375

358

1.0555

0.8819

0.7567

0.6644

0.5927

0.5353

0.4883

0.4492

0.4161

0.3877

0.3632

0.3417

0.3227

6.2 nonlinear regression & regression statistics 

The nonlinear regression of induced stress (σ) 
and deformation (δ) versus wall thickness (t) and 
outer radius (R0) are established using ANSYS output 
as given in Table 1. These regression equations are 
used for optimization formulation. The nonlinear 
regression and regression statistics are given in  Table 
2 & Table 3.

table –2:   nonlinear regression Equations                         

design 
load σ = a1tb1R0

c1 δ = a2tb2R0
c2

40 (MPa) σ = 
0.0059t-1.0967 R0 

2.6386

δ =
 0.0037t -1.0242 R0 

1.7701
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table –3:   regression Statistics

d e s i g n 
load  s = a1tb1R0

c1 δ = a2tb2R0
c2

40 (MPa) R2
adj = 0.9999

rmse = 0.0020

mse = 3.9 * 10-6

R2
adj = 1.0000

rmse = 0.0010

mse = 1.0377 * 10-6

R2
adj : Adjusted Regression Square; rmse: root mean 

square error; mse: mean square error  R2
adj as  values 

are close to one and ‘rmse’ value is low  indicating  
that the  regression  relations are  fitting well.

7. design data

To evaluate safety index, initially design data are 
collected from design document. The important design 
parameters of the air bottle are given in Table -4. 

table –4:   design Parameter                  

Internal Radius (Ri) : 149.5 mm
Wall Thickness (t) : 8.0 mm
Design Pressure (P) : 40 MPa
Material : Titanium alloy
Construction : Welded
Type of Welding : Electron Beam
Weight : 10.5 kg

 table –5:   Variability observed

Parameter Mean (μ) Standard 
deviation 

(σ)
Operating Pressure (P) 36 (Mpa) 1.98 (Mpa)
Internal Radius (Ri) 149.5 (mm) 0.5 (mm)
Wall Thickness (t) 7.91 (mm) 0.25 (mm)
Material Strength (M) 860 (Mpa) 8.6 (Mpa)

A systematic data collection is carried out during 
manufacturing at production centers starting from 
raw material to final product. Material mechanical 
properties are taken from test certificates provided 
by the suppliers which cover chemical compositions, 
heat treatment details, tensile strength and percentage 
elongation. Similarly, thickness mapping for wall 
thickness and internal radius are carried out before 
joining of each spherical shell. The statistical dispersion 
of various parameters is given in Table -5.   

8. design Safety analysis

8.1 Safety index (structural reliability)

The structural safety [1] of the air bottle is 
evaluated considering the statistical variability from 

the data collected during manufacturing, testing 
and operation. The Safety Index (β) evaluated using 
Mean Value Method and Advanced First Order 
Second Moment Method as discussed in Safety Index 
Evaluation section is as follows

a) Mean value method
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b) Advanced First Order Second Moment Method 
 

Data from Table -5 is transformed to Normal space 
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Wall Thickness (t) : 8.0 mm 

Design Pressure (P) : 40 MPa 

Material : Titanium 
alloy 

Construction : Welded 

Type of Welding : Electron 
Beam 

Weight : 10.5 kg 

Parameter Mean () Standard 
Deviation () 

Operating Pressure 
(P) 

36 (Mpa) 1.98 (Mpa) 

Internal Radius (Ri) 149.5 (mm) 0.5 (mm) 

Wall Thickness (t) 7.91 (mm) 0.25 (mm) 

Material Strength 
(M) 

860 (Mpa) 8.6 (Mpa) 
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b) Advanced first order second moment method

Data from Table -5 is transformed to Normal 
space
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Minimize ZZT=β  
Such that g(Z) = 0 
Solving above optimization problem we get                 = 14.39 
 

9. Reliability Optimization 
 

9.1 Non-linear Constrained Optimization 
 
The main objective of this paper is to minimize the weight of the air bottle as thickness and outer 
radius are the design parameters which contribute to the weight of titanium material. Hence these 
parameters are optimized so as to minimize the weight of the air bottle. The non-linear constrained 
optimization [10-12] is formulated as below.  
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are the design parameters which contribute to the 
weight of titanium material. Hence these parameters 
are optimized so as to minimize the weight of the air 
bottle. The non-linear constrained optimization [10-12] 
is formulated as below. 

objective function

Minimize weight (W) = V * ρ

Subject to
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 (Experimentally 
observed induced stress standard deviation)

ms = s, mM = sMax , sM = 8.6 MPa & P (design load) = 
40 MPa

Rewriting the above optimization formulation

objective function 

Minimize weight (w) = [55.67R0
2t-55.67R0t2 + 18.5t3)

Subject to

6.8604 * 10-6t -1.0967 R0
2.6386 - 1 <  0                                (11)

7.4 * 10-4 t-1.0242R0
1.7701 - 1 <  0                                       (12)   

5.4 * 10-5 t-1.0967R0
2.6386 - 6.875  <  0                               (13)

inequality constraints

3 < t < 8   &   152.5 < R0 < 157.5

Solving above optimization problem using 
nonlinear programming technique, the optimized 
design parameters obtained are given in Table 6.

table –6:   optimized Parameters

Parameter design optimized
Inner Radius ‘Ri’ 149.5 mm 149.5 mm
Thickness ‘t’ 8.00 mm 5.3453 mm
Outer Radius ‘R0’ 157.5 mm 154.8453 mm
Weight ‘W’ 10.5 Kg 6.8919 Kg
Safety Index ‘β’ 14.39 6.0949

10. results and discussion

The structural reliability (safety index) study has 
been carried out using moment methods, the safety 
index ‘β’ is found to be high. This indicates that 
titanium air bottle is over designed and these bottles 
are very safe at design operating pressure. Hence, this 
gives scope for weight optimization.

The nonlinear regression relation of performance 
functions established using ANSYS output is found 
to be useful for prediction of stress, strain and 
deformation. These relations are simple and help in 
optimization formulation. Many complex performance 
functions can be written in simple linear, nonlinear or 
polynomial forms.

Using above findings, the weight of the existing 
air bottle is optimized without compromising 
quality, design and safety requirements. A net weight 
reduction of 3.5 kg is possible which in turn helps in 
increasing payload capacity for aerospace mission. 
The optimized safety index is now β = 6.09, that is 
the probability of failure of this optimized air bottle 
is pf = 0.522E-09. 

11. Conclusion

A nonlinear constraint optimization for air bottle 
using regression model has been developed and 
found to be useful in their domain validity. This 
method accounts for effect of design variability while 
providing a realistic design model where conflicting 
and multi objectives viz; structural weight, operating 
load, induced stress, strain, deformation and structural 
reliability (safety index) exist. Suggested nonlinear 
regressions (nonlinear performance functions) are 
validated. In addition to design parameters, fatigue 
and fracture can also be considered in safety and 
optimization studies.
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abstract
Reliability analysis using first and/or second order methods need to evaluate the slope of the limit 
surface near the most probable point (MPP) of failure which is often difficult for real life structures 
due to limited information of the failure plane. To avoid this problem, present study aims to use 
stochastic response surface method (SRSM) to evaluate the reliability index. In this method, 
implicit limit state is modeled using series expansion of standard normal random variables (i.e. 
polynomial chaos expansion). The coefficients of the polynomial chaos expansion are obtained 
by stochastic collocation which needs limited number of performance function evaluation. Once 
the order of the polynomial and subsequently the coefficients are evaluated, reliability index is 
obtained by gradient based approach. Numerical examples are presented to show the applicability 
of the proposed SRSM based reliability analysis.
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introduction

First order reliability methods have been extensively 
used for reliability analysis of structural systems 
[Lu e.t al. (1994), Rodriguez et. al. (2006), Griffiths 
(2011) et. al.] operating in random environment. For 
this purpose, Rackwitz-Fiessler algorithm is often 
used to find out the optimal distance (i.e. reliability 
index) of the limit surface from the origin in the 
standard normal space. In this method, the slopes 
(i.e. first derivative) of the limit surface are required 
to locate the most probable design point. However, 
limit surfaces are often unknown in close form (i.e. 
implicit) and hence their derivatives are difficult 
to evaluate. In this context, Bucher and Bourgand 
(1990) developed Response Surface Method (RSM) for 
reliability analysis. In RSM, the unknown limit surface 
is approximated by a multidimensional quadratic 
polynomial near the failure region. In the recent past, 
engineers and researchers have extensively used this 
method for various applications like performance 
evaluation, crash simulation and reliability based 
design optimization [Babu and Srivastava (2010), 
Minghao et. al. (2009), Gupta and Manohar (2004), 
and Deb et. al. (2009)]. However, as this polynomial 
approximation of the original limit state is valid near 
the failure region, it often faces difficulty to find out 
the optimal distance for limit states with multiple 
design points. Moreover, as this is a deterministic 
representation of the failure surface, it fails to capture 

the stochastic characteristics of the original limit state. 
To avoid this problem, Stochastic Response Surface 
Method (SRSM) was proposed by Isukapalli (1999). 
In this method, the stochastic signature of the original 
limit state is mapped in the standard normal space 
using Polynomial Chaos Expansion (PCE). Wiener 
(1938) first introduced PCE to model the turbulence 
where infinite ortho-normal functions in standard 
normal space were used to model the stochastic 
phenomenon. Ghanem and Spanos (1991) showed 
that Hermite polynomials form an orthogonal basis 
for PCE and is convergent in mean-square sense. 
However, this representation needs to evaluate the 
coefficients of the Hermite polynomials to model 
the original performance function. Tatang (1995) 
developed probabilistic collocation technique where 
Gauss quadrature points were used to evaluate the 
coefficients of the PCE. In his thesis, Isukapalli (1999) 
used the roots of the polynomial which were one 
order higher as the reference points and evaluated 
the coefficients by regression analysis. Gavin and Yau 
(2008) showed that SRSM works better for complex 
structures with low failure probability where Monte 
Carlo simulation (MCS) and approximate methods 
are either computationally intensive or inaccurate. It 
models the global stochastic nature of the limit surface 
as opposed to model the local nature near the failure 
region in RSM. This property may be exploited to 
identify the local minima where multiple design points 
exist. Due to these advantages, SRSM has gained 
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momentum in reliability analysis of civil engineering 
structures in the recent past. Li et. al. (2011) performed 
reliability analysis of rock slopes using SRSM with 
higher order polynomials. Mollon et. al. (2011) used 
collocation based SRSM to analyze the stability of a 
circular tunnel driven by a pressurized shield. 

With these in view, present study aims to apply 
SRSM to analyze the reliability of a retaining wall against 
overturning. The results obtained from this method will 
be compared with Monte-Carlo simulations to check 
the efficiency and accuracy of the SRSM.

Stochstic response Surface Methodology

The limit surface divides the probability space 
into safe and failure regions, which is symbolically 
represented as

 
                                                                    

 (1)

Where, X = [x1, x2, ...., xn] are the random 
variables that describe the failure plane. In the above 
equation,  represents the failure region. The 
probability of failure for a limit state described in Eq. 
1 can be represented as 

 
 

 

                                                                                
 (2)

However, probability evaluation using above 
equation demands complete description of the joint 
probability distribution function f which is often 
unknown. The problem is more complex where the 
performance function described in Eq.1 is not available 
in explicit form. To evaluate the reliability for these 
cases either RSM or SRSM can be used. However, 
RSM often faces difficulties in highly non-linear 
failure planes with multiple local minima as only the 
polynomial approximation near the MPP is carried 
out in this method. In this situation, SRSM can be a 
better alternative as the stochastic nature of the failure 
plane, irrespective of the local minima are modeled 
using PCE. Reliability evaluation using SRSM involves 
following steps 
a) Functional/Polynomial chaos representation of 

output
b) Evaluation of unknown coefficients 
c) Representation of input random variables in 

terms of standard normal variables 
d) Evaluation of reliability using FORM/SORM

functional/Polynomial Chaos representation of 
output

Polynomial chaos is defined by an ortho-normal 
set of standard normal variables  . Therefore, 
PC of order p (i.e. G p ) is defined by the set of 
polynomials of order p  which is orthogonal to all 
polynomials of order (p - 1) . Using these ortho-normal 
set of standard normal variables, any function  can 
be represented as 

 
 

                                                                                 (3)

In the above equation, p and r represent the order 
and the dimension respectively and   represent 
the coefficients. Hermite polynomials are used to 
represent  which is given by [Ghanem & Spanos (1991), 
Issukapalli (1999)]

 

(4)

Where, Zi   is the standard normal random variable. 
Using Eq.3 and Eq.4 the limit state given in Eq.1 can 
be represented in standard normal space as 

 
                                                             (5)

In the above expression, performance function is 
represented by the linear combination of n-dimensional 
polynomials involving unknown coefficients  
which can be evaluated using regression technique 
[Issukapalli (1999)].

Evaluation of Unknown Coefficients

Once the functional representation of Eq. 1 is 
decided, the next step is to evaluate the unknown 
coefficients. For this purpose, regression analysis is 
performed using collocation points which are the 
roots of the Hermite polynomial that are one order 
higher than the polynomial used to represent the limit 
surface. Therefore, the number of collocation points 
available for n dimensional pth order PCE is (p+1)n 
[Isukapalli et al (1998)]. In this format, it can be shown 
that the numbers of collocation points are always more 
than the number of unknowns in Eq. 5.

representation of Stochastic inputs

The regression analysis mentioned in the previous 
sub-section needs to evaluate the performance 
function represented by Eq. 1 at (p+1)n collocation 
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Figure 1: Retaining wall

points. However, as these collocation points are in 
standard normal space, the equivalent points in the 
original space need to be found by one to one mapping 
of cumulative distribution function (CDF) of the two 
random variables. For the details of this transformation 
one may refer to Isukapalli et. al. (1998).

Evaluation of reliability

Once the coefficients in Eq. 5 are evaluated, 
gradient based approaches (either FORM or SORM) 
may be adopted to evaluate the reliability index. 
The details of these methods may be found in 
Melcher (1999). Using FORM, the reliability index is 
represented as 

 
                                                             (6)

In the above equation, z* zrepresents MPP 
in standard normal space and  represents the 
Euclidian norm. It can be shown that the probability of 
failure is related to  through the following relation 

    
                                                                 

(7)

Example Cases

The SRSM method described in the previous 
section is used to evaluate the reliability for two 
different limit surface. 

Example 1: non-linear limit State

In the first problem, the following performance 
function is considered

 
                 (8)

Where, x1 and x2 are the two random variables that 
describe the failure plane.

Example 2: retaining wall against overturning

In the second problem, the reliability analysis of a 
retaining wall as shown in Fig. 1 against overturning 
is considered. 

The parameters in Fig. 1 and the details of the 
stabilizing and overturning moments are described in 
Appendix A. The limit state in this case is given by 

 
                                                (9)

In the above equation,  represents the stabilizing 
moment and  represents the overturning moment 
about the toe of the wall. The random variables 
associated with this limit state are surcharge loading 
(q) unit weight of concrete (wc), unit weight of soil (ws), 
soil friction angle (φ) and wall friction angle (δ).

numerical results and discussion

The proposed SRSM based reliability analysis 
discussed in the previous sections is used to solve 
example cases to evaluate the reliability. In Example 1,   
X1 and X2 are the two uncorrelated random variables 
with mean and standard deviation as 3.5 and 1 
respectively. In this example, different combinations 
of normal and lognormal variables for X1 and X2 are 
considered and the results are compared with the 
Monte Carlo simulations. The unknown coefficients 
of the PCE are evaluated using collocation points. 
For this purpose, 4th order polynomials are used to 
model the limit surface. Hence, the total number of 
unknowns in Eq. 5 is 15. To generate the collocation 
points, roots of the 5th order are used. As the dimension 
of the problem is 2, the possible combinations using 
these roots are (4+1)2 (i.e. 25.) Although, 25 collocation 
points are available for the regression analysis, only 23 
(i.e. 1.5*15) points are used to evaluate the unknown 
coefficients. It has been observed that the convergence 
can be achieved with 1.5*N collocation points where, 
N is the number of unknown coefficients in PCE 
representation. In this context, the points that are 
close to the origin were given priority. Fig 2 shows 
the cumulative distribution function (CDF) of the limit 
state using PCE and Monte-Carlo simulations. It can be 
observed from this figure that the 4th order polynomial 
estimates CDF satisfactorily. Using this 4th order 
PCE, Hasofer-Lind Reliability Index is evaluated as 
described in Eq. 6. Table 1 shows the reliability index 
and probability of failure for different combinations 
of random variables X1 and X2. From this table, it can 
be concluded that SRSM results match closely with 
simulations. In this context, 6*106 samples were used 
in Monte-Carlo simulations.
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Figure 2: CDF of the limit state in Example 1

Figure 3: CDF of the limit state in Example 2 Figure 4: Change of β with height of the wall

table 1: reliability index and probability of 
failure in Example 1 (n: normal, ln: lognormal)

X1 X2
β pf

Monte Carlo SRSM Monte Carlo SRSM
N N 3.3692 3.4325 0.00037 0.00029
N LN 2.8977 2.8094 0.00187 0.00248

LN N 2.7879 2.8019 0.00265 0.00254
LN LN 2.6461 2.8058 0.00407 0.00250

table 2: random variables in Example 2

Variable distribution Statistics
μ cov(%)

q LN 20 10
wc N 24 7
ws N 18 7
φ LN 30 7
δ LN 10 7

The SRSM based technique is further used for to 
evaluate the reliability of the retaining wall. Table 
2 shows the distributions and the parameters of 
the random variables used in this model. It can be 
observed that the dimension of this problem is 5. 
Similar to example 1, 4th order PCE is used in this 
problem to model the limit state in the standard 
normal space. The total number of unknowns for this 
5th dimensional and 4th order PCE representation is 126. 
Hence, the roots of the 5th order polynomial are used 
as the collocation points. As described in previous 
section, total number of collocation points available in 
this case is 3125 [i.e. (4+1)5]. However, 183 collocation 
points (i.e. 1.5*126) which are closer to the origin are 
used for regression analysis. Using these collocation 
points CDF of the limit state are obtained and is shown 
in Fig. 3. In this case also, one can notice a close match 
between the PCE and the simulations. Fig 4 and 5 show 
the reliability index for different values of height and 
base width of the retaining wall. From these figures, 
one can conclude that the reliability index obtained 
by SRSM closely match with the simulations. Fig 6 
shows the probability of failure for different values 
of height and base width. This design curve can be 
used to evaluate the reliability (i.e. 1 - pf) for a given 
combination of height and base width of the retaining 
wall.

Conclusions

In this paper, stochastic response surface method 
is used to evaluate the reliability for different limit 
state functions. The random characteristics of the limit 
state is modeled by multidimensional polynomial 
chaos expansion whose coefficients are evaluated 
by regression analysis. For this purpose, the roots of 
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Figure 5: Change of β with base width

Figure 6: Variation of pf for different height and base width

the polynomial of dimension one order higher than 
the original one are used to generate the collocation 
points. Once the coefficients are evaluated, the optimal 
distance in standard normal space (i.e. reliability 
index) is evaluated using Rackwitz-Fiessler algorithm. 
The example cases in the previous section show the 
accuracy and efficiency of the SRSM based reliability 
analysis.

appendix

Fig 1 shows the retaining wall used in example 
2. In this figure H, B, Bs, ts and tb are the height of the 
wall, length of the base, distance of the centerline of 
stem to heel, thickness of the stem and thickness of 
the base slab respectively. The thickness of the stem 
and the base are taken to be 0.45m. Further, q and δ 
represent the surcharge and the wall friction angle 
while Pa represents the active earth pressure which 
has horizontal and vertical components as Pah and Pav  

respectively. M1, M2, M3 and M4 are the moments due 
to self weights of different components of the wall–soil 
combination marked 1, 2, 3 and 4 respectively, which 
are given by  

 
                                  (A1.a)

 
                                      (A1.b)

 
                                                        (A1.c)

 
                                             (A1.d)

The total downward force due to the weights of 
different components (i.e. soil mass, stem of the wall, 
base of the wall and surcharge) is given by

 

                                                                               (A2)

The point of action of the total weight W can be 
obtained as 

 
                                                            

   (A3)

Using Eq. A2 and A3, the total resisting moment 
about the toe of the wall can be expressed as

                                                           (A4) 
 

Thus, the active earth pressure acting on the wall 
due to the soil mass is given by

                                                                       (A5) 

Where, the active earth pressure coefficient Ka  is 
defined as 

 

                                                                              (A6)

In the above equation, φ, a and γ are the soil 
friction angle, the angle of the wall and the inclination 
of the backfill respectively. Using Eq. A5 and A6, one 
can estimate the total overturning moment acting on 
the wall as 

 
  (A7)
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In this paper, the wall is considered to be perfectly 
vertical while the backfill is considered to be perfectly 
horizontal.
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abstract 

The author’s perspective of engineering under uncertainty is presented. In the first part of the paper, 
past, present and future trend of reliability assessment methods, applicable to many branches 
of engineering are presented. The discussions cover the cases for both explicit and implicit limit 
state functions. Finite element based reliability evaluation methods for large structures satisfying 
underlying physics are emphasized.  The necessity of estimating risks for both strength and 
serviceability limit states are documented. Concept of several energy dissipation mechanisms 
recently introduced to improve performance and reduce risk during seismic excitations can be 
explicitly incorporated in the formulation. Reliability evaluation of very large structures requiring 
over several hours of continuous running of a computer for one deterministic evaluation is briefly 
presented.  Since major sources of uncertainty cannot be completely eliminated from the analysis 
and design of an engineering system, the risk needs to be managed appropriately.  Risk management 
in the context of decision analysis framework is also briefly presented.  In discussing future 
directions, the use of artificial neural networks and soft computing, incorporation of cognitive 
sources of uncertainty, developing necessary computer programs, and education-related issues 
are discussed.   

Keywords: Reliability analysis; seismic analysis; nonlinear response, partially restrained 
connections, shear walls; post-Northridge connections; computer programs, education, uncertainty 
management
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introduction

Uncertainty must have been present from 
the beginning of time. Our forefathers must have 
experienced it through observations and experiences. 
In engineering practices, the probability concept is 
essentially an attempt to incorporate uncertainty in the 
formulation. The probability concept can be defined in 
two ways: (i) an expression of relative frequency and 
(ii) degree of belief.  The underlying mathematics of 
probability are based on three axioms, well developed, 
and accepted by experts, however, sometimes it 
is used in a philosophical sense. Since the relative 
frequency concept is almost never used [1], a measure 
of confidence in expressing uncertain events leads to 
the degree of belief statements.  Laplace (1749-1827), 
a famous mathematician in “A Philosophical Essay 
on Probabilities” wrote “It is seen in this essay that 
the theory of probabilities is at bottom only common 
sense reduced to calculus; it makes us appreciate 
with exactitude that which exact minds feel by a 

sort of instinct without being able of times to give a 
reason for it. It leaves no arbitrariness in the choice 
of opinions and sides to be taken; and by its use can 
always be determined the most advantageous choice. 
Thereby, it supplements most happily the ignorance 
and weakness of the human mind.” [2].

These timeless remarks sum up the importance 
of probability, reliability and uncertainty concepts 
in human endeavor. In my way of thinking, I will 
try to give my understanding or assessment of 
“Engineering under Uncertainty – Past, Present and 
Future”.  Obviously, the time lines when past meets 
present and present becomes future are very difficult 
to establish.  According to Albert Einstein “People like 
us, who believe in physics, know that the distinction 
between past, present, and future is only a stubbornly 
persistent illusion.”     

Although, the area of probability has a glorious 
past, I will try to emphasize the present and future 
in reliability assessment and management in this 
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paper.  I believe that structural engineering provided 
leadership in developing these areas and I will 
emphasize it in my presentation. 

reliability assessment - Past

Many brilliant scholars such as Einstein did not 
believe in probability. His famous comment that “I am 
convinced that He (God) does not play dice.” is known 
to most present scholars. On the other hand, the Rev. 
Thomas Bayes (1702-1761), a Presbyterian Minister at 
Tunbridge Wells, wrote the Bayes’ Theorem in 1763 in 
“An Essay towards Solving a Problem in the Doctrine of 
Chances.” [3]. It has become one of the most important 
branches of statistics in the modern time. Please note 
that the paper was published two years after his death. 
One of Bayes’ friends, Richard Price, sent the paper for 
publication by adding an introduction, examples and 
figures. Most likely, Bayes was not confident about the 
paper. At present, the Bayesian approach provides a 
mechanism to incorporate uncertainty information 
in cases of inadequate reliable data by combining 
experience and judgment. 

It is reasonable to state that Freudenthal [4] 
formally introduced the structural reliability 
discipline. Obviously, it has gone through monumental 
developments since then under the leadership of many 
scholars 5-14 A more complete list can be found in 
[9].

available reliability Evaluation Methods 

It will be informative to discuss very briefly how 
the reliability evaluation methods evolved in the 
past few decades. After four decades of extensive 
work in different engineering disciplines, several 
reliability evaluation procedures of various degrees 
of complexity and sophistication are now available.  
First-generation structural design guidelines and 
codes are being developed and promoted worldwide 
using some of these procedures. Obviously, depending 
upon the procedure being used, the estimated risk 
could be different. The engineering profession has 
not yet officially accepted a particular risk evaluation 
method. Thus, design of structures satisfying an 
underlying risk can be debated; even the basic 
concept of acceptable risk is often openly debated 
in the profession. Moreover, uncertainty introduced 
due to human error is not yet understood and thus 
cannot be explicitly introduced in the available 
reliability assessment methods. Also, risk or reliability 
estimated using these methods may not match 
actual observations. Sometimes, to be more accurate, 

scholars denote the estimated risk as the notional or 
relative risk. The main idea is if risk can be estimated 
using a reasonably acceptable procedure, the design 
alternatives will indicate different levels of relative 
risk.  When the information is used consistently, it may 
produce a risk-aversive appropriate design.

Before introducing the reliability-based design 
concept, it may be informative to study different 
deterministic structural design concepts used in 
the recent past and their relationship with the 
reliability-based concept. The fundamental concept 
behind any design is that the resistance or capacity 
or supply should at least satisfy demand with some 
conservatism or safety factor built in it.  The level of 
conservatism is introduced in the design in several 
ways depending on the basic design concept being 
used.  In structural design using the allowable stress 
design (ASD) approach, the basic concept is that the 
allowable stresses should be greater than the unfactored 
nominal loads or load combinations expected during 
the lifetime of a structure.  The allowable stresses are 
calculated using safety factors.  In other words, the 
nominal resistance Rn is divided by a safety factor to 
compute the allowable resistance Ra, and safe design 
requires that the nominal load effect Sn is less than 
Ra. In the ultimate strength design (USD) method, the 
loads are multiplied by load factors to determine the 
ultimate load effects and the members are required to 
resist the ultimate load.  In this case, the safety factors 
are used in the loads and load combinations. Since, the 
predictabilities of different types of load are expected 
to be different; the USD significantly improved the 
ASD concept. In the current risk-based design concept, 
widely known as the load and resistance factor design 
(LRFD), safety factors are introduced to both load and 
resistance under the constraint of an underlying risk, 
producing improved designs.  It should be pointed out 
that LRFD-based designs are calibrated with the old 
time-tested ASD designs. Thus, the final design may be 
very similar but LRFD design is expected to be more 
risk-consistent.

fundamental Concept of reliability-based design

Without losing any generality, suppose R and S 
represent the resistance or capacity and demand or load 
effect, respectively, and both are random variables since 
they are functions of many other random variables.  
The uncertainty in R and S can be completely defined 
by their corresponding probability density functions 
(PDFs) denoted as ( )rf R  and ( )sf S , respectively.  
Then the probability of failure of the structural element 
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can be defined as the probability of the resistance 
being less than the load effect or simply P(R < S).  
Mathematically, it can be expressed as [9]:
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where (((( ))))sFR  is the cumulative distribution function (CDF) of R evaluated at s. Conceptually, (1) 

states that for a particular value of the random variable S = s, (((( ))))sFR  is the probability of failure.  
However, since S is also a random variable, the integration needs to be carried out for all possible 
values of S, with their respective likelihood represented by the corresponding PDF.  Equation 1 can be 
considered as the fundamental equation of the reliability-based design concept.  It is shown in Fig. 1. 
In Fig. 1, the nominal values of resistance and load effect are denoted as Rn and Sn, respectively, and 
the corresponding PDFs of R and S are shown The overlapped (dashed area) between the two PDFs 
provides a qualitative measure of the probability of failure.  Controlling the size of the overlapped 
area is essentially the idea behind reliability-based design.  Haldar and Mahadevan [9] pointed out 
that the area could be controlled by changing the relative locations of the two PDFs by separating the 
mean values of R and S ( µ R  and µ S ), the uncertainty expressed in terms of their standard deviations 

(σ R  and σ S ), and the shape of the PDFs [ f rR    and f sS   ]. 

In general, the CDF of and the PDF of S may not be available in explicit forms and the integration of (1) may 
not be practical. However, (1) can be evaluated, without performing the integration if R and S are both 
statistically independent normal [15] or lognormal [16] random variables. Considering the practical aspects of a 
design, since R and S can be linear and nonlinear functions of many other random variables, their normality or log 
normality assumptions can rarely be satisfied.  
 
If the risk cannot be evaluated in close form, it needs to be evaluated in approximate ways. This led to the 
development of several reliability analysis techniques. Initially, in late sixties, the first-order second-
moment (ROSM) method, also known as the mean value first-order second-moment (MVFOSM) was 
proposed neglecting the distributional information on the random variables present in the problem.  
This important deficiency was overcome by the advanced first-order second-moment (AFOSM) 
method applicable when all the variables are assumed to be normal and independent [13]. A more 
general formulation applicable to different types of distribution was proposed by Rackwitz and 
Fiessler [14]. In the context of AFOSM, the probability of failure can be estimated using two types of 
approximations to the limit state at the design point: first order (leading to the name FORM) and 
second order (leading to the name SORM).  Since FORM is a major reliability evaluation technique 
commonly used in the profession, it is discussed in more detail below. 
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where ( )sFR  is the cumulative distribution 
function (CDF) of R evaluated at s. Conceptually, (1) 
states that for a particular value of the random variable 
S = s, ( )sFR  is the probability of failure.  However, 
since S is also a random variable, the integration needs 
to be carried out for all possible values of S, with their 
respective likelihood represented by the corresponding 
PDF.  Equation 1 can be considered as the fundamental 
equation of the reliability-based design concept.  It 
is shown in Fig. 1. In Fig. 1, the nominal values of 
resistance and load effect are denoted as Rn and Sn, 
respectively, and the corresponding PDFs of R and 
S are shown period. The overlapped (dashed area) 
between the two PDFs provides a qualitative measure 
of the probability of failure.  Controlling the size of 
the overlapped area is essentially the idea behind 
reliability-based design.  Haldar and Mahadevan 
[9] pointed out that the area could be controlled by 
changing the relative locations of the two PDFs by 
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the uncertainty expressed in terms of their standard 
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In general, the CDF and the PDF of S may not be 
available in explicit forms and the integration of (1) 
may not be practical. However, (1) can be evaluated, 
without performing the integration if R and S are both 
statistically independent normal [15] or lognormal [16] 
random variables. Considering the practical aspects 
of a design, since R and S can be linear and nonlinear 
functions of many other random variables, their 
normality or log normality assumptions can rarely be 
satisfied. 

If the risk cannot be evaluated in close form, it needs 
to be evaluated in approximate ways. This led to the 
development of several reliability analysis techniques. 
Initially, in the late 1960s, the first-order second-
moment (FOSM) method, also known as the mean 
value first-order second-moment (MVFOSM) was 
proposed neglecting the distributional information 
on the random variables present in the problem.  This 

important deficiency was overcome by the advanced 
first-order second-moment (AFOSM) method 
applicable when all the variables are assumed to 
be normal and independent [13]. A more general 
formulation applicable to different types of distribution 
was proposed by Rackwitz and Fiessler [14]. In the 
context of AFOSM, the probability of failure can be 
estimated using two types of approximations to the 
limit state at the design point: first order (leading to the 
name FORM) and second order (leading to the name 
SORM).  Since FORM is a major reliability evaluation 
technique commonly used in the profession, it is 
discussed in more detail below. 

Pr
ob

ab
ili

ty
 d

en
si

ty
 fu

nc
tio

n

Figure 1. Reliability based design concept [9]

The basic idea behind reliability-based design is 
to design satisfying several performance criteria and 
considering the uncertainties in the relevant load and 
resistance-related random variables, called the basic 
variables Xi.  Since the R and S random variables in 
(1) are functions of many other load and resistance-
related random variables, they are generally treated as 
basic random variables.  The relationship between the 
basic random variables and the performance criterion, 
known as the performance or limit state function, can 
be mathematically represented as:

Z = g(X1, X2, …, Xn)                                (2)

The failure surface or the limit state of interest 
can then be defined as Z = 0.  The limit state equation 
plays an important role in evaluating reliability using 
FORM/SORM.  It represents the boundary between 
the safe and unsafe regions and a state beyond which 
a structure can no longer fulfill the function for which 
it was designed.  Assuming R and S are the two basic 
random variables, the limit state equation, and the safe 
and unsafe regions are shown in Fig. 2.  
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A limit state equation can be an explicit or 
implicit function of the basic random variables and 
can be linear or nonlinear. For nonlinear limit state 
functions, an iterative strategy is required to estimate 
the probability of failure as discussed by Haldar and 
Mahadevan [9], elsewhere. Two types of performance 
functions are generally used in engineering: strength 
and serviceability. Strength performance functions 
relate to the safety of the structures and serviceability 
performance functions are related to the serviceability 
(deflection, vibration, etc.) of the structure. The 
reliabilities underlying the strength and serviceability 
performance functions are expected to be different.

reliability assessment – implicit limit State 
functions

Reliability evaluation using FORM is relatively 
simple if the limit state function is explicit in terms 
of design variables. In this case, the derivatives of the 
limit state functions with respect to design variables are 
readily available; the iterative process necessary for the 
reliability evaluation becomes very straight forward. 
However, in many cases of practical importance, 
particularly for complicated large systems, the explicit 
expressions for the limit state functions may not be 
available. For such systems, the required functions 
need to be generated numerically such as the finite 
element analysis. In such cases, the derivatives are not 
readily available. Their numerical evaluation could 
be time-consuming. Some alternatives are necessary.

based analysis. Monte Carlo simulation uses 
randomly generated samples of input variables 
for each deterministic analysis. Its efficiency can 
be increased using intelligent schemes, as will be 
discussed later. It can be used for both explicit and 
implicit limit state functions. The RSM approximately 
constructs a polynomial (mainly first- or second-
order) using a few selected deterministic analyses, 
and in some cases regression analysis of these 
results. The approximate closed-form expression thus 
obtained is then used to estimate reliability using 
FORM/SORM.  In the sensitivity-based approach, 
the sensitivity of the structural response to the input 
variables is computed and it can be integrated with 
the FORM approach to extract the information on the 
underlying relaibility.  The value of the performance 
function is evaluated using deterministic structural 
analysis.  The gradient is computed using sensitivity 
analysis. When the limit state function is implicit, 
the sensitivities can be computed in three different 
ways: (i) through a finite difference approach, (ii) 
through classical perturbation methods that apply 
the chain rule of differentiation to finite element 
analysis, and (iii) through iterative perturbation 
analysis techniques [10]. The sensitivity-based 
reliability analysis approach is more elegant and 
in general more efficient than the simulation and 
response surface methods. Haldar and Mahadevan 
[10] suggested the use of the iterative perturbation 
technique in the context of the basic nonlinear 
stochastic finite element method (SFEM)-based 
algorithm.

Unified Stochastic Finite Element Method

Without losing any generality, the limit state 
function can be expressed in terms of the set of basic 
random variables x (e.g., loads, material properties 
and structural geometry), the set of displacements u 
and the set of load effects s (except the displacements) 
such as internal forces, stresses, etc. The displacement 
u = Qd, where d is the global displacement vector 
and Q is a transformation matrix.  The limit state 
function can be expressed as 0),,( =suxg . For 
reliability computation, it is convenient to transform 
x into the standard normal space y = y(x) such that 
the elements of y are statistically independent and 
have a standard normal distribution. An iteration 
algorithm can be used to locate the design point (the 
most likely failure point) on the limit state function 
using the first-order approximation. During each 
iteration, the structural response and the response 
gradient vectors are calculated using finite element 

Figure 2. Limit state concept [9,10]

Several computational approaches can be pursued 
for reliability analysis of systems with implicit 
performance functions.  They can be broadly divided 
in to three categories, based on their essential 
philosophy, as (1) Monte Carlo simulation (MCS), (2) 
response surface method (RSM), and (3) sensitivity-
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models. The following iteration scheme can be used 
for finding the coordinates of the design point:
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To implement the algorithm, the gradient ∇g yb gof 
the limit state function in the standard normal space 
can be derived as [10]:
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where Ji,j’s are the Jacobians of transformation (e.g., Js,x=∂s/∂x) and yi’s are statistically independent 
random variables in the standard normal space.  The evaluation of the quantities in Equation (5) will 
depend on the problem under consideration (linear or nonlinear, two- or three-dimensional, etc.) and 
the performance functions used.  The essential numerical aspect of SFEM is the evaluation of three 
partial derivatives, ∂g/∂s, ∂g/∂u, and ∂g/∂x, and four Jacobians, Js,x, Js,D, JD,x, and Jy,x.  They can be 
evaluated by peocedures suggested by Haldar and Mahadevan [10] for linear and nonlinear, two- or 
three-dimensional structures.  Once the coordinates of the design point y* are evaluated with a 
preselected convergence criterion, the reliability index β can be evaluated as: 
 

 *t* )()( yy=β   (6) 
 
The evaluation of (5) will depend on the problem under consideration and the limit state functions 
used.   The probability of failure, Pf,  can be calculated as: 
 

  
Pf = − = −Φ Φβ β   10.

      (7) 
 
where Φ is the standard normal cumulative distribution function.  Equation (7) can be considered as a 
notational failure probability. When the reliability index is larger, the probability of failure will be 
smaller. The author and his team published numerous papers to validate the above procedure.  
 
RELIABILITY ASSESSMENT - PRESENT 
 
Available Risk Evaluation Methods for Large Structures               
 
As mentioned earlier, one of the alternatives for reliability analysis of large structures with implicit limit 
state functions is the use of the RSM [17]. The primary purpose of applying RSM in reliability analysis 
is to approximate the original complex and implicit limit state function using a simple and explicit 
polynomial [18,19,20]. Three basic weaknesses of RSM that limits its application potential are: (i) it 
cannot incorporate distribution information of random variables, (ii) if the response surface (RS) is not 
generated in the failure region, it may not be directly applicable, and (iii) for large systems, it may not 
give the optimal sampling points. Thus, a basic RSM-based reliability method may not be applicable for 
large structures. 
 
Before suggesting strategies on how to remove deficiencies in RSM, it is necessary to briefly discuss 
other available methods to generate RS.  In recent past, several methods with the general objective of 
approximately developing multivariate expressions for RS for mechanical engineering applications 
were proposed. One such method is High Dimensional Model Representation (HDMR) [21,22]. It is 
also referred to as “Decomposition method”, “Univariate approximation”, “Bivariate approximation”, 
“S−variate approximation”, etc. HDMR captures the high-dimensional relationships between sets of 
input and output model variables in such a way that the component functions of the approximation are 
ordered starting from a constant and adding terms such as first order, second order, and so on. The 
concept appears to be reasonable if higher-order variable correlations are weak, allowing the physical 
model to be captured by the first few lower-order terms.  
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The evaluation of the quantities in Equation (5) 
will depend on the problem under consideration 
(linear or nonlinear, two- or three-dimensional, etc.) 
and the performance functions used.  The essential 
numerical aspect of SFEM is the evaluation of three 
partial derivatives, ∂g/∂s, ∂g/∂u, and ∂g/∂x, and 
four Jacobians, Js,x, Js,D, JD,x, and Jy,x.  They can be 
evaluated by peocedures suggested by Haldar and 
Mahadevan [10] for linear and nonlinear, two- or 
three-dimensional structures.  Once the coordinates 
of the design point y* are evaluated with a preselected 
convergence criterion, the reliability index β can be 
evaluated as:

 *t* )()( yy=β
                                

(6)

The evaluation of (5) will depend on the problem 
under consideration and the limit state functions used.   
The probability of failure, Pf,  can be calculated as:

Pf = − = −Φ Φβ βb g b g10.
                   (7)

where Φ is the standard normal cumulative 
distribution function.  Equation (7) can be considered 
as a notational failure probability. When the reliability 
index is larger, the probability of failure will be 
smaller. The author and his team published numerous 
papers to validate the above procedure. 

reliability assessment - Present

available risk Evaluation Methods for large 
Structures               

As mentioned earlier, one of the alternatives for 
reliability analysis of large structures with implicit limit 
state functions is the use of the RSM [17]. The primary 
purpose of applying RSM in reliability analysis is to 
approximate the original complex and implicit limit 
state function using a simple and explicit polynomial 
[18,19,20]. Three basic weaknesses of RSM that limits 
its application potential are: (i) it cannot incorporate 
distribution information of random variables, (ii) if the 
response surface (RS) is not generated in the failure 
region, it may not be directly applicable, and (iii) for 
large systems, it may not give the optimal sampling 
points. Thus, a basic RSM-based reliability method 
may not be applicable for large structures.

Before suggesting strategies on how to remove 
deficiencies in RSM, it is necessary to briefly 
discuss other available methods to generate RS.  
In recent past, several methods with the general 
objective of approximately developing multivariate 
expressions for RS for mechanical engineering 
applications were proposed. One such method is 
High Dimensional Model Representation (HDMR) 
[21,22]. It is also referred to as “Decomposition 
method”, “Univariate approximation”, “Bivariate 
approximation”, “S−variate approximation”, etc. 
HDMR captures the high-dimensional relationships 
between sets of input and output model variables 
in such a way that the component functions of the 
approximation are ordered starting from a constant 
and adding terms such as first order, second order, 
and so on. The concept appears to be reasonable if 
higher-order variable correlations are weak, allowing 
the physical model to be captured by the first few 
lower-order terms. 

Another major work is known as the Explicit 
Design Space Decomposition (EDSD). It can be used 
when responses can be classified into two classes, 
e.g., safe and unsafe. The classification is performed 
using explicitly defined boundaries in space. A 
machine learning technique known as Support Vector 
Machines (SVM) [23] is used to construct the 
boundaries separating distinct classes. The failure 
regions corresponding to different modes of failure 
are represented with a single SVM boundary, which 
is refined through adaptive sampling.
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improvement of rSM 

To bring distributional information of random 
variables and to efficiently locate the failure region 
for large complicated systems, the author proposed 
to integrate RSM and FORM. The integration can be 
carried out with the help of following tasks. 

Degree of Polynomial

The degree of polynomial used to generate a 
response surface (RS) should be kept to a minimum 
to increase efficiency. At present, second order 
polynomial without and with cross terms are generally 
used to generate response surfaces. Recently, Li 
et al. [24] proposed high-order response surface 
method (HORSM). The method employs Hermite 
polynomials and the one-dimensional Gaussian 
points as sampling points to determine the highest 
power of each variables. Considering the fact that 
higher order polynomial may result in ill-conditional 
system of equations for unknown coefficients and 
exhibit irregular behavior outside of the domain of 
samples, for complicated large systems, second-order 
polynomial, without and with cross terms can be used. 
They can be represented as:  
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to be |0.05|. The second deficiency of RSM will be 
removed by locating the failure region using the 
above scheme.

Selection of Sampling Points

Saturated design (SD) and central composite 
design (CCD) are the two most promising schemes 
that can be used to generate experimental sampling 
points around the centre point.  SD is less accurate but 
more efficient since it requires only as many sampling 
points as the total number of unknown coefficients to 
define the response surface.  CCD is more accurate 
but less efficient since a regression analysis needs to 
be carried out to evaluate the unknown coefficients.  
The details of experimental design procedures can be 
found in [17,20]. In any case, the use of SD or CCD will 
remove the third deficiency of RSM.

Since the proposed algorithm is iterative and 
the basic SD and CCD require different amount of 
computational effort, considering efficiency without 
compromising accuracy, several schemes can be 
followed. Among numerous schemes, one basic and 
two promising schemes are:

Scheme 0 – Use SD with 2nd order polynomial without 
the cross terms throughout all the iterations. 
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Scheme 1- Use (8) and SD for the intermediate 
iterations and (9) and full SD for the final iteration.

Scheme 2 – Use (8) and SD for the intermediate 
iterations and (9) and CCD for the final iteration.

To illustrate the computational effort required for 
the reliability evaluation of large structural system, 
suppose the total number of sensitive random 
variables present in the formulation is, k = 40. The total 
number of coefficients necessary to define Equation 
8 will be 2 × 40 + 1 = 81 and to define Equation 9 will 
be (40 + 1) (40 + 2) / 2 = 861. It can also be shown that 
if Equation 8 and SD scheme are used to generate the 
response surface, the total number of sampling points, 
essentially the total number of deterministic FE-based 
response analyses will be 81. However, if Equation 
9 and full SD scheme are used, the corresponding 
deterministic analyses will be 861. If Equation 9 and 
CCD scheme are used, the corresponding deterministic 
analyses will be 240 + 2 × 40 + 1 = 1,099,511,160,081. 

Mathematical Representation of Large Systems 
for Reliability Evaluation

The phrase “probability of failure” implies that 
the risk needs to be evaluated just before failure in the 
presence of several sources of nonlinearities. Finite 
element (FE)-based formulations are generally used to 
realistically consider different sources of nonlinearity 
and other performance enhancing features with 
improved energy dissipation mechanism now being 
used after the Northridge earthquake of 1994. Thus, 
for appropriate reliability evaluation, it is essential 
that structures are represented realistically by FEs and 
all major sources of nonlinearity and uncertainty are 
appropriately incorporated in the formulation.

 To study the behavior of frame structures 
satisfying underlying physics, consideration of 
appropriate rigidities of connections is essential. In 
a typical design, all connections are considered to 
be fully restrained (FR), i.e., the angles between the 
girders and columns, before and after the application 
of loads, will remain the same. However, extensive 
experimental studies indicate that they are essentially 
partially restrained (PR) connection with different 
rigidities. In a deterministic analysis, PR connections 
add a major source of nonlinearity. In a dynamic 
analysis, it adds a major source of energy dissipation.  
In reliability analysis, it adds a major source of 
uncertainty. In general, the relationship between the 
moment M, transmitted by the connection, and the 
relative rotation angleθ, is used to represent the flexible 

behavior. Among the many alternatives (Richard 
model, piecewise linear model, polynomial model, 
exponential model, B-Spline model, etc.), the Richard 
four-parameter moment-rotation model is chosen here 
to represent the flexible behavior of a connection. It is 
expressed as [26]:

 

9 
 

connections add a major source of nonlinearity. In a dynamic analysis, it adds a major source of 
energy dissipation.  In reliability analysis, it adds a major source of uncertainty. In general, the 
relationship between the moment M, transmitted by the connection, and the relative rotation angleθ, is 
used to represent the flexible behavior. Among the many alternatives (Richard model, piecewise 
linear model, polynomial model, exponential model, B-Spline model, etc.), the Richard four-
parameter moment-rotation model is chosen here to represent the flexible behavior of a connection. It 
is expressed as [26]: 
 

                                                   

θ
θ

θ
p

NN

0

p

p k

M

kk

kk
M +













 −
+

−
=

1

)(
1

)(

                                                

(12) 

    

where M is the connection moment, θ is the relative rotation between the connecting elements, k is the 
initial stiffness, kp is the plastic stiffness, M0 is the reference moment, and N is the curve shape 
parameter.  These parameters are identified in Fig. 3. To incorporate flexibility in the connections, a 
beam-column element can be introduced to represent each connection. However, its stiffness needs to 
be updated at each iteration since the stiffness representing the partial rigidity depends onθ. The 
tangent stiffness of the connection element, KC(θ), can be shown to be: 
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The Richard model discussed above represents only the monotonically increasing loading portion of 
the M-θ curves. However, the unloading and reloading behavior of the M-θ curves is also essential for 
any nonlinear seismic analysis [27]. Using the Masing rule and the Richard model, Huh and Haldar 
[28] theoretically developed the unloading and reloading parts of the M-θ curves. The tangent 
stiffness for the unloading and reloading behavior of a PR connection can be represented as: 
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As shown in Fig. 3, this represents hysteretic behavior at the PR connections. The basic FE 
formulation of the structure remains unchanged. 


 
During the Northridge earthquake of 1994, several connections in steel frames fractured in a brittle 
and premature manner. A typical connection, shown in Fig. 4, was fabricated with the beam flanges 
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As shown in Fig. 3, this represents hysteretic behavior at the PR connections. The basic FE 
formulation of the structure remains unchanged. 
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Pre- and post-northridge Pr connections

During the Northridge earthquake of 1994, several 
connections in steel frames fractured in a brittle and 
premature manner. A typical connection, shown in 
Fig. 4, was fabricated with the beam flanges attached 
to the column flanges by full penetration welds (field-
welded) and with the beam web bolted (field-bolted) 
to single plate shear tabs [29], denoted hereafter as 
the pre-NC. 

Examples

A three-story three-bay steel frame, as shown 
in Fig. 6, is considered. Section sizes of beams and 
columns, using A36 steel, are also shown in the figure. 
It was excited by a seismic time history shown in Fig. 
7 [28,31].

The four parameters of the Richard model are 
calculated by PRCONN [32], a commercially available 
computer program for both Pre-NC and Post-NC 
connections. For the example under consideration, 
considering the sizes of columns and beams, three 
types of connection are necessary. They are denoted as 
Types A, B, and C, hereafter. Four Richard parameters 
for both Pre-NC and Post-NC connections are 
summarized in Table 1.

Limit states or performance functions

In structural engineering, both strength and 
serviceability limit states are used for reliability 

Figure 3. M-θ curve using the Richard Model, Masing rule and 
uncertainty

In the post-Northridge design practices, the 
thrusts were to make the connections more flexible 
than the pre-NC and to move the location of formation 
of any plastic hinge away from the connection and 
to provide more ductility to increase the energy 
absorption capacity.  Several improved connections 
can be found in the literature including cover plated 
connections, spliced beam connections, side-plated 
connections, bottom haunch connections, connections 
with vertical ribs, and connections with a reduced 
beam sections (RBS) or Dog-Boned (FEMA 350-3).  
Seismic Structural Design Associates, Inc. (SSDA) 
proposed a unique proprietary slotted web (SSDA 
SlottedWebTM) moment connection [29], as shown in 
Fig. 5, denoted hereafter as the post-NC.  The author 
was given access to some of the actual SSDA full-scale 
test results. Using the four parameters Richard model, 
the research team first proposed a mathematical model 
to represent moment-relative rotation (M-θ) curves for 
this type of connections [30]. 

Figure 4.  A typical pre-NC

Figure 5.  A typical post-NC
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Figure 6.  A 3-story 3-bay SMRF structure            

Figure 7. Earthquake time history           

Table 1.  Parameters of Richard Equation for M-θ 
Curves

Connection Assembly 
Type

Connection Parameters

ID. Beam Column k1 kp
1 M0

2 N

Pr
e-

N
C

A
W24×68 W14×257

2.51E7 5.56E5 4.16E4 1.1
W24×68 W14×311

B
W33×118 W14×257

5.08E7 1.14E5 6.79E4 1.1
W33×118 W14×311

C
W30×116 W14×257

3.95E7 9.19E5 5.65E4 1.1
W30×116 W14×311

Po
st

-N
C

A
W24×68 W14×257

1.00E9 4.52E5 9.64E4 1.0
W24×68 W14×311

B
W33×118 W14×257

2.34E9 4.52E5 2.44E5 1.0
W33×118 W14×311

C
W30×116 W14×257

2.14E9 4.52E5 2.21E5 1.0
W30×116 W14×311

Note: 1kN·cm/rad, 2kN·cm

estimation. The strength limit states mainly depend on 
the failure modes. Most of the elements in the structural 
system considered are beam-columns. The interaction 

table 2.  Statistical information on the design 
variables

item random 
Variable

Mean 
Value CoV dist.

M
em

be
r

All E(kN/m2) 2.0 E+8 0.06 Ln
Fy(kN/m2) 2.48E+5 0.10 Ln

Column

W14×257

Ix
C1(m4) 1.42E-3 0.05 Ln

Zx
C1(m3) 7.98E-3 0.05 Ln

Column 
W14×311

AC2(m2) 5.90E-2 0.05 Ln
Ix

C2(m4) 1.80E-3 0.05 Ln
Beam  

W33×118 Ix
B2(m4) 2.46E-3 0.05 Ln

Beam  
W30×116

Ix
B3(m4) 2.05E-3 0.05 Ln

Zx
B3(m3) 6.19E-3 0.05 Ln

Seismic Load ξ 0.05 0.15 Type I
ge 1.0 0.20 Type I

C
on

ne
ct

io
n

Richard 
Model 

Parameter

K1

Refer to 
values 

in 
Table 3

0.15 N
kp

1 0.15 N
M0

2 0.15 N

N 0.05 N

Shear Wall* EC(kN/m2) 2.14E+7 0.18 Ln
ν 0.17 0.10 Ln

table 3. reliability evaluation of fr frame

limit State

Service-
ability

Strength limit 
State

node at 1 beam 
(B1)

Column  
(C1)

M
C

S Pf 0.08740 N/A*3 N/A*3

β≈Φ-1(1-Pf) 1.357 N/A N/A
NOS*1 20,000 30,000 30,000

Pr
op

os
ed

 
A

lg
or

ith
m

No. of RV 8 6 6
Scheme 1 2 2
β 1.330 4.724 5.402
Error w.r.t β 1.99% N/A N/A
TNSP*2 79 103 103

*1 number of simulation for deterministic FEM 
analyses

*2 total number of sampling points (total number 
of deterministic FEM analyses)

*3 Not a single failure observed for 30,000cycles 
of simulation since large reliability indexes are 
expected in the strength limit state.

equations suggested by the American Institute of Steel 
Construction’s Load and Resistance Factor Design (LRFD 
2005) [33] manual for two dimensional structures are 
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used in this study. The serviceability limit states can 
be represented as:

 
                

(15)

where δallow is the allowable inter-story drift or 
overall lateral displacement specified in codes and 
ymax(X) is the corresponding the maximum inter-story 
drift or overall lateral displacement estimated.

reliability Evaluations of frame with different 
Connection Conditions, without rC Shear wall

The statistical characteristics of all the design 
variables used in the formulation are summarized 
in Table 2. The probabilities of failure of the frame 
for the lateral deflection at the top of the frame for 
serviceability limit state and the strength limit state of 
the weakest members are estimated assuming all the 
connections are of FR type. The results are summarized 
in Table 3. To verify the results, 20,000 MCS for the 
serviceability and 30,000 MCS for the strength limit 
states were carried out. The results clearly indicate that 
the bare steel frame will not satisfy the serviceability 
requirement. Then, the reliabilities of the frame are 
estimated assuming all the connections are Post-NC 
and Pre-NC types and the results are summarized in 
Table 4. The behaviour of the frame in the presence of 
FR and Post-NC for both serviceability and strength 
limit states are very similar. This was also observed 
during the full-scale experimental investigations. 
This observation clearly indicates that the method 
can predict realistic behaviour of complex structural 
systems. In any case, the lateral stiffness of the frame 
needs to be increased.

reliability Evaluations of frames with different 
Connection Conditions with rC Shear wall

To increase the lateral stiffness, the steel frame 
is strengthen with a reinforced concrete (RC) shear 
wall at the first floor level, as shown in Fig. 6. For the 

steel and concrete dual system, all the steel elements 
in the frame are modeled as beam-column elements.  
A four-node plane stress element is introduced for 
the shear wall in the frame. To consider the presence 
of RC shear wall, the modulus of elasticity, EC, and 
the Poisson ratio of concrete,ν, are necessary in the 
deterministic formulation.  Cracking may develop at 
a very early stage of loading.  It was observed that the 
degradation of the stiffness of the shear walls occurs 
after cracking and can be considered effectively by 
reducing the modulus of elasticity of the shear walls 
[34]. The rupture strength of concrete, fr, is assumed 
to be '5.7 cr ff ×= , where fc

’ is the compressive 
strength of concrete. After the tensile stress of each 
shear wall exceeds the prescribed tensile stress of 
concrete, the degradation of the shear wall stiffness is 
assumed to be reduced to 40% of the original stiffness 
[34]. The uncertainty in all the variables considered for 
the bare steel frame will remain the same.  However, 
two additional sources of uncertainty, namely in EC 
and ν, need to be considered, as given in Table 2.

The frame is again excited by the same earthquake 
time history as shown in Fig. 7. The probabilities of 
failure for the combined dual system in presence of 
FR, Post-NC, and Pre-NC connections are calculated 
using the proposed algorithm for the strength and 
serviceability limit states. The results are summarized 
in Table 4. The results indicate that the presence of 
shear wall at the first floor level significantly improves 
both the serviceability and strength behavior of the 
steel frame. If the probabilities of failure need to be 
reduced further, RC shear walls can be added in the 
second and/or third floor. Again, this improved 
behavior can be observed and quantified by carrying 
out about hundred deterministic evaluations instead 
of thousands of MCS. The improved behavior of the 
frame in the presence of RC shear wall is expected, 
however, the proposed algorithm can quantify the 
amount of improvement in terms of probability of 
failure for different design alternatives. 

table 4.  reliability evaluations of frame without and with shear wall

Steel frame without Shear wall Steel frame with Shear wall
Connection type Connection type

fr Post-nC Pre-nC fr Post-nC Pre-nC
Serviceability Limit State (Node 1)

β 1.330 1.329 0.463 β 3.667 3.534 1.685
Pf ≈ Φ(-β) 0.092 0.092 0.322 Pf ≈ Φ(-β) 1.2E-4 2.0E-4 4.6E-2

No. of R.V. 8 20 20 No. of R.V. 10 22 22
TNSP 79 313 313 TNSP 108 366 366
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Strength Limit State
β 4.724 4.756 3.681 β 6.879 6.714 4.467

Beam Pf ≈ Φ(-β) 1.16E-6 9.87E-7 1.16E-4 Pf ≈ Φ(-β) 3.01E-12 9.477E-12 3.97E-6
No. of R.V. 6 18 18 No. of R.V. 8 20 20

TNSP 103 264 264 TNSP 79 313 313
Column β 5.402 5.376 4.154 β 6.879 6.714 4.467

Pf ≈ Φ(-β) 3.30E-8 3.81E-8 1.63E-5 Pf ≈ Φ(-β) 3.01E-12 9.47E-12 3.97E-6
No. of R.V. 6 18 18 No. of R.V. 8 20 20

TNSP 103 264 264 TNSP 79 313 313

reliability assessment - future

Reliability Evaluation of Large Structural 
Systems 

In some studies considered by the author, one 
deterministic nonlinear dynamic analysis of large 
structures may take over 10 hours of computer time. If 
one has to use very small, say only 100 simulations, it 
may take 1,000 hours or over 41 days of uninterrupted 
running of a computer. The author proposed to 
estimate reliability of such systems using only tens 
instead of hundreds or thousands of deterministic 
evaluations at intelligently selected points to extract 
the reliability information. The procedure is still 
under development. The concept is briefly discussed 
below.

Scheme M1: To improve the efficiency of Scheme 
1 discussed earlier, the cross terms (edge points), k 
(k-1), are suggested to be added only for the most 
important variables in the last iteration. Since the 
proposed algorithm is an integral part of FORM, all the 
random variables in the formulation can be arranged 
in descending order of their sensitivity indexes α(Xi), 
i.e., α(X1)> α(X2) >α(X3)…….. >α(Xk). The sensitivity of 
a variable X, α(X) is the directional cosines of the unit 
normal vector at the design point. In the last iteration, 
the cross terms are added only for the most sensitive 
random variables, m and the corresponding reliability 
index is calculated. The total number of FEM analyses 
required for Scheme 1 and M1 are (k +1)(k +2)/2 and 
2k +1 + m(2k-m-1)/2, respectively. For an example, 
suppose for a large structural system, k = 40 and m = 
3. The total number of required FEM analyses will be 
861 and 195, respectively, for the two schemes.

Scheme M2: Instead of using full factorial plan 
in CCD, Myers et al. [35] recently proposed quarter 
factorial plan. This improved and efficient version of 
Scheme 2 will be denoted hereafter as Scheme M2. 
In Scheme M2, it is proposed that only quarter of the 

factorial points corresponding to the most sensitive 
random variables are to be considered. In other words, 
in the last iteration, the variables are to be arranged in 
descending order according to their sensitivity indexes 
α(Xi), i.e., α(X1)> α(X2) >α(X3)…….. > α(Xk). Then, the 
factorial sampling points are determined by using the 
values +1 and -1, in the coded space, for X1, X2, X3, … , 
until the number of quarter of factorial sampling = 
0.25×2k = 2k-2.  

risk Management

Since risk cannot be completely eliminated 
in engineering analysis and design, it needs to 
be managed appropriately.  It is undesirable and 
uneconomical, if not impossible, to design a risk-free 
structure. According to Raiffa [36], the decision or 
management can be subdivided in to risk or data 
analysis, inference, and decision. Risk analysis is 
discussed in the first part of the paper. Inference 
attempts to incorporate additional scientific knowledge 
in the formulation that may have been ignored in 
the previous data analysis. The decision is the final 
outcome of any risk-based engineering design. 
For a given structure, the risks for different design 
alternatives can be estimated. The information on 
risk and the corresponding consequences of failure, 
including the replacement cost, can be combined 
using a decision analysis frame work to obtain the best 
alternative. Thus, the probability concept provides a 
unified framework for quantitative analysis of risk as 
well as the formulation of trade-off studies for decision 
making, planning, and design considering economic 
aspects of the problem.  

The relevant components of a decision analysis 
are generally described in the form of a decision tree 
[37]. The decision tree helps to organize all necessary 
information in a systematic manner suitable for 
analytical evaluation of the optimal alternative. A 
decision making process starts by choosing an action, 
a, from among the available alternatives actions (a1, 
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a2, …, an), called decision variables. They branch out 
from a square node or a decision node. Once a decision 
has been made, a natural outcome θ from among all 
possible states, θ1,  θ2, …, θn, would materialize. All 
possible states are beyond the control of a decision 
maker; they are shown to originate from a circular 
node, called the chance node. Each natural outcome 
based on the action taken is expected to have a 
different risk of success or failure and expressed in 
terms of probability P(θi | ai) period. As a result of 
having taken action a and having found true state  θ, 
a decision maker will obtain a utility value u(a, θ), a 
numerical measure of the consequences of this action-
state pair. A general decision analysis frame work 
may contain the following necessary components: (1) 
decision variables, (2) consequence, (3) risk associated 
with each alternative, and (4) identification of the 
decision maker and the decision criteria. 

future directions

Artificial Neural Networks and Soft Computing

The application of artificial neural networks 
(ANN), the more generic term used by the research 
community as soft computing, in civil engineering 
has been significant in the very recent past [38].  
In addition to ANN, the other soft computing 
techniques include Genetic Algorithm, Evolutionary 
computation, Machine learning, Organic computing, 
Probabilistic reasoning, etc. The applicability of these 
techniques could be problem specific, some of them 
can be combined, or one technique can be used when 
another failed to meet the objectives of the study.  
Soft computing differs from conventional hard 
computing. Unlike hard computing, soft computing is 
tolerant of imprecision, uncertainty, partial truth, and 
approximation. To some extent, it essentially plays a 
role similar to human mind. 

incorporation of Cognitive Sources of 
uncertainty

Being a reliability person, I feel I should address 
this subject very briefly. Most of the works on 
reliability-based structural engineering incorporate 
noncognitive (quantitative) sources of uncertainty 
using crisp set theory. Cognitive or qualitative 
sources of uncertainty are also important.  They come 
from the vagueness of the problem arising from the 
intellectual abstractions of reality. To incorporate 
cognitive sources of uncertainty, fuzzy set theory is 
generally used.  

Education

Lack of education could be a major reason for 
avoidance of using the reliability based design 
concept by the profession. If closed form relibaility 
analysis is not possible and the design codes do 
not cover the design of a particular structure, at the 
minimum “simulation” can be used to satisfy the 
intent of the codes.  In Europe, highway and railway 
companies are using simulation for assessment 
purposes.  In the U.S., the general feeling is that we 
are safe if we design according to the design code. 
Designers should use all available means to satisfy 
performance requirements, according to a judge. The 
automotive industry satisfied the code requirements 
in one case.  However, according to a judge, they 
should have used simulation to address the problem 
more comprehensively. 

Some of the developments in the risk based design 
using simulation are very encouraging.  Simulation 
could be used in design in some countries, but it is 
also necessary to look at its legal ramification.  Unlike 
in Europe, in the U.S.A., a code is not a government 
document. It is developed by the profession and its 
acceptance is voted by the users and developers.  
It was pointed out that in some countries, code 
guidelines must be followed to the letters, and other 
countries permit alternative methods if they are 
better.  In Europe, two tendencies currently exist: 
Anglo-Saxon – more or less free to do anything, and 
middle-European – fixed or obligatory requirements. 
Current Eurocode is obligatory. We need to change 
the mentality and laws to implement simulation or 
reliability based design concept in addressing real 
problems. 

In the context of education of future structural 
engineers, the presence of uncertainty must be 
identified in design courses.  Reliability assessment 
methods can contribute to the transition from 
deterministic to probabilistic way of thinking of 
students as well as designers.  In the U.S., the 
Accreditation Board of Engineering and Technology 
(ABET) now requires that all civil engineering 
undergraduate students demonstrate knowledge 
of the application of probability and statistics to 
engineering problems, indicating its importance in 
civil engineering education.  Most of the risk based 
design codes are the by-product of education and 
research at the graduate level.  In summary, the 
profession is moving gradually in accepting the 
reliability based design concept.  
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Computer programs

The state-of-the-art in reliability estimation is 
quite advanced; however, it is not popular with the 
practicing engineers.  One issue could be the lack of 
availability of the user friendly software.  Two types 
of issues need to be addressed at this stage.  Reliability 
based computer software should be developed for 
direct applications or the reliability based design 
feature should be added to the commercially available 
deterministic software.  Some of the commercially 
available reliability based computer software is briefly 
discussed next.  

NESSUS (numerical evaluation of stochastic 
structures under stress) was developed by the 
Southwest Research Institute (SWRI, 1991) [39] under 
the sponsorship of NASA Lewis Research Center.  
It combines probabilistic analysis with a general-
purpose finite element/boundary element code.  The 
probabilistic analysis features an advanced mean 
value (AMV) technique.  The program also includes 
techniques such as fast convolution and curvature-
based adaptive importance sampling.

PROBAN (PROBability ANalysis) was developed 
at Det Norske Veritas, Norway, through A.S. Veritas 
Research (1991) [40]. PROBAN was designed to 
be a general purpose probabilistic analysis tool.  It 
is capable of estimating the probability of failure 
using FORM and SORM for a single event, unions, 
intersections, and unions of intersections.  The 
approximate FORM/SORM results can be updated 
through importance sampling simulation scheme.  
The probability of general events can be computed by 
Monte Carlo simulation and directional sampling.

CALREL (CAL-RELiability) is a general purpose 
structural reliability analysis program designed to 
compute probability integrals [41].  It incorporates 
four general techniques for computing the probability 
of failure: FORM, SORM, directional simulation 
with exact or approximate surfaces, and Monte 
Carlo simulation.  It has a library of probability 
distributions of independent as well as dependent 
random variables. 

Under the sponsorship of the Pacific Earthquake 
Engineering Research (PEER), McKenna et. al. [42] has 
developed a finite element reliability code within the 
framework of OpenSees.      

Structural engineers without formal education in 
risk based design may not be able to use the computer 
programs mentioned above.   They need to be retrained 
with very little effort.  They may be very knowledgeable 

using exiting deterministic analysis software including 
commercially available finite element packages.  This 
expertise needs to be integrated with risk based design 
concept.  Thus, probabilistic features may need to be 
added to the deterministic finite element packages.  
Proppe et al. [43] discussed the subject in great detail.  
For proper interface of deterministic software, they 
advocated for graphical user interface, communication 
interface which must be flexible enough to cope with 
different application programming interfaces and 
data format, and the reduction of the problem sizes 
before undertaking reliability analysis. COSSAN [44] 
software attempted to implement the concept.

The list of computer programs given here may not 
be exhaustive.  However, they are being developed 
and are expected to play a major role in implementing 
reliability based engineering analysis and design in 
the near future.

Conclusions

Engineering under uncertainty has evolved in the 
past several decades. It has attracted multidisciplinary 
research interest. A brief overview of the past, present, 
and future, in the author’s assessment is given here. 
Albert Einstein stated that “The important thing is not 
to stop questioning. Curiosity has its own reason for 
existing.” The profession is very curious on the topic 
and there is no doubt that future analysis and design 
of engineering structures will be entirely conducted 
using probability concept. 

acknowledgments

I would like to thank all my teachers for teaching 
me subjects that helped to develop my career and 
understanding of my life in a broader sense.  I also 
would like to thank all my former and current students 
who taught me subjects for which I did not have any 
formal education. They helped me explore some 
of the unchartered areas. I also appreciate financial 
supports I received from many funding agencies to 
explore several challenging and risky research areas.  
I would also like to thank the organizing committee 
of the International Symposium on Engineering under 
Uncertainty: Safety Assessment and Management 
(ISEUSAM- 2012) for inviting me to give the inaugural 
keynote speech.    

references
1. Richard RM Allen CJ and Partridge J E (1997) Proprietary 

slotted beam connection designs. Modern Steel 
Construction.

2. Jeffreys, H. (1961). Theory of Probability, Oxford University 
Press.

Achintya Haldar et al. / Life Cycle Reliability and Safety Engineering Vol. 1 Issue 4 (2012) 39-52



52 © 2012 SRESA All rights reserved

3. Laplace, P.S.M. (1951). A Philosophical Essay on Probabilities, 
(translated from the sixth French edition by F.W. Truscott 
and F.L. Emory), Dover Publications, New York. 

4. Fisher, R.A. (1959). Statistical Methods and Scientific Inference, 
Hafner, N.Y.

5. Freudenthal, A.M. (1947). Safety of Structures, Transactions, 
ASCE, Vol. 112, pp. 125-180.

6. Ang, A.H-S., and Cornell, C.A. (1974). Reliability Bases 
of Structural Safety and Design, Journal of Structural 
Engineering, ASCE, Vol. 100, No. ST9, pp. 1755-1769.

7. Ang, A.H-S and Tang, W.H. (1975). Probability Concepts in 
Engineering Design, Vol. I: Basic Principles, Wiley, N.Y.

8. Benjamin, J.R., and Cornell, C.A. (1970). Probability, Statistics, 
and Decision for Civil Engineers, McGraw-Hill, N.Y.

9. Ellingwood, B.R., Galambos, T.V., MacGregor, J.G., and 
Cornell, C.A. (1980). Development of Probability Based 
Load Criterion for American National Standard A58, NBS 
Special Publication 577, U.S. Department of Commerce, 
Washington, D.C.

10. Haldar, A., and Mahadevan, S. (2000a). Probability, 
Reliability and Statistical Methods in Engineering Design, John 
Wiley & Sons, New York, NY.

11. Haldar, A. and Mahadevan, S. (2000b). Reliability Assessment 
Using Stochastic Finite Element Analysis, John Wiley & Sons, 
New York, NY.

12. Shinozuka, M. (1983). Basic Analysis of Structural Safety, 
Journal of Structural Engineering, ASCE, Vol. 109, No. 3, 
pp. 721-740.

13. Rackwitz, R. (1976).  Practical Probabilistic Approach to Design, 
Bulletin No. 112, Comite European du Beton, Paris, France. 

14. Hasofar, A.M. and Lind, N.C. (1974). Exact and invariant 
second moment code format, J. of Engineering Mechanics, 
ASCE, 100(EM1), 111-121.

15. Rackwitz, R., and Fiessler, B. (1978). Structural Reliability 
under Combined Random Load Sequences, Computers 
and Structures, Vol. 9, No. 5, pp. 484-494.

16. Cornell, C.A. (1969). A Probability-Based Structural Code, Journal 
of the American Concrete Institute, Vol. 66, No. 12, pp. 974-985. 

17. Rosenbleuth, E., and Esteva, L. (1972). Reliability Bases for 
Some Mexican Codes, ACI publication SP-31, pp. 1-41. 

18. Box, G. P. William, G. H. & Hunter, J. S. (1978). Statistics 
for Experimenters: An Introduction to Design, Data Analysis 
and Modeling Building, John Wiley & Sons, New York.

19. Bucher, C.G. and Bourgund, U. (1990). A fast and efficient 
response surface approach for structural reliability 
problems, Structural Safety, 7, 57-66.

20. Yao, T. H.-J., and Wen, Y.K. (1996). Response surface 
method for time-variant reliability analysis, Journal of 
Structural Engineering, ASCE, 122(2): 193-201.

21. Khuri A.I. and Cornell, C.A. (1996). Response Surfaces Designs 
and Analyses, Marcel Dekker, New York, N.Y, 1996.

22. Rao, B.N. and Chowdhury, R. (2009). Enhanced high 
dimensional model representation for reliability analysis, 
International J. for Numerical Methods in Engineering, 
77(5): 719 –750.

23. Xu, H., and Rahman, S. (2005). Decomposition methods 
for structural reliability analysis, Probabilistic Engineering 
Mechanics 20: 239–250.

24. Basudhar, A. Missoum, S. and Harrison Sanchez, A. (2008). 
Limit state function identification using support vector 
machines for discontinuous responses and disjoint failure 
domains, Probabilistic Engineering Mechanics, 23(1): 1-11.

25. Li, H. Lu, Z. and Qiao, H. (2008). A new high-order response 
surface method for structural reliability analysis, 2008, 
personal communication.

26. Rajashekhar, M.R. and Ellingwood, B.R. (1993). A new look 
at the response surface approach for reliability analysis, 
Structural Safety, 12: 205-220.

27. Richard, R. M. and Abbott, B.J. (1975). Versatile elastic-
plastic stress-strain formula. Journal of Engineering 
Mechanics, ASCE, 101(EM4), 511-515.

28. Colson, A. (1991). Theoretical modeling of semi-rigid 
connection behavior, Journal of the Constructional Steel 
Research, 19: 213-224.

29. Huh, J., And Haldar, A. (2011). A Novel Risk Assessment 
Method for Complex Structural Systems, IEEE Transactions 
on Reliability, Vol. 60, No. 1, pp. 210-218. 

30. Richard, R.M.,  and Radau, R.E.,  (1998).  Force, 
Stress and Strain Distribution in FR Bolted Welded 
Connections,”Proceedings of Structural Engineering 
Worldwide, San Francisco, CA.

31. Mehrabian, A., Haldar, A., and Reyes, A. S. (2005). Seismic 
Response Analysis of Steel Frames with Post-Northridge 
Connection, Steel and Composite Structures, Vol. 5, No. 4, 
pp. 271-287.

32. Haldar, A., Farag, R., and Huh, J. (2010). Reliability 
Evaluation of Large Structural Systems, Keynote Lecture, 
International Symposium on Reliability Engineering and 
Risk Management (ISRERM2010), Shanghai, China, pp. 
131-142.

33. Richard, R. M., 1993, PRCONN Manual, RMR Design Group, 
Tucson, Arizona

34. American Institute of Steel Construction. (2005). Manual 
of Steel Construction: Load and Resistance Factor Design, 
Chicago, Illinois.

35. Lefas, D. Kotsovos, D. and Ambraseys, N. (1990). 
Behavior of reinforced concrete structural walls: strength, 
deformation characteristics, and failure mechanism, ACI 
Structural Journal, 87(1): 23-31.

36. Myers, R.H. Montgomery, D.C. and Anderson-Cook, C.M. 
(2009). Response Surface Methodology: Process and product 
optimization using designed experiments, John Wiley & Sons, 
New York, NY.

37. Raiffa, H. (1968). Decision Analysis, Addison-Wesley, 
Reading, Mass.

38. Haldar, A. (1980). Liquefaction Study – A Decision Analysis 
Framework, Journal of the Geotechnical Engineering 
Division, ASCE, Vol. 106, No. GT12, pp. 1297-1312. 

39. Kartam, N., Flood, I., and Garrett, J.H. (1997). Artificial 
Neural Networks for Civil Engineers, American Society of 
Civil Engineers, New York, N.Y.

40. Southwest Research Institute. (1991). NEUSS, San Antonio, 
Texas.

41. Veritas Sesam Systtems, PROBAN, Houston, Texas, 1991.
42. Liu, P.-L., Lin, H.-Z., and Der Kiureghian, A. (1989). 

CALREL, University of California, Berkeley, California.
43. McKenna, F., Fenves, G.L., and Scott, M.H., Open System for 

Earthquake Engineering Simulation, http://opensees.berkeley.
edu/, Pacific Earthquake Engineering Research Center, 
Berkeley, CA., 2002.

44. Proppe, C., Pradlwarter, H.J., and Schueller, G.I. 
(2001).  Software for stochastic structural analysis – 
needs and requirements,“  in Proc.  4th Int. Conf. on 
Structural Safety and Reliability ”AA Balkema Publishers, 
The Netherlands”, Corotis, R.B., Schueller, G.I., and 
Shinizuka, M., Eds.

45. COSSAN (Computational Stochastic Structural Analysis) 
– Stand – Alone Toolbox, (1996). User’s Manual, IfM – Nr: 
A, Institute of Engineering Mechanics, Leopold – Franzens 
University, Innsbruck, Austria.  

Achintya Haldar et al. / Life Cycle Reliability and Safety Engineering Vol. 1 Issue 4 (2012) 39-52



53 © 2012 SRESA All rights reserved

Past, Present, and future of Structural Health assessment

Achintya Haldar and Ajoy Kumar Das 

Department of Civil Engineering and Engineering Mechanics 
University of Arizona, Tucson, Arizona, U.S.A. 

E-mail: Haldar@u.arizona.edu

abStraCt

Past, present, and future of structural health assessment (SHA) concepts and related areas, as 
envisioned by the authors, are briefly reviewed in this paper. The growth in the related areas has 
been exponential covering several engineering disciplines. After presenting the basic concept, the 
authors discussed its growth from infancy, i.e., hitting something with a hammer and listening 
to sound to the use of most recent development of wireless sensors and the associated advanced 
signal processing algorithms. Available SHA methods are summarized in the first part of this 
paper. The works conducted by the research team of the authors are emphasized. Later, some of 
the future challenges in SHA areas are identified. Since it is a relatively new multi-disciplinary 
area, the education component is also highlighted at the end.   

Keywords: structural health assessment, Kalman filter, substructure, system identification, 
uncertainty analysis, sensors  

  Life Cycle Reliability and Safety Engineering 
Vol.1 Issue 4 (2012) 53-63

introduction

The nature and quality of infrastructure have 
always been one of the indicators of sophistication 
of a civilization. There is no doubt that we are 
now at a historical peak. However, keeping the 
infrastructure at its present level has been a major 
challenge due to recent financial strain suffered by 
the global community. We do not have adequate 
resources to build new infrastructure or replace the 
aged ones that are over their design lives. The most 
economical alternative is found to be extending the 
life of existing infrastructure without compromising 
our way of living and without exposing public 
to increased risk. This has been one of the major 
challenges to the engineering profession and 
attracted multi-disciplinary research interests. 
The main thrust has been to locate defects in 
structures at the local element level and then repair 
them or replace the defective elements, instead of 
replacing the whole structure. Several advanced 
theoretical concepts required to detect defects 
have been proposed. At the same time, improved 
and smart sensing technologies, high-resolution 
data acquisition systems, digital communications 
and high-performance computational technologies 
have been developed for implementing these 
concepts. The general area is now commonly 
known as structural heath assessment (SHA) or 

structural health monitoring (SHM). In spite of these 
developments in analytical and sensor technologies, 
the implementations of these concepts in assessing 
structural health have been limited due to several 
reasons. An attempt has been made here to identify 
some of the major works (emphasizing analytical), 
their merits and demerits, contributions made 
by the research team of the authors, and future 
challenges.   

Concept of structural health assessment

All civil engineering structures, new and old, 
may not totally satisfy the intents of the designers. 
Minor temperature cracks in concrete or lack of 
proper amount of pre-tension in bolts cannot 
completely be eliminated. In that sense, all structures 
can be assessed as defective. Our past experiences 
indicate that presence of minor defects that do not 
alter the structural behavior may not be of interest 
to engineers. Considering only major defects, all 
of them are not equally important. Their locations, 
numbers, and severities will affect the structural 
behavior. Thus, the concept behind SHA can be 
briefly summarized as locating major defects, their 
numbers and severities in a structure at the local 
element level. For the sake of completeness of this 
discussion, available SHA procedures are classified 
into four levels as suggested by Rytter (1993). They 
are: Level 1 - determination if damage is present in a 
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structure, Level 2 - determination of geometric location 
of the damage, Level 3 - assessment of severity of the 
damage, and Level 4 - prediction of remaining life of 
the structure. 

Structural health assessment - past 

Structural health assessment has been practiced 
for centuries. Ever since pottery was invented, cracks 
and cavities in them were detected by listening to the 
sound generated when tapped by fingers. A similar 
sonic technique was used by blacksmiths to establish 
the soundness of the metals they were shaping. Even 
today, it is not uncommon to observe that inspectors 
assess structural health by hitting structures with a 
hammer and listening to the sounds they produce. 
These types of inspections, with various levels of 
sophistication, can be broadly termed as nondestructive 
evaluation (NDE) of health of a structure.   

Early developments in SHa

Although the awareness of the scientific concepts 
of many NDE technologies began during 1920s, they 
experienced major growth during and after the Second 
World War. However, there had been always problems 
in the flow of NDE research to everyday use (Bray, 
2000). Besides the use of Visual Testing (VT), early 
developments of instrument-based nondestructive 
detection of defects include Penetrate Testing (PT), 
Magnetic Particle Testing (MPT), Radiographic 
Testing (RT), Ultrasonic Testing (UT), Eddy Current 
Testing (ET), Thermal Infrared Testing (TIR), and 
Acoustic Emission Testing (AE). Many of them 
required the damage/irregularity to be exposed to the 
surface or within small depth from the open surface. 
Some of them required direct contact of sensors with 
the test surface (Hellier, 2003). They mainly focused 
on the “hot spot” areas or objects readily available 
for testing. For instance, RT has been routinely used 
for detection of internal physical imperfections such 
as voids, cracks, flaws, segregations, porosities, and 
inclusions in material at selective location(s). Most of 
these methods are non-model based, i.e., the structure 
need not be mathematically modeled to identify 
location and severity of defects. 

transition from past to present: new challenges

For most large civil infrastructure, the location(s), 
numbers, and severity of defect(s) may not be 
known in advance, although sometimes they can be 
anticipated using past experiences. Also, sometimes 
defects may be hidden behind obstructions, for an 
example, cracks in steel members hidden behind 

fire-proofing materials. Thus, instrument-based 
nondestructive testing (NDT) may not be practical if 
the inspector does not know what to inspect or the 
location of defect is not known a priori. During 1970s, 
detection of cracks was a major thrust. Subsequently, 
determination of crack size in order to compare with 
the critical crack size added another level of challenge 
to the engineering profession. In any case, inspection 
of “hot spot” areas limited their application potential. 
Subsequently, a consensus started developing about 
the use of measured responses to assess current 
structural health, as discussed next.   

Model-based SHa

Some of the deficiencies in non-model based 
approaches can be removed by using model-based 
techniques. The aim of this approach is to predict 
the parameters of the assumed mathematical model 
of a physical system, i.e., the system is considered 
to behave in predetermined manner represented in 
algorithmic form using the governing differential 
equations, finite element (FE) discretization, etc. The 
changes in the parameters should indicate the presence 
of defects. To implement the concept, responses need 
to be measured by exciting the structure statically or 
dynamically. 

SHa using static responses

Because of its simplicity, initially SHA using 
static responses were attempted. Static responses 
are generally measured in terms of displacements, 
rotations, or strains and the damage detection 
problems are generally formulated in an optimization 
framework employing minimization of error between 
the analytical and measured quantities. They mostly 
use FE model for structural representation. Three 
classes of error functions are reported in the literature: 
displacement equation error function, output error 
function, and strain output error function (Sanayei et 
al., 1997). Recently Bernal (2002) proposed flexibility-
based damage localization method, denoted as the 
Damage Locating Vector (DLV) method. The basic 
approach is the determination of a set of vectors (i.e. 
the DLVs), which when applied as static forces at 
the sensor locations, no stress will be induced in the 
damaged elements. The method can be a promising 
damage detection tool as it allows locating damages 
using limited number of sensor responses. It was 
verified for truss elements, where axial force remains 
constant through its length. However, the verification 
of the procedure for real structures using noise-
contaminated responses has yet to be completed. 
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There are several advantages of SHA using static 
responses including that the amount of data needed 
to be stored is relatively small and simple, and no 
assumption on the mass or damping characteristics 
is required. Thus, less errors and uncertainties are 
introduced into the model. However, there are 
several disadvantages including that the number of 
measurement points should be larger than the number 
of unknown parameters to assure a proper solution. 
Civil engineering structures are generally large and 
complex with extremely high overall stiffness. It 
may require extremely large static load to obtain 
measurable deflections. Fixed reference locations 
are required to measure deflections which might 
be impractical to implement for bridges, offshore 
platforms, etc. Also, static response-based methods 
are sensitive to measurement errors (Aditya and 
Chakraborty, 2008; Anh, 2009). 

SHa using dynamic responses

Recent developments in SHA are mostly based 
on dynamic responses. There are several advantages 
of this approach. It is possible to excite structures by 
dynamic loadings of small amplitude relative to static 
loadings. In some cases, ambient responses caused 
by natural sources, e.g., wind, earthquake, moving 
vehicle, etc. can be used. If acceleration responses are 
measured, they eliminate the need for fixed physical 
reference locations. They perform well in presence of 
high measurement errors (Das et al., 2012). 

Earlier works on SHA using dynamic responses 
are mostly modal information-based (Doebling et 
al. 1996; Sohn et al., 2004; Carden and Fanning, 2004; 
Montalvao, 2006; Fan and Qiao, 2010). Changes 
in modal properties, i.e., natural frequencies, 
damping, and mode shape vectors, or properties 
derived from these quantities are used as damage 
indicators. Doebling et al. (1996) presented various 
methods for damage identification including 
methods based on changes in frequency, mode 
shapes, mode shape curvature, and modal strain 
energy. Sohn et al. (2004) updated the above report 
and discussed procedures based on damping, anti-
resonance, Ritz vectors, a family of autoregressive 
moving average (ARMA) models, canonical variate 
analysis, nonlinear features, time-frequency 
analysis, empirical mode decomposition, Hilbert 
transform, singular value decomposition, wave 
propagation, autocorrelation functions, etc. More 
complete information on them can be found in the 
literature cited above. 

Natural frequency-based methods use change 
in the natural frequency as the primary feature for 
damage identification. They are generally categorized 
as forward problem or inverse problem. The forward 
problems deal with determination of changes in 
frequency based on location and severity of damage, 
whereas the inverse problems deal with determination 
of damage location and size based on natural frequency 
measurement. Among the mode shape-based 
procedures for damage detection, the mode shape/
curvature methods generally use two approaches: 
traditional analysis of mode shape or curvature and 
modern signal processing methods using mode shapes 
or curvature. Modal strain energy-based procedures 
consider fractal modal energy for damage detection 
(Fan and Qiao, 2010). Methods based on damping 
have the advantage that a larger change in damping 
can be observed due to small cracks. Also, it is possible 
to trace nonlinear, dissipative effects produced by 
the cracks. However, damping properties have not 
been studied as extensively as natural frequencies 
and mode shapes (Sohn et al., 2004). Methods based 
on dynamically measured flexibility detect damages 
by comparing flexibility matrix synthesized using the 
modes of damaged structure to that of undamaged 
structure or flexibility matrix from FE analysis. The 
flexibility matrix is most sensitive to changes in the 
lower frequencies (Doebling, 1996). 

Modal-based approaches have many desirable 
features. Instead of using enormous amount of data, 
the modal information can be expressed in countable 
form in terms of frequencies and mode shape vectors. 
Since structural global properties are evaluated, there 
may be an averaging effect, reducing the effect of noise 
in the measurements. However, the general consensus 
is that modal-based approaches fail to evaluate the 
health of individual structural elements; they indicate 
overall effect, i.e., whether the structure is defective or 
not (Ibanez, 1973; McCann, et al., 1998; Ghanem and 
Ferro, 2006). For complicated structural systems, the 
higher order calculated modes are unreliable and the 
minimum numbers of required modes to identify the 
system parameters is problem dependent, limiting 
their applicability. The mode shape vectors may be 
more sensitive to defects than the frequencies, but the 
fact remains that they will be unable to predict which 
element(s) caused the changes. It was reported that 
even when a member breaks, the natural frequency 
may not change more than 5%. This type of change can 
be caused by the noises in the measured responses.  A 
time domain approach will be preferable.
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damages initiated during observations 

A considerable amount of work is also reported 
on damages initiation time, commonly known as 
time-frequency methods for damage identification. 
The time-frequency localization capability has been 
applied for damage feature extractions from sudden 
changes, breakdown points, discontinuity in higher 
derivatives of responses, etc. They circumvent the 
modeling difficulty as they do not require the system 
to be identified and the health assessment strategy 
often reduces to the evaluation of symptoms reflecting 
the presence and nature of defect (Ceravolo, 2009). 
Extensive study on Short Time Fourier Transform 
(STFT), Wigner-Ville Distribution (WVD), Pseudo 
Wigner-Ville Distribution (PWVD), Choi-Williams 
Distribution (CWD), Wavelet Transform (WT), Hilbert 
Transform (HT), and Hilbert-Huang Transform (HHT) 
for analyzing any non-stationary events localized in 
time domain have been reported in the literature. STFT 
is an extension of the Fourier transform allowing for 
the analysis of non-stationary signals by dividing it 
into small time windows and analyzing each using 
the Fast Fourier Transform (FFT). The formulation 
provides localization in time as well as capturing 
frequency information simultaneously. WT has 
greater flexibility than STFT in terms of choosing 
different basis functions or mother wavelets. The 
Wavelets have finite duration and their energy is 
localized around a point in time. The WVD gives the 
energy distribution of a signal as a function of time 
and frequency; however, it has major shortcoming for 
multi-component signals in terms of cross-terms. The 
CWD provides filtered/smoothed version of the WVD 
by removing the cross-terms (Sajjad et al., 2007). 

These studies are very interesting but there is no 
general consensus about the most suitable technique. 
Recently Yadav et al. (2011) studied some of the 
time-frequency procedures for defect characterization 
in a wave-propagation problem. However, the 
fundamental limitation of STFT, WVD, PWVD, CWD, 
and CWT is due to the fact that they are based on 
Fourier analysis and can accommodate only non-
stationary phenomena in the data driven from linear 
systems; they are not suitable to capture nonlinear 
distortion. In this context, the HT and HHT are suitable 
for nonlinear and non-stationary data. Application of 
Hilbert Transform to nonlinear data requires the signal 
to be decomposed to ‘mono-component’ condition 
without any smaller, riding waves. The real advantage 
of HT is implemented in HHT proposed by Huang et 
al. (1998). The procedure consists of empirical mode 

decomposition (EMD) and Hilbert spectral analysis 
(HSA). HHT clearly define nonlinearly deformed 
waveforms; this definition can be the first indication 
of the existence of damage (Huang et al., 2005). They 
applied the concept for bridge health monitoring 
using two criteria: nonlinear characteristics of the 
intra-wave frequency modulations of the bridge 
response and frequency downshift as an indication 
of structural yield. Yang et al. (2004) proposed two 
HHT based procedures for identifying damage time 
instances, damage locations, and natural frequencies 
and damping ratios before and after occurrence of 
damage. 

Structural health assessment – present

In an attempt to develop an ideal SHA technique 
for the rapid assessment of structural health, the 
research team at the University of Arizona identified 
several desirable features considering theoretical as 
well as implementation issues. The team concluded 
that a system identification (SI)-based approach 
using measured dynamic response information in 
time domain will have the most desirable attributes. 
A basic SI-based approach has three essential 
components: (a) the excitation force(s), (b) the system 
to be identified, generally represented by some 
equations in algorithmic form such as by FEs, and (c) 
the output response information measured by sensors. 
Using the excitation and response information, the 
third component i.e., the system can be identified. 
The basic concept is that the dynamic responses will 
change as the structure degrades. Since the structure 
is represented by FEs, by tracking the changes in the 
stiffness parameter of the elements, the location and 
severity of defects can be established.

For a structure with N dynamic degrees of freedom 
(DDOF), the dynamic governing equation can be 
written as: 

      ( ) ( ) ( ) ( )t t t t+ + =Mx Cx Kx f 

                                    
(1)                                    

where K, M, C are N × N stiffness, mass, and 
damping matrix, respectively; ( )tx , ( )tx , ( )tx , and 

( )tf are N × 1 displacement, velocity, acceleration, and 
load vector, respectively, at time t. The acceleration 
time histories at the FE node points are expected to 
be measured by accelerometers. The velocity and 
displacement time histories can be generated by 
successively integrating the acceleration time histories, 
as suggested by Vo and Haldar (2003). Assuming 
mass is known, K matrix at the time of inspection can 
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be evaluated. Using the information on the current 
elements’ stiffness properties and comparing them 
with the “as built” or expected properties, or deviation 
from the previous values if periodic inspections were 
conducted, the structural health can be assessed.  

General challenges in time-domain SHa

Referring to the SI concept discussed earlier, 
structural stiffness parameters will be estimated 
by using information on excitation and measured 
responses. It is interesting to point out that according 
to Maybeck (1979) deterministic mathematical model 
and control theories do not appropriately represent the 
behavior of a physical system and thus the SI-based 
method may not be appropriate for SHA. He correctly 
pointed out three basic reasons: (a) a mathematical 
model is incapable of incorporating various sources 
of uncertainties and thus does not represent true 
behavior of a system, (b) dynamic systems are driven 
not only by controlled inputs but also by disturbances 
that can neither be controlled nor modeled using 
deterministic formulations, and (c) sensors used for 
data measurements cannot be perfectly devised to 
provide complete and perfect data about a system. 
These concerns and other implementation issues 
must be addressed before developing a SI-based SHA 
procedure.  

Outside the controlled laboratory environment, 
measuring input excitation force(s)  can be 
very expensive and problematic during health 
assessment of an existing structure. In the context 
of a SI-based approach, it will be desirable if a 
system can be identified using only measured 
response information, and completely ignoring 
the excitation information. This task is expected 
to be challenging since two of the three basic 
components of SI process will be unknown. 
Responses, even measured by smart sensors, are 
expected to be noise contaminated. Depending on 
the amount of noise, the SI-based approach may be 
inapplicable. The basic concept also assumes that 
responses will be available at all DDOFs. For large 
structural systems, it may be practically impossible 
or uneconomical to instrument the whole structure; 
only a part can be instrumented. Thus, the basic 
challenge is to identify stiffness parameters of 
a large structural system using limited noise-
contaminated response information measured at 
a small part of the structure. The research team 
successfully developed such a method in steps, as 
discussed next.

SHa using responses at all ddofs

Using noisy responses measured at all DDOFs, 
Wang and Haldar (1994) proposed a procedure, 
popularly known as Iterative Least-Squares with 
Unknown Input (ILS-UI). They used viscous damping 
and verified it for shear buildings. The efficiency 
of the numerical algorithm was improved later by 
introducing Rayleigh-type proportional damping; 
known as Modified ILS-UI or MILS-UI (Ling and 
Haldar, 2004). Later, Katkhuda et al. (2005) improved 
the concept further and called it Generalized ILS-UI 
or GILS-UI. All these are least-squares procedures. 
They were extensively verified using computer 
generated response information for shear buildings, 
two dimensional trusses, and frames. They added 
artificially generated white noises in the computer 
generated noise-free responses and showed that 
the methods could assess health of defect-free and 
defective structures. Recently, the concept has been 
verified for three dimensional (3D) structures; denoted 
as 3D-GILS-UI (Das and Haldar, 2010a, 2010b).

For the sake of completeness, other recently 
proposed least-squares based SHA procedures 
need a brief review. Yang et al. (2007) proposed a 
recursive least-squares estimation procedure with 
unknown inputs (RLSE-UI) for the identification of 
stiffness, damping, and other nonlinear parameters, 
and the unmeasured excitations. They implemented 
an adaptive technique (Yang and Lin, 2005) in RLSE-
UI to track the variations of structural parameters 
due to damages. Then, Yang et al. (2006) proposed a 
new data analysis method, denoted as the sequential 
nonlinear least-square (SNLSE) approach, for the 
on-line identification of structural parameters. Later 
Yang and Huang (2007) extended the procedure for 
unknown excitations and reduced number of sensors 
(SNLSE-UI-UO). They verified the procedures for 
simple linear and nonlinear structures. Several other 
methods based on least-squares can be found in Chio 
et al. (2001), Chase et al. (2005a, b), Garrido and Rivero-
Angeles (2006).

After analytically establishing the concept 
that a structure can be identified using only noise-
contaminated response information, completely 
ignoring the excitation information, the research team 
at the University of Arizona tested a one dimensional 
beam (Vo and Haldar, 2004) and a two dimensional 
frame built to one-third scale in the laboratory 
(Martinez-Flores and Haldar, 2007; Martinez-Flores 
et al., 2008). The test setups for the two studies are 
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shown in Figs. 1 and 2, respectively. Both studies 
conclusively confirmed the validity of the basic the 
SI concept without excitation information.

SHa using limited response information – 
measured at a small part of the structure 

It is now established that least-squares concept can 
be used for SHA without using excitation information 
but response information must be available at all 
DDOFs. This led the team to study cases when 
response information is available only at a part of the 
structure. Kalman filter-based algorithm is commonly 
used when the system is uncertain and the responses 
are noise-contaminated and not available at all 
DDOFs.  

Kalman filter

Application of Kalman Filter (KF) for assessing 
health for civil engineering structures is relatively 
recent. Various forms of Kalman Filter can be found 
in the literature including Extended Kalman Filter 
(EKF), Unscented Kalman Filter (UKF), Particle 
Filter (PF), Ensemble Kalman Filter (EnKF), etc. 
In mathematical sense, the basic KF is a non-
deterministic, recursive computational procedure 
to provide best estimate of the states by minimizing 
the mean of squared error for a process governed by 
linear stochastic differential equation expressed as 
(Welch and Bishop, 2006):

( 1) ( ) ( ) ( ) ( ) ( )k k k k k k+ = + +x F x G u w    (4)

with the measurement model of the form:

( 1) ( 1) ( 1) ( 1)k k k k+ = + + + +z H x v                  (5)

Figure 1. Laboratory Test of Defective Beams  

where ( 1)k +x and ( )kx are the state vectors at 
time instant k+1 and k, respectively, vectors w(k) and 
v(k) represent the process and measurement noises, 
respectively, f(k) relates the two state vectors in 
absence of either a driving function or process noise, 
G(k) relates the optimal control input u(k) to the state, 
and H(k+1) in the measurement model relates the 
state vector to the measurement vector z(k+1). w(k) 
and v(k) are considered to be independent, zero-
mean, white random vectors with normal probability 
distributions. Kalman filter is very powerful in 
several ways. It incorporates the (i) knowledge of 
the system, (ii) statistical description of the system 
noises, measurement errors and uncertainty in the 
dynamic models, and (iii) any available information 
on the initial conditions of the variables of interest 
(Maybeck, 1979).

The basic KF is essentially applicable for linear 
structural behavior. For SHA of civil engineering 
structures, the behavior may not be linear. Moderate 
to high level of excitation may force the structure 
to behave nonlinearly. Presence of defects may also 
cause nonlinearity, even when the excitation is at 
the low level. This leads to the development of the 
extended Kalman filter (EKF) concept. For EKF, Eqs. 
(4) is expressed in the following form (Welch and 
Bishop, 2006): 

[ ]( 1) ( ), ( ), ( )k f k k k+ =x x u w
        (6)

and the measurement equation, Eq.  (5) is modified 
as: 

Figure 2. Experimental Verification of a Scaled 2D frame
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 [ ]( 1) ( 1), ( 1)k h k k+ = + +z x v
                                 

(7)

 
where nonlinear function f relates the states at time k to 
the current states at time k+1, and it includes the state 
vector ( )kx , driving force u(k) and process noise w(k). 
The nonlinear function h relates the state vector x(k+1) 
to the measurement vector z(k+1). Again, w(k) and v(k) 
are the independent, zero-mean, white random vectors 
with normal distribution, representing the process and 
measurement noises, respectively. The EKF estimates 
the state by linearizing the process and measurement 
equations about the current states and covariances. KF 
or EKF attempts to predict responses and the model 
parameters, and then updates them at each time point 
using current measurements. The procedure involving 
prediction and updating at each time point is generally 
known as local iteration. Completion of local iteration 
processes covering all time instances in the entire time-
history of responses is generally known as first global 
iteration. The global iterations need to be repeated 
to satisfy the pre-selected convergence criterion of 
system parameters. Hoshiya and Saito (1984) proposed 
a Weighted Global Iteration (WGI) procedure with 
an objective function after the first global iteration 
to obtain convergence in an efficient way. The entire 
procedure is denoted as EKF-WGI. Recently, several 
researchers have improved computational aspects 
of EFK-WGI (Das et al., 2012). Koh and See (1994) 
proposed an adaptive EKF (AEKF) to estimate both the 
parameter values and associated uncertainties in the 
identification. Yang et al. (2006) proposed an adaptive 
tracking technique based on EKF to identify structural 
parameters and their variation during damage events. 
Ghosh et al. (2007) developed two novel forms of 
EKF-based parameter identification techniques; 
these are based on variants of the derivative-free 
locally transversal linearization (LTL) and multi-step 
transverse linearization (MTrL) procedures. Liu et al. 
(2009) proposed multiple model adaptive estimators 
(MMAE) that consists of bank of EKF designed in 
the modal domain (MOKF) and incorporated fuzzy 
logic-based block in EKF to estimate variance of 
measurement noise. 

When KF or EKF is used to identify a structure 
using dynamic response information satisfying the 
governing equation represented by Eq. (1), it requires 
that the excitation information and the initial values 
of unknown state vector. As mentioned earlier, to 
improve implementation potential, the proposed 
approach needs to identify a structure without using 
excitation information and the information on the state 

vector will be available only at the completion of the 
identification, not at the beginning. The discussions 
clearly indicate that the basic KF or EKF cannot be used 
to identify a structure. To overcome these challenges, 
the research team proposed a two-stage approach by 
combining GILS-UI and EKF-WGI procedures. Based 
on the available measured responses, a substructure 
can be selected that will satisfy all the requirements 
to implement the GILS-UI procedure in Stage 1. At 
the completion of Stage 1, the information on the 
unknown excitation and the damping and stiffness 
parameters of all the elements in the substructure will 
be available. The identified damping can be assumed 
to be applicable for the whole structure. Structural 
members in a structure are expected to have similar 
cross sectional properties. Suppose the substructure 
consists of one beam and one column. The identified 
stiffness parameters of the beam in the substructure 
can be assigned to all the beams in the structure. 
Similarly, the identified stiffness parameters of the 
column can be assigned to all the columns. This will 
give information on the initial state vector. With the 
information on initial state vector and excitation 
information, the EKF-WGI procedure can be initiated 
to identify the whole structure in Stage 2. This novel 
concept was developed in stages; they are known as 
ILS-EKF-UI (Wang and Haldar, 1997), MILS-EKF-UI 
(Ling and Haldar, 2004), and GILS-EKF-UI (Katkhuda 
and Haldar, 2008). These procedures were successfully 
verified using analytically generated responses, 
primarily for two dimensional structures (Katkhuda, 
2004; Haldar and Das, 2010). Martinez-Flores et al. 
(2008) then successfully verified GILS-EKF-UI in the 
laboratory for a two dimensional frame shown in Fig. 
2. They considered defect-free and several defective 
states with different levels of severities, including 
broken members, loss of cross sectional area over 
the entire length of members, loss of area over small 
length of a member, presence of one or multiple cracks 
in a member, etc. Das and Haldar (2012) recently 
extended the method to assess structural health for 
3D structures.  

future of structural health assessment

Future directions of the SHA area, as foreseen 
by the authors, are presented in the following 
sections. In the previous sections, the authors 
emphasized analytical concepts used for SHA and 
their contributions. In developing their methods, 
they observed many challenges yet to be resolved. 
Some issues are related to explicit consideration of 
uncertainty in describing the system and noises in the 
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measured responses. Selection of initial state vector 
for large structure is also expected to be challenging. 
Although EKF can be used in presence of nonlinearity, 
the threshold nonlinearity is not known, i.e., when 
it will fail to identify a structure. The methods 
proposed by the authors can identify structures with 
less information, but the absolute minimum number 
of required responses for acceptable identification 
needs further study. Issues related to the stability, 
convergence, and acceptable error in prediction need 
further works. Although the information of excitation 
is not required, characteristics of excitations need some 
attentions.   

At the beginning of the paper, the authors 
mentioned that SHA is a multidisciplinary research 
area. This paper will not be complete without 
the discussions on sensors, intelligent sensing 
technologies and signal processing, next generation 
structural health monitoring strategies, etc. Since 
SHA is a relatively new area and not covered in the 
existing curriculum of major branches of engineering, 
it is necessary to emphasize education aspect of SHA. 
The authors are not expert in some of these areas; 
however, they expect that the discussions will prompt 
future engineers to explore them. The first author is in 
the process of editing a book with contributions from 
experts covering all these areas (Haldar, 2012). 

transition from present to future: local level sha 
using global responses

SHA procedures are developed generally assuming 
that measured responses will be altered in presence 
of defects. Obviously, minor defects may not alter the 
responses and thus cannot be detected. A structure 
is expected to be inspected several times during 
its lifetime. Minor defects such as initiation and 
development of cracks, corrosion of reinforcements 
in concrete, etc., are expected to grow over time. The 
basic assumption is that when they become major, 
they will be detected during the periodic inspections. 
Environmental influences on structural behavior, for 
example, effect of temperature on measured responses 
is not completely understood at this time. Similar 
comments can be made for exposure to chemicals or 
high pressure gradients. Smart sensors are now being 
developed to detect damage for various applications. 
Not all sensors are equally sensitive and noises in the 
measurements cannot be avoided. Depending upon 
to noise to signal ratios, the output of a sensor can 
be misleading. The discussions clearly indicate that 
besides analytical developments, industrial research 

is also going to be critical in implementing a particular 
health assessment strategy. Hopefully, advances in 
technologies, digital computing and data processing 
will remove some of these hurdles.  

SHa in presence of nonlinearity

One major assumption in most SI-based SHA 
procedures is that the responses are linear or mildly 
nonlinear. Major nonlinearities are not expected to 
show up in the responses during ambient excitation 
or when the level of excitation is relatively small. 
However, in real situations, the nonlinearity in the 
responses cannot be avoided. To understand and 
develop robust mathematical model of the dynamical 
system, the distinct effects of nonlinearities must be 
realistically accounted for. At the same time, it will 
be important to use the available resources in a very 
systematic manner for successful implementation of 
the SHA procedures. To identify a highly nonlinear 
structure, it is important first to identify the level of 
nonlinearity and establish whether available methods 
are appropriate or not. Next, it will be important to 
determine the location, type, and form of nonlinearity 
and how to model them in the optimum way. Another 
important task will be the selection of parameters/
coefficients that need to be tracked for damage 
assessment. The area of nonlinear system identification 
is still in its infancy. An extensive discussion on the 
related areas and future directions in nonlinear SI is 
discussed by Kerschen et al. (2006).

intelligent sensing technologies and signal 
processing

Development of new sensor technologies for 
various applications is expanding in an exponential 
scale. Use of smart wireless sensors is becoming 
very common. The placements of sensors, density, 
sources of power for their operation, calibration 
for maintaining them in good operating condition, 
acquisition of signals, advanced signal processing 
algorithms considering increased signal-to-noise 
ratio, well-developed numerical procedure for post-
processing of signal, integration of software and 
hardware, realistic mathematical model for structures 
and their components, etc., are being actively studied 
by various researchers. Smart sensors are wireless 
and equipped with on-board microprocessors; they 
are small in size and can be procured at a lower cost. 
However, there are several hardware aspects such as 
efficient data acquisition, synchronization, limited 
memory, encryption and secured data transmission, 
limited bandwidth need further attention. They should 
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be operational throughout the life of the structure, 
if continuous-time SHA is performed (Chang et al., 
2003). It is expected that distributed computational 
framework and use of agents-based architecture will 
expand the possibility of intelligent infrastructure 
maintenance in future (Spencer et al., 2004). 

next generation structural health monitoring 
strategy 

Structural systems always change due to inevitable 
deterioration processes. Assessment of current state 
of a structure cannot be complete without taking 
into account the uncertainties at every step of the 
assessment process. Even ignoring uncertainties, 
monitoring a structure continuously throughout its 
life, may not be an optimum use of available resources. 
Next generation structural health monitoring research 
needs to be performance-based. Using information 
from the most recent assessment, mathematical model 
to represent the structure, placement of sensors, 
data collection and interpretation methods need to 
be modified or updated. The integration of past and 
present information on structural health needs to be 
carried out for the cost-efficient assessment. Risk-
based nondestructive evaluation concept is expected 
to optimize the frequency of inspection.

SHa Curriculum in education

The authors sincerely hope that the previous 
discussions provided a flavor of multi-disciplinary 
nature of SHA areas. Both authors are civil engineers. 
Their formal education in civil engineering did 
not train them to undertake the research discussed 
here. Most engineering colleges do not offer courses 
related to SHA. NDE mostly belongs to mechanical 
engineering, whereas sensors and signal processing 
belong to electrical engineering. So far the SHA/SHM 
education for professional engineers is limited to web-
based resources or short course modules. Recently, 
several universities in Europe are collaboratively 
offering an Advanced Master’s in Structural Analysis 
of Monuments and Historical Constructions (SAMHC) 
funded by the European Commission. In the U.S., 
University of California, San Diego has started M. S. 
program with specialization in SHM. 

There is no doubt that the SHA/SHM areas 
will grow exponentially in near future all over the 
world. Trained engineers will be essential to carry 
out the necessary works. A severe shortage of trained 
professionals is expected. It will be highly desirable 
if we introduce a multi-disciplinary engineering 

discipline in SHA/SHM by integrating civil, electrical, 
material, and mechanical engineering departments.     

Conclusions

Structural health assessment has become an 
important research topic and attracted multi-
disciplinary research interests. Its growth has been 
exponential in the recent past. Past and present 
developments in the related areas are briefly 
reviewed in this paper. Because of their academic 
background, the authors emphasized the structural 
health assessment for civil infrastructures. Some of the 
future challenges are also identified. Advancements 
in sensor technology and signal processing techniques 
are also reviewed briefly. An upcoming edited book 
on the subject by the first author is expected to provide 
more information on the related areas. Because of the 
newness of the area, there is a major gap in current 
engineering curriculum. In the near future a severe 
shortage is expected for experts with proper training 
in SHA/SHM. The authors advocate for a new multi-
disciplinary engineering discipline in SHA/SHM by 
integrating, civil, electrical, material, and mechanical 
engineering departments.
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