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Guest Editorial

In engineering applications, it is important to model and treat adequately all the available information 
during the analysis and design phase. Typically, the information originates from different sources like field 
measurements, experts’ judgments, objective and subjective considerations. Overlaying these features are 
influences of human errors, imperfections in the construction techniques and production process, and the 
influences of the boundary and environmental conditions. All these aspects can be brought under one common 
denominator: that is “presence of uncertainty”. Uncertainty heavily affects reliability and safety, which are the 
core issues that need to be addressed during the analysis, design, construction and operation of engineering 
systems. In this backdrop, the International Symposium on Engineering under Uncertainty: Safety Assessment 
and Management (ISEUSAM - 2012) was organised at BESU, Shibpur during January 4 to 6, 2012 to facilitate 
the discussion towards better understanding and management of uncertainty and risk, encompassing various 
aspects of safety and reliability of engineering systems. Twelve selected papers are compiled in two Special 
Issues of Society for Reliability and Safety (SRESA) Journal of Life Cycle Reliability and Safety Engineering to 
provide a snapshot of the various papers discussed in ISEUSAM 2012. 

All the six papers included in this July-September issue are revised versions of those presented in the 
Symposium. The first paper deals with reliability problem of earth slopes under a probabilistic framework. The 
study is concerned with the determination of the critical probabilistic slip surface and the associated probability 
of failure. The second paper is focused on robust optimum design of tuned mass damper system in seismic 
vibration mitigation. The effectiveness of robust design over conventionally adopted interval approach in the 
absence of complete probabilistic information to describe the system parameters is demonstrated. The third 
paper highlights the role of uncertain hydraulic conductivity parameter of the fill material and its influence on 
probabilistic assessment of ground water level and sea water interface seems to be useful in quality control 
purposes in a land reclamation projects. The fourth paper focuses on the effect of uncertainty of different 
parameters of wind field on the performance of container cranes, highly susceptible to damage or even 
failure during severe windstorms. The fifth paper discusses current research and opportunities for uncertainty 
quantification in performance prediction and risk assessment of engineered systems. This keynote paper draws 
on illustrative problems in different engineering disciplines to discuss recent research on quantifying various 
types of errors and uncertainties, framework for integrating information from multiple sources, multiple 
model development activities and multiple formats; and using uncertainty quantification in risk-informed 
decision-making throughout the life cycle of engineered systems. The sixth paper presents predictive models 
for time-dependent damages in corrosion-affected RC beams for evaluating time-dependent flexural and shear 
strengths for corroded beams considering variability in the identified basic variables. 

The Guest Editors would like to express their deep gratitude to all authors for their time and effort 
devoted to the completion of their contributions. We are thankful to Professor Gautam Bhattacharya, one of the 
organising secretaries of ISEUSAM 2012 for his support and encouragement. We also would like to specially 
thank Professor Achintya Haldar, Chair, Scientific Committee of ISEUSAM 2012 for his in-depth reviews and 
recommendations in selecting the papers. In addition, we are most appreciative to the Editors of SRESA Journal 
of Life Cycle Reliability and Safety Engineering, for their kind invitation to edit this Special Issue.

   Guest Editors

Subrata Chakraborty 
Department of Civil Engineering 
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Email: schak@civil.becs.ac.in 

Sankaran Mahadevan  
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Slope reliability analysis using the first order reliability Method 

Subhadeep Metya1 and Gautam bhattacharya2 

1Budge Institute of Technology, Kolkata-700137,  
2Bengal Engineering & Science University, Shibpur, Howrah 711103, 

E-mail:subhadeep.metya@gmail.com 

abstract

The paper pertains to a study on the reliability evaluation of earth slopes under a probabilistic 
framework. The study is concerned in the first phase with the determination of reliability index and 
the corresponding probability of failure associated with a given slip surface and then in the second 
phase the determination of the critical probabilistic slip surface and the associated minimum 
reliability index and the corresponding probability of failure. The geomechanical parameters of the 
slope system have been treated as random variables for which different probability distributions 
have been assumed. The reliability analyses have been carried out using two methods, namely, 
the approximate yet simple Mean-Value-First-Order Second-Moment method (MVFOSM) and the 
rigorous First-Order Reliability Method (FORM). Based on a bench mark illustrative example of a 
simple slope in homogeneous soil with uncertain strength parameters along a slip circle, an effort 
has been made to numerically demonstrate the nature and level of errors introduced by adopting 
the MVFOSM method for reliability analysis of earth slopes still widely used in the geotechnical 
engineering practice, vis-à-vis a more accurate method such as the FORM.

Keywords: Slope stability; slip surface; uncertainty; random variable; probability distribution; reliability 
analysis 
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1. introduction

In recent years there has been a growing 
appreciation amongst the researchers in the field of 
geotechnical engineering of the fact that geotechnical 
parameters, especially the strength parameters 
including pore water pressure, are highly uncertain 
or random. Conventional deterministic approach 
is, therefore, being increasingly replaced with 
probabilistic approach or reliability analysis within 
a probabilistic framework. Slope stability analysis is 
one of the important areas where the recent trend is to 
determine the probability of failure of slopes instead 
of, or complementary to, the conventional factor of 
safety.

During the last decade quite a few studies 
on reliability evaluation of earth slopes have been 
reported in the literature. Most of these studies 
used the simple yet approximate reliability analysis 
method known as the Mean-Value First-Order Second-
Moment (MVFOSM) method based on a Taylor 
series expansion of the factor of safety. However, 
this method suffers from serious shortcomings such 
as the following: (i) the method does not use the 

distribution information about the variables when it 
is available; (ii) the performance function is linearized 
at the mean values of the basic variables. When the 
performance function is nonlinear, significant errors 
may be introduced by neglecting higher order terms, 
for the reason that the corresponding ratio of mean 
of performance function to its standard deviation 
which is evaluated at the mean values may not be 
the distance to the nonlinear failure surface from the 
origin of the reduced variables. (iii) Furthermore, first-
order approximations evaluated at the mean values 
of the basic variates will give rise to the problem of 
invariance for mechanically equivalent limit states; 
that is, the result will depend on how a given limit-
state event is defined. 

The First Order Reliability Method (FORM), 
on the other hand, does not suffer from the above 
shortcomings and is, therefore, widely considered to 
be an accurate method. The method has been finding 
increasing use especially in structural engineering 
applications for more than a decade. More recently 
in the geotechnical engineering field also there have 
been quite a few attempts at reliability analysis of earth 
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slopes using the FORM method (Sung Eun Cho,2009, 
Chowdhury and Rao,2010, Das and Das, 2010) 

In this paper, an attempt has been made to 
develop computational procedures for slope reliability 
analysis based on the First Order Reliability Method 
(FORM). Computer programs have been developed 
to demonstrate the application of FORM in the 
determination of (i) the reliability index for a given slip 
surface, and, more importantly, in the determination 
of (ii) the probabilistic critical slip surface and the 
associated minimum reliability index. Different 
probability distributions have been considered 
for the basic random variables. In determining the 
probabilistic critical slip surface the basic methodology 
suggested by Bhattacharya et al. (2003) has been 
adopted. The above reliability analyses have also been 
carried out using the approximate MVFOSM method 
and the results obtained have been compared with 
those obtained by using the FORM to bring out the 
difference clearly and demonstrate numerically the 
shortcomings of the MVFOSM method. 

2. formulation 

2.1 deterministic analysis

The conventional slope stability analysis follows 
a deterministic approach wherein out of a number 
of candidate potential slip surfaces the one with the 
least value of factor of safety is searched out and 
is termed the critical slip surface. It has now been 
widely appreciated that the slope stability analysis 
is essentially a problem of optimization wherein the 
co-ordinates defining the shape and location of the 
slip surface are the design variables and the factor of 
safety functional expressed as a function of the design 
variables is the objective function to be minimized 
subject to the constraints that the obtained critical 
slip surface should be kinematically admissible and 
physically acceptable. In practice, analysis is often 
done based on the assumption that the slip surface is 
an arc of a circle, as it greatly simplifies the problem. 
The Ordinary Method of Slices (OMS) (Fellenius, 1936) 
is the simplest and the earliest method of slices that 
assumes a circular slip surface geometry. 

The factor of safety functional (FS) for the 
Ordinary Method of Slices (OMS), is given by the 
following expression [Eq. (1)], where the notations 
have their usual meaning. Specifically, c’ and φ’ denote 
the effective cohesion and effective angle of shearing 
resistance respectively; Wi and ui are the weight and 
the pore water pressure at the base of the ith slice 

respectively, θi is the base inclination of the ith Dli slice,  
and  are the base length of the ith slice and the total 
arc length of the slip circle respectively.

 
    

        (1)                                                                           (1)

Substituting Wi = gbhi, and ui = ru ghi ,where g and 
b are the unit weight of soil and the common width of 
slice respectively, hi is the mean height of the ith slice, 
and ru is the pore pressure ratio, Eq. (1) reduces to 
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where n = number of soil strength parameters 
(c’, tan φ', ru, g etc.) taken as random variables ; E[FS] 
= expected value of  FS; σ[FS]=standard deviation of 
FS; µxi = mean value of random variable Xi; σ[Xi] = 
standard deviationof Xi ; and ρ = correlation coefficient 
between Xi  and Xj. 

Mechanically Equivalent limit State

When using MVFOSM method, it is of interest 
to study how the results of reliability analysis differ 
when other mechanically equivalent limit states are 
adopted. A limit state equivalent to FS-1 = 0 mentioned 
above is given by ln (FS) = 0. For such a limit state, the 
reliability index is given by
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where,
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and

      
                                                                                    

3 

 

where n = number of soil strength parameters (c, tan φ, ru,  etc.) taken as random variables ; E[FS] = 

expected value of  FS; σ[FS]=standard deviation of FS; µxi = mean value of random variable Xi; σ[Xi] = 

standard deviationof Xi ; and ρ = correlation coefficient between Xi  and Xj.  
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2.3 reliability index β based on the forM Method

In this method the reliability index (β) is defined 
as the minimum distance (Dmin) from the failure surface 
[g(X’) =0] to the origin of the reduced variates, as 
originally proposed by Hasofer and Lind (1974). For 
general nonlinear limit states, the computation of the 
minimum distance (Dmin) becomes an optimization 
problem as stated below:

Minimize   D = 

Subject to the constraint g ( ) = 0  

where, X’ represents the coordinates of the 
checking point on the limit state equation in the 
reduced coordinates system.

Two optimization algorithms are commonly 
used to solve the above minimization problem to 
obtain the design point on the failure surface and 
the corresponding reliability index β (Haldar and 
Mahadevan, 2000). In the first method (Rackwitz. 
1976) referred to as FORM Method I by Haldar and 
Mahadevan (2000), it is required to solve the limit state 
equation during the iteration. The second method 
(Rackwitz and Fiessler, 1978) referred to as FORM 
Method II by Haldar and Mahadevan (2000) does not 
require solution of the limit state equation. It uses a 
Newton-type recursive formula to find the design 
point. The FORM Method II is particularly useful when 
the performance function is implicit, that is, when it 
cannot be written as a closed form expression in terms 
of the random variables. The FORM method, however, 
is applicable only for normal random variables. For 
non-normal variables it is necessary to transform them 
into equivalent normal variables. This is usually done 
following the well known Rackwitz–Fiessler method 
(Haldar and Mahadevan, 2000).

2.4 Probability of failure:

Once the value of the reliability index β is 
determined by any of the methods discussed above, 
the probability of failure, pF is then obtained as:

pF = Φ (-β)                                 (5)

where, Φ (.) is the standard normal cumulative 
probability distribution function, values of which are 

tabulated in standard texts.

2.5 determination of Probabilistic Critical Slip 
Surface

Bhattacharya et al. (2003) proposed a procedure 
for locating the surface of minimum reliability 
index, βmin, for earth slopes. The procedure is based 
on a formulation similar to that used to search for 
the surface of minimum factor of safety, FSmin, in a 
conventional slope stability analysis. The advantage 
of such a formulation lies in enabling a direct search 
for the critical probabilistic surface by utilizing an 
existing deterministic slope stability algorithm or 
software with the addition of a simple module for the 
calculation of the reliability indexβ. This is definitely 
an improvement over the indirect search procedure 
proposed earlier by Hassan and Wolff (1999). 

3. illustrative Example

 table 1:   Statistical properties of soil parameters

Parameter  
(1)

Mean  
(2)

Standard 
deviation 

(3)

Coefficient 
of variation 

(4)
c′

tan φ′

γ

ru

18.0 kN/m2

tan 30°

18.0 kN/m3

0.2

3.6 kN/m2

0.0577

0.9 kN/m3

0.02

0.20

0.10

0.05

0.10

Figure 1 shows a section of a simple slope of 
inclination 45° and height 10m in a homogeneous c- φ 
soil. Previous reliability analyses of this slope under 
a probabilistic framework include those reported by 
Li and Lumb (1987), Hassan and Wolff (1999), and 

Figure  1: Slope Section and the deterministic critical slip circle 
in the illustrative example
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Bhattacharya et al. (2003) using different methods of 
analysis. Thus this example can well be regarded as 
a bench mark example problem. In all the previous 
investigations, all four geotechnical parameters 
namely, the effective cohesion c′, the effective angle of 
shearing resistance φ′, the pore pressure ratio ru, and 
the unit weight γ were treated as random variables and 
their statistical properties (mean, standard deviation 
and co-efficient of variation) are as in Table 1. 

4. results and discussion

4.1 deterministic analysis

For the purpose of determination of the critical 
slip circle, a trial slip circle (xo=9.22m, yo=11.98m, r 
=9.38m with reference to the axis system shown in 
Figure 1) has been arbitrarily selected. Using Eq. (1) 
or (2) for the Ordinary method of slices, its factor of 
safety (FS) is obtained as 1.70, when the parameters 
c’, tan φ’, γ, and ru are assumed constant at their 
mean values (Table-1). With this slip circle as the 
initial slip surface, the developed computer program 
based on the Sequential Unconstrained Minimization 
Technique (SUMT) of nonlinear optimization 
coupled with the Ordinary Method of Slices (OMS) 
yields a critical slip circle (xc=5.355m, yc=17.243m, rc 
=12.248m) which passes through the toe, as shown in  
Figure 2. The associated minimum factor of safety 
(Fmin) is obtained as 1.26. 

4.2 reliability analysis

Reliability analysis of this slope was attempted 
using two methods, namely, the Mean Value First 
Order Second Moment (MVFOSM) method and 
the First Order Reliability Method (FORM), with a 
view to comparing the two sets of results. All four 
parameters c’, tan φ’, γ, and ru are assumed to be 
normally distributed and uncorrelated. However, 
reliability analyses were carried out in three phases: 
In Phase I only two parameters, namely, the cohesion 
c’ & the effective angle of shearing resistance in the 
form of tan φ’ were treated as random variables 
while the other two parameters, γ & ru were assumed 
as constants at their mean values. In Phase II, three 
parameters, namely, the cohesion c’, the effective angle 
of shearing resistance tan φ’ and ru were treated as 
random variables while the parameter γ was assumed 
as constant at its mean value, while in Phase III all four 
parameters were assumed as random variables.

4.3 reliability analysis for a Given Slip Surface 
using MVfoSM

For the two slip surfaces shown in Figure 1, 
namely, (1) the initial slip circle (xo=9.22, yo=11.98, 

r =9.38) and (2) the deterministic critical slip circle 
(xo=5.355, yo=17.243, r =12.248), the reliability indices 
were determined by MVFOSM method by taking 
two mechanically equivalent limit states: FS-1 = 0 
and ln(FS) = 0 using Eqs. (3) and (4) respectively, for 
Phase I, Phase II and Phase III described above. The 
reliability index values for the different cases are 
summarized in Table 2.

4.4 reliability analysis for a Given Slip Surface 
using forM

Reliability index values have also been 
determined for the above mentioned slip surfaces 
using FORM. In particular the algorithm for FORM 
Method-I (Haldar and Mahadevan, 2000) has been 
used in this case. All three phases mentioned above 
have been analyzed. For the sake of comparison as 
well as numerical demonstration, both the limit states 
considered in the analyses by MVFOSM have also 
been used here. The results are summarized in Table 2 
again, alongside those obtained by using MVFOSM.

From Table 2, the following observations are 
made:
(i) For the same slip surface and the same set 

of random variables (in Phase I, II and III), 
values of reliability index obtained for different 
mechanically equivalent limit states are markedly 
different when MVFOSM is used as the method 
of reliability analysis, whereas these values are 
identical when analysed by the FORM method. 
This observation clearly demonstrates that unlike 
the FORM method, the MVFOSM method suffers 
from the ‘problem of invariance’, i.e., the result 
depends on how a given limit state event is 
defined. In this respect another observation from 
Table 2 is that when the limit state is taken as ln 
(FS) = 0, the reliability index values are higher in 
all three phases of analysis. 

(ii) It may be noted from Eqs. (1) and (2) that the 
performance function FS is linear when only c’ 
and tan φ’ are treated as random variables as in 
Phase I of reliability analysis. However, when 
c’, tan φ’ and ru are treated as random variables 
as in Phase II, or when c’, tan φ’, ru and γ are 
treated as random variables as in Phase III, the 
performance function FS becomes nonlinear and 
the degree of nonlinearity increase from Phase 
II to Phase III. Now, from Table 2 it is seen that 
for Phase I, the values of reliability index yielded 
by MVFOSM and FORM are exactly the same, 
whereas, they are different for Phases II and 
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III. Further, this difference in case of Phase III is 
more than in case of Phase II. This observation 
clearly demonstrates that in those situations 
where the performance function is linear and 
all the variables are normally distributed and 
statistically independent, the values of reliability 
index by MVFOSM method agrees with those 
given by the FORM; and the error associated 

with MVFOSM method increases as the degree 
of nonlinearity of the performance function (or 
limit state equation) increases. 

(iii) Another important observation from Table 2 
is that when the number of random variables 
increases the value of reliability index (β) 
decreases and probability of failure increases.

table-2: Summary of results of reliability analyses for Given Slip Surfaces

Method of 
reliability 
analysis

Slip Surface

Values of reliability index
limit State: fS – 1 = 0 limit State: ln (fS) = 0

Phase i 
(c’, tan φ’)

Phase ii 
(c’, tan φ’, 

ru)

Phase iii 
(c’, tan φ’, 

ru,γ) 

Phase i 
(c’, tan φ’)

Phase ii 
(c’, tan φ’, 

ru)

Phase iii 
(c’, tan φ’, 

ru,γ) 

MVFOSM
Initial Slip Circle 3.955 

(3.83X10-5)
3.812 

(6.89X10-5)
3.736 

(9.35X10-5)
5.059 

(2.10X10-7)
4.874 

(5.46X10-7)
4.775 

(8.98X10-7)
Deterministic 

Critical Slip Circle
1.671 

(4.73X10-2)
1.643 

(5.02X10-2)
1.601 

(5.47X10-2)
1.815 

(3.47X10-2)
1.783 

(3.73X10-2)
1.734 

(4.14X10-2)
FORM (All 

random 
variables are 

Normally 
distributed)

Initial Slip Circle 3.955 
(3.83X10-5)

3.862 
(5.63X10-5)

3.851 
(5.88X10-5)

3.955 
(3.83X10-5)

3.862 
(5.63X10-5)

3.851 
(5.88X10-5)

Deterministic 
Critical Slip Circle

1.671 
(4.73X10-2)

1.646 
(4.99X10-2)

1.625 
(5.21X10-2)

1.671 
(4.73X10-2)

1.646 
(4.99X10-2)

1.625 
(5.21X10-2)

Note: Figures in the parentheses indicate the values of the Probability of failure for the respective slip surface.

4.5 reliability analysis for Given Slip Surfaces: 
Effect of Probability distributions of the basic 
variates

As already stated, the MVFOSM method does 
not use the information on probability distribution of 
the basic random variables. In the FORM method, on 
the other hand, this information can be incorporated 
in the analysis. In the present analysis, the effect 

of variation of probability distributions have been 
studied using FORM Method-I. Only two distributions 
have been considered, namely, the normal distribution 
and the lognormal distribution. Results have been 
obtained for the Phase I only, i.e., when only two 
parameters c′.and tanφ′are treated as random 
variables. Table 3 summarizes the results. It can be 
observed that there are substantial differences in 
the values of the reliability index obtained by using 

table-3: Variation of reliability index with different probability distributions for the basic variates

limit State 
Surface

Probability distribution Values of reliability index for

c′. tan φ′.
initial trial Slip Circle deterministic Critical Slip Circle

MVfoSM forM MVfoSM forM

FS -1= 0

Lognormal Normal

3.955

4.806

1.671

1.859
Normal Lognormal 4.038 1.661

Lognormal Lognormal 5.318 1.854
Normal Normal 3.955 1.671

ln FS = 0

Lognormal Normal

5.059

4.806

1.815

1.859
Normal Lognormal 4.038 1.661

Lognormal Lognormal 5.318 1.854
Normal Normal 3.955 1.671

Note: These results correspond to the Phase I analysis, i.e, when only c′.and tanφ′are treated as random variables 
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FORM when different combinations of probability 
distributions for the random variates c′.and tanφ′are 
considered. It is further observed that the β values 
from MVFOSM agree with those from FORM only 
when both the random variables are assumed to be 
normally distributed. Thus it can be said that the 
MVFOSM method, though does not make use of any 
such knowledge regarding distribution of variates, 
implicitly assumes that all variables are normally 
distributed.

4.6 Probabilistic Critical Slip Surface and the 
associated βmin

The probabilistic critical slip surface (surface 
of minimum β) has been determined following 
the same computational procedure as used for the 
determination of the deterministic critical slip surface, 
simply by replacing the objective function FS with β 
(Bhattacharya et al. 2003). A computer program was 
developed based on the Sequential Unconstrained 
Minimization Technique (SUMT) of nonlinear 
optimization coupled with a method of reliability 
analysis, MVFOSM or FORM, as the case may be.

For this search, the deterministic critical 
slip surface shown in Figure 1 has been used as 
the initial slip surface. Several such probabilistic 
critical slip surfaces have been determined and the 
associated minimum reliability index (βmin) values 
are summarized in Table 4. For the sake of clarity 
only two of these critical surfaces are plotted in  
Figure  2: the probabilistic critical slip surface for Phase 
III analysis using MVFOSM (xc=4.907m, yc=17.311m, 
rc =12.311m), and the probabilistic critical slip surface 
for Phase III analysis using FORM with all four 
random variables normally distributed (xc=4.920m, 
yc=17.283m, rc =12.284m). For the sake of comparison, 
the deterministic critical slip surface (xc=5.355m, 

Figures 2: Probabilistic and Deterministic Critical Slip Surfaces

investigators. The detailed results presented in Table 
4 generally corroborates the observations made 
earlier from Table 2 with reference to the reliability 
analyses of the given slip surfaces.

5. Summary and Conclusions

In view of the growing appreciation of the 
uncertainty associated with the geotechnical 
parameters, especially, the strength parameters 
including the pore water pressure, the conventional 
deterministic approach of analysis is increasingly 
being replaced by probabilistic approach of analysis or 

table-4: Summary of results of the Minimum reliability analyses associated with the Probabilistic 
Critical Slip Surface

Method of reliability analysis

Values of Minimum reliability index
limit State: fS – 1 = 0 limit State: ln (fS) = 0

Phase 
i(c’, tan 

φ’)

Phase ii 
(c’, tan φ’, 

ru)

Phase iii 
(c’, tan φ’, 

ru,γ) 

Phase i 
(c’, tan 

φ’)

Phase ii 
(c’, tan φ’, 

ru)

Phase iii

(c’, tan φ’, ru,γ) 

MVFOSM 1.643 
(1.671)

1.618 
(1.643)

1.576 
(1.601)

1.785 
(1.815)

1.756 
(1.783)

1.707 
(1.734)

FORM (All random variables 
are Normally distributed)

1.643 
(1.671)

1.620 
(1.646)

1.599 
(1.625)

1.643 
(1.671)

1.620 
(1.646)

1.599 
(1.625)

Note: Figures in the parentheses indicate the values of reliability index for the deterministic critical slip surface
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yc=17.243m, rc =12.248m) has also been plotted in 
Figure 2.

From Figure 2, as well as from the magnitudes 
of the coordinates of centers and radii, it is seen that 
the two probabilistic critical slip surfaces are located 
very close to each other while the deterministic 
critical slip circle is somewhat apart. The closeness 
of the deterministic and the probabilistic critical slip 
surfaces for the case of simple homogeneous slopes 
are in agreement with those reported by earlier 
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reliability analysis under a probabilistic framework. The 
Mean Value-First Order-Second Moment (MVFOSM) 
method based on a Taylor series expansion is rather 
widely used by the practitioners in the geotechnical 
engineering field mainly due to the simplicity and 
early origin of the method. However, in other fields 
of engineering, e.g., in the structural engineering field, 
it is an established fact for quite some time that the 
MVFOSM method suffers from serious shortcomings 
such as the problem of invariance, as mentioned in an 
earlier section of this paper.

This paper concerns a study on the reliability 
analysis of earth slopes with uncertain soil strength 
parameters under a probabilistic framework. 
Reliability analyses have been carried out using a 
rigorous method, namely, the First Order Reliability 
Method (FORM) in conjunction with a simple slope 
stability model namely, the Ordinary Method of 
Slices (OMS). For the sake of comparison, results in 
the form of the reliability index and probability of 
failure have also been obtained using the MVFOSM 
method. Computer programs have been developed 
for the determination of reliability index based 
on both FORM and MVFOSM method for a given 
slip surface, and then for the optimization based 
determination of the probabilistic critical slip surface 
and the associated minimum reliability index. The 
developed programs have been applied to a bench 
mark example problem concerning a simple slope 
in homogeneous soil in which the geotechnical 
parameters are treated as random variables with 
given values of statistical moments. The differences 
between the two sets of results have been brought 
out for the cases of an arbitrarily selected given slip 
surface, the deterministic critical slip surface and, also 
the probabilistic critical slip surface. The study has 
been successfully used to demonstrate numerically 

all the major shortcomings of the approximate 
MVFOSM method and the error involved vis-à-vis 
the more accurate FORM method.
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abstract

The optimum design of tuned mass damper (TMD) system considering model parameter uncertainty 
is usually performed by minimizing the performance measure obtained by the total probability 
theory concept without any consideration to the variation of the performance of TMD due to 
uncertainty. However, such a design method does not necessarily correspond to an optimum design 
in terms of maximum response reduction as well its minimum dispersion. The present study is 
focused on robust optimum design of TMD system of protection to mitigate the seismic vibration 
effect of structures considering uncertain but bounded (UBB) type system parameters. The root 
mean square displacement (rmsd) of the primary structures is considered as the performance 
index. The robust optimization is obtained by using a two-criterion equivalent deterministic 
optimization problem where the weighted sum of the nominal value of the performance function and 
its dispersion is minimized. The conventional interval analysis based bounded optimum solution 
is also obtained to demonstrate the effectiveness of the robust optimum solution. A numerical 
study is performed to elucidate the effect of parameter uncertainty on the robust optimum design 
of TMD parameters by comparing the robust optimization results with the optimization results 
obtained by solving usually adopted interval optimization procedure. 

Keywords: Seismic vibration control, tuned mass damper, uncertain bounded parameters, bounded 
optimization, robust optimization.

  Life Cycle Reliability and Safety Engineering 
Vol.1 Issue 3 (2012) 08-15

1. introduction

In the field of passive vibration control, the 
TMDs are amongst the oldest control devices 
effectively use to suppress undesirable vibration 
induced due to wind and earthquake. One of the most 
important design issues is the parameter optimization. 
The optimal design of TMD assuming deterministic 
system parameters are well developed (Warburton 
and Ayorinde, 1980, Thomson 1980,  Rana and 
Soong 1998). A major limitation of the deterministic 
approach is that the uncertainties in the performance-
related decision variables cannot be included in the 
optimization process. But, the efficiency of dampers 
may be drastically reduced if the parameters are off 
tuned to the vibrating mode it is designed to suppress 
due to unavoidable presence of uncertainty in the 
system parameters. Thus, the probabilistic vibration 
control considering uncertain parameters is gaining 
more importance in recent past. The reliability based 

design optimization (RBDO) in passive vibration 
control applications was originally proposed by 
Papadimitriou et al. (1997). The control problems for 
a wide class of mechanical systems with uncertainty 
were presented in Ferrara and Giacomini (2000). The 
concept of robust reliability against failure has been 
introduced by Papadimitriou and Katafygiotis(2001)
and it serves as an important metric by which the 
quality of controlled systems may be judged. Taflanidis 
et al. (2008) presented theoretical analysis of RBDO for 
passive or active structural control applications that 
optimizes a control system explicitly to minimize an 
upper bound first-passage failure probability. 

The studies on optimization of damper parameters 
allowing model parameter uncertainty as discussed 
above primarily use the total probability theory 
concept to obtain the unconditional response or the 
failure probability of a system which is subsequently 
used as the performance measure. Such design 
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approach does not consider the possible dispersion 
of the performance and the damper parameters so 
designed may be sensitive to the variations of the 
input parameter due to uncertainty. However, it is 
desirable to achieve a balance where an optimum 
design will also assure less sensitivity with respect to 
the variations of the parameters due to uncertainty. 
For this, an additional ‘dimension’ is required to be 
introduced in the analysis by using information about 
the uncertain system parameters. The robustness is 
generally measured in terms of the dispersion of a 
performance function from its nominal value which 
is usually expressed in terms of the variance and 
percentile difference.  In this regard, it is of worth 
mentioning here that in many real situations, the 
maximum possible ranges of variations expressed 
in terms of percentage of the corresponding nominal 
values of the parameters are only known and can 
be modelled as UBB type parameters. In such cases, 
the interval analysis method in the framework of set 
theoretical description is usually employed (Chen and 
Zhang 2006, Chen et al. 2007, Chakraborty and Roy 
2011). However, the bounded solutions thus obtained 
are the worst case measures and has little importance 
for practical design. The robust design optimization 
(RDO) in which the bounds on the magnitude of 
uncertain parameters are only required will be a 
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In the above, the over bar represents the matrices correspond to the nominal values of the UBB 

parameters. The derivatives are evaluated at i ix x= .Substituting Eqn (7) in Eqn. (3) for i
th
 UBB 

parameters and equating the equal order term after neglecting the higher order term the following 
equation can be readily obtained:  

   T + =AR + RA B 0       (8) 

 
where,

T
T I I

i ix x x x

∂ ∂ ∂ ∂
+ + = = +

∂ ∂ ∂ ∂

R R A A
A A B 0 B R R     (9) 
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In the above, xσ is obtained by using the solution of Eqn. (8) in Eqn. (5). The sensitivity of the rmsd 
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In which, / ix∂ ∂R  is obtained by solving Eqn. (9).  Now, by making use of interval extension in 
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The optimization now involves two objective function yielding the upper and lower bound solutions.  
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The BDO procedure as presented above does not consider the possible dispersion of the design 

performance with respect to variation of parameters due to uncertainty. Thus, it may be sensitive due 
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The objective of an ideal design is to achieve the optimal performance as well as less sensitivity of the 

performance with respect to the variation of system parameters. The two criteria often conflict with 

each other. The problem is dealt as a multi-objective optimization, where the conventional objective 

function and its dispersion are two objectives that need to be optimized i.e. 

xfind  , to minimize  { },σ σ∆x . The two-criterion optimization problem is transformedto minimization 

of an equivalent single objective as:  
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Where,  is a weighting factor in the bi-objective optimization problem. The maximum robustness 

will be achieved for  =0.0, and  = 1.0 indicates optimization without any robustness. The 

optimization can be performed based on the standard unconstrained non-linear optimization routine 

available with MatLab Optimization Toolbox. Once the optimal design point is obtained by solving 

Eqn. (14), the dispersion of performance can be estimated at the optimal point using Eqn. (13). 

 

4. Numerical Study 

 

The primary system with an attached TMD as shown in Fig.1 is undertaken to elucidate the proposed 

RDO of TMD system in seismic vibration control of structure characterized by UBB type system 

parameters. The uncertainties are considered in
ggTTSS kmkm ωξ ,,,,, , 

0S  and is represented by the 

maximum possible dispersion (
i

x∆ ) expressed in terms of the percentage of corresponding nominal 

value ( )ix . Unless mentioned otherwise, the following nominal values are assumed in the present 

numerical study: 3%sξ = , µ=4%, s =4.5 , f =7 rad/sec ,
f =0.4 , 0S =300 cm2/sec3, i

x∆  
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value of the rmsd of the structure versus the mass ratio is plotted in Fig. 2 for different settings of 

weight factorα .The associated dispersion of the rmsd of the primary structure is shown inFig. 3.The 
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Where, α is a weighting factor in the bi-
objective optimization problem. The maximum 
robustness will be achieved for α =0.0, and α = 1.0 
indicates optimization without any robustness. The 
optimization can be performed based on the standard 
unconstrained non-linear optimization routine 
available with MatLab Optimization Toolbox. Once 
the optimal design point is obtained by solving Eqn. 
(14), the dispersion of performance can be estimated 
at the optimal point using Eqn. (13).

4. numerical Study

The primary system with an attached TMD 
as shown in Fig.1 is undertaken to elucidate the 
proposed RDO of TMD system in seismic vibration 
control of structure characterized by UBB type 
system parameters. The uncertainties are considered 
in 
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Eqn. (12) are also performed.The results are shown in the same plot for ease in comparison with the 

,=300 cm2/sec3, ixD  =10%.Based on this, 
the rmsd of the unprotected system i.e. without 
TMD is computed to be 3.36 cm. The rmsd of the 
primary structure is optimized by the proposed RDO 
procedure. The optimum mean value of the rmsd of 
the structure versus the mass ratio is plotted in Fig. 2 
for different settings of weight factorα .The associated 
dispersion of the rmsd of the primary structure is 
shown inFig. 3.The corresponding optimum tuning 
ratio and damping ratio of the TMD are shown in  
Figs. 4 and 5, respectively.

The BDO procedure considering the upper and 
lower bound performance functions as described by 
Eqn. (12) are also performed.The results are shown 
in the same plot for ease in comparison with the 
RDO results.  The uncertainty level of 15% and 3% 
damping ratio is considered to develop these plots.
It can be readily observed from the plots that the 
bounded solutions are too far apart which is obvious 
as interval method gives a conservative estimate of the 
upper and lower bound solutions. In such situation, 
an upper bound solution is usually suggested to be 
used as the performance function for optimum design 
is merely a conservative deterministic solution of the 
problem without any consideration on the possible 
dispersion of the suggested design. The lower 

Figures 2: The variation of rmsd of the TMD with varying  
mass ratio

Figures 3:The variation of dispersion of rmsd with varying  
mass ratio

Figures 4: The variation of tuning ratio of the TMD with 
varying mass ratio

Figures 5: The variation of damping of the TMD with varying 
mass ratio
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bound solution though efficient in terms of response 
reduction; the associated dispersion of the design is 
more. The efficiency of the RDO solution is marginally 
less compare to that of the lower bound solution and 
lies in between the bounded solutions. However, 
the dispersion of the design is much lower than the 
dispersion of the lower bound case solution and the 
designer has the necessary flexibility to control the 
design through suitable choice of the weight factor α 
to achieve the desired level of performance efficiency 
(i.e. the reduction of vibration level) and its dispersion 
under parameter uncertainty.

The mean value of the rmsd of the primary 
structure versus uncertainty range is plotted in Fig. 6 for different values of weight factorα . The 

associated dispersion of the rmsd is shown in Fig. 
7. The corresponding optimum tuning ratio and 
damping ratio are shown in Figs. 8 and 9, respectively. 
The results of the BDO procedure are also shown in 
the same plot.  The width of the bounded solution 
increases sharply with increasing level of uncertainty. 
However the change in the optimum rmsd is nominal 
by the proposed RDO case. As expected, the dispersion 
of the rmsd value increases with increasing level of 
uncertainty for all RDO cases i.e. for all settings of 
α. However, the dispersion of the design is much 
smaller than the dispersion of the lower bound case 
irrespective of uncertainty level. The change in tuning 
ratio and damping ratio as shown in Fig. 8 and Fig 9 
with increasing level of uncertainty is notable. The 
mass ratio and damping ratio of the primary structure 
are considered as 4% and 3%, respectively. 

It is generally observed that there is a trade-
off between the objective values of a design and its 
robustness. The situation can be studied further in 
term of Pareto front. The Pareto front is generated by 
solving the RDO by varying the weight factor α and 
the results are plotted in Fig. 10 for different mass 
ratio. The uncertainty ranges for all parameters are 
taken as 10% and damping is considered to be 3%. It 
can be observed from the plot that the dispersion of the 
optimum weight decreases and the rmsd increases as 
α value decreases. Thus, more robustness is achieved 
at the cost of sacrificing the performance of TMD. This 
is one of the important characteristics obtained from 
multi-objective optimization procedure. 

5. Conclusions

The RDO of TMD system of protection in 
mitigating seismic vibration effect of structures 
characterized by UBB type  system parameters is studied 
in the present work. The advantage of RDO approach 

Figure 6:The variation of rmsd with varying level of 
uncertainty

Figure 7: The variation of dispersion of rmsd with varying level 
uncertainty

Figure  8:The variation of tuning ration of the TMD with 
varying uncertainty level

Figure  9: The variation of damping of the TMD with varying 
uncertainty level.
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Figure 10: The variation of dispersion with varying rmsd for different mass ratio

in absence of complete probabilistic information to 
describe the system parameters is demonstrated. 
The BDO solutions conventionally obtained in such 
situation are too far apart. The conservative upper 
bound solution usually suggested in such cases is of 
little use for practical design application. Moreover, 
such approach fails to provide information about the 
possible dispersion of the design performance. But, the 
RDO approach provides the necessary flexibility to the 
designer to achieve the desired level of performance 
efficiency (i.e. the reduction of vibration level) and 
its dispersion under uncertain environment through 
suitable choice of parameterα . Thus, one can make 
more effective use of the resources available in a 
given structural control situation and provide for 
more realistic and cost-effective trade-offs between 
the control performance and its robustness with due 
importance to the unavoidable presence of system 
parameter uncertainty. It is generally observed that 
more robustness is achieved at the cost of sacrificing 
the optimum weight, an obvious characteristic of 
results obtained from any multi-objective optimization 
problem. Though, the efficiency of RDO solution is 
comparatively less compare to that of the lower bound 
solution, the dispersion of the design is much lower 
than the dispersion of the lower bound case solution. 
The formulation presented here involves linear 
perturbation based approximation of the responses 

around the mean values of the UBB parameters.  For 
larger level of uncertainty, alternative approach to 
linear perturbation analysis is needed which required 
further study. It may be noted that the approach being 
generic in nature, can be applied for RDO of TMD for 
vibration control of MDOF system.
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abstract

Land reclamation in coastal areas has significant influence on local ground water systems. Steady-
state analytical solutions based on Dupuit and Ghyben-Herzberg assumptions are available (Guo 
and Jiao, 2007) to evaluate the rise in GWT (Ground Water Table) and salt water-fresh water 
interface. It is established that amount of these changes depends on the extent of reclamation 
(geometric extent) and the hydraulic conductivity of the fill material. The closed form analytical 
solutions provide a single value of parameters such as rise in GWT and distance of salt water – fresh 
water interface. Considering the fact the soil is a natural material which is used as fill material 
for reclamation purpose, it is difficult to assure a unique value of hydraulic conductivity of the 
fill material. Uncertainties in the estimation of hydraulic conductivity of the fill material will 
always lead to the uncertainty in the estimation of output parameters. Conventional approach 
defines factor of safety to handle uncertainty in geotechnical design and applications which is 
solely based on past experiences, good engineering judgment and confidence level of the designer. 
Alternatively, probabilistic approach, which is gaining importance in recent years, can handle 
uncertainty in a mathematical framework. In the present study, the role of uncertain parameter, 
i.e., “hydraulic conductivity of the fill material” and its influence on probabilistic assessment of 
Ground water level and sea water interface in a coastal land reclamation projects is highlighted. 
Two situations are considered, both with ground water flow resulting from precipitation recharge: 
(i) the coastal aquifer of an extensive landmass and (ii) an island.

Keywords: coastal land reclamation, probabilistic, hydraulic conductivity, ground water, 
uncertainty
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1. introduction

Most large urban centers lie in coastal regions, 
which are home to about 25% of the world’s population. 
Rapid industrial and commercial expansion in recent 
years has created the need for more land. It is estimated 
that the current coastal urban population of 200 million 
is projected to almost double in the next 20 to 30 years. 
To meet the growing demand for more housing and 
other land uses, land has been reclaimed from the sea 
in coastal areas in many countries, including China, 
Britain, Korea, Japan, Malaysia, Saudi Arabia, Italy, 
the Netherlands, and the United States. As well 
known to everyone, one of the most famous case 
histories is Palm Jumeirah (Nakheel 2007) in Dubai, 
which is artificial archipelago created using coastal 
land reclamation.

The direct impact of land reclamation on coastal 
engineering, environment and marine ecology is 
well recognized and widely studied (Seasholes, 2003; 

Lumb, 1976; Suzuki, 2003; Stuyfzand, 1995). It is also 
recognized that reclamation change the regional 
groundwater regime, including groundwater table 
(GWT) as well as interface between seawater and 
fresh groundwater. Extensive studies on impact of 
coastal land reclamation on ground water level and 
the sea water interface have been carried out in the 
recent past (Bear and Dagan, 1964; Strack 1976; Jiao, 
2000; Jiao et al., 2001). Guo and Jiao (2007) provided 
analytical solutions for the alternation of the salt 
water interface in response to land reclamation 
with the assumption that flow satisfies the Ghyben-
Herzberg relationship and the Dupuit assumption. 
The study is useful in assessing long term impact 
of the land reclamation on both the GWT and the 
salt water interface in a coastal landmass and an 
island with unconfined ground water condition. The 
following section provides a brief review of work 
carried out by Guo and Jiao (2007).
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1.1 impact of reclamation in an Extensive 
landmass

Figure 1(a) shows a coastal unconfined ground 
water system receiving uniform vertical recharge w. 
The hydraulic conductivity of the aquifer is K1. The 
distances from the water divide to the coastline and 
the tip of the salt water tongue are denoted as L1 and 
Xt, respectively. The head in the fresh water, h, is 
measured in relation to the horizontal impermeable 
bottom of the aquifer, which is Ho below sea level. 
Figure 1(b) shows the influence of reclamation when 
steady state condition is reached. It is indicated that 
coastline moves seaward by a distance L2 and the 
hydraulic conductivity of the fill material is K2 (the 
boundary between K1 and K2 is approximated as 
vertical). The distance of tip of saltwater water tongue 
from the water divide after reclamation is assumed to 
be Xtr. The following closed form analytical solutions 
were derived to obtain the depth of GWT (h) and 
distance Xtr for the reclaimed land.
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The location of the tip of the salt water tongue (Xtr) can be obtained from the following expression: 
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Figure 1: Sketch of an unconfined aquifer system and the 
salt water interface in a coastal extensive landmass (a) before 
reclamation and (b) after reclamation (Guo and Jiao, 2007)

The location of the tip of the salt water tongue 
(Xtr) can be obtained from the following expression:
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For more detailed study on the topic, it is suggested that this paper should be read in the light of Guo 

and Jiao (2007). The proposed analytical solutions can be used in estimating the increase in GWT (∆h) 

as well as location of the tip of the salt water tongue (Xtr) for the reclaimed land. 
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The locations of the tips of the salt water tongues can be readily obtained by setting h equal to ρsHo/ρf 

in either Eq. (5) or Eq. (6) and then solving for Xt1 and Xt2.The reclamation length and hydraulic 

conductivity of the reclamation material are taken as L2 and K2, respectively. The current distances 
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The locations of the tips of the salt water tongues 
can be readily obtained by setting h equal to ρsHo/ρf 
in either Eq. (5) or Eq. (6) and then solving for Xt1 and 
Xt2.The reclamation length and hydraulic conductivity 
of the reclamation material are taken as L2 and K2, 
respectively. The current distances from the coastline 
on the un-reclaimed side to the tips of salt water 
tongues are Xtr1 and Xtr2, and the ground water divide 
after reclamation is assumed to be at X = Xd.

The solution for Xd is obtained as below:

 

from the coastline on the un-reclaimed side to the tips of salt water tongues are Xtr1 and Xtr2, and the 

ground water divide after reclamation is assumed to be at X = Xd. 

The solution for Xd is obtained as below: 
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After reclamation, the locations of the tips of the salt water tongues can be obtained by setting h equal 

to ρsHo/ρf in either Eq. (9) or Eq. (10) and then solving for Xtr1 and Xtr2. The displacement of the water 

divide, ∆d, can be calculated as: 
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Eq. (12) shows that the water divide will move toward the new coastline after reclamation, indicating 

that ground water discharge to the sea on the non-reclamation side will be increased by an amount of 

w∆d per unit width of flow. 

 

In the development of analytical solutions, it is assumed that the Dupuit assumptions and the Ghyben-

Herzberg relationships are valid. Guo and Jiao (2007) indicated that although the results obtained 

using these expressions are accurate in many cases, one of the major shortcomings of the Ghyben-

Herzberg relationships is that there is no seepage face at the coastline. Further, the model does not 

include the more complicated cases like (i) heterogeneity of the aquifer system, (ii) complicated 

topography at the coast, and (iii) the transient process immediately after the reclamation. 

 

It can be noted that in the proposed analytical solutions, the permeability of the in situ soil (K1) and 

also reclamation material (K2) are the governing parameters in deciding the water heads of GWT and 

location of the tip of the salt water tongue (Xtr). Being soil a natural material and heterogeneous in 

nature, deterministic estimate of K1 and K2 (i.e., single value) is virtually impossible. The uncertainty 

in estimation on these parameters brings uncertainty in determination of water heads of GWT and 

location of the tip of the salt water tongue. Hence, probabilistic assessment of these parameters 

becomes imperative in which the input parameters are treated as random variables and the influence of 

these input variables on the output responses, i.e., water heads of GWT and location of the tip of the 

salt water tongue are studied. 
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that ground water discharge to the sea on the non-
reclamation side will be increased by an amount of 
w∆d per unit width of flow.

In the development of analytical solutions, it 
is assumed that the Dupuit assumptions and the 
Ghyben-Herzberg relationships are valid. Guo 
and Jiao (2007) indicated that although the results 
obtained using these expressions are accurate in many 

cases, one of the major shortcomings of the Ghyben-
Herzberg relationships is that there is no seepage face 
at the coastline. Further, the model does not include 
the more complicated cases like (i) heterogeneity of 
the aquifer system, (ii) complicated topography at the 
coast, and (iii) the transient process immediately after 
the reclamation.

It can be noted that in the proposed analytical 
solutions, the permeability of the in situ soil (K1) 
and also reclamation material (K2) are the governing 
parameters in deciding the water heads of GWT and 
location of the tip of the salt water tongue (Xtr). Being 
soil a natural material and heterogeneous in nature, 
deterministic estimate of K1 and K2 (i.e., single value) is 
virtually impossible. The uncertainty in estimation on 
these parameters brings uncertainty in determination 
of water heads of GWT and location of the tip of the 
salt water tongue. Hence, probabilistic assessment of 
these parameters becomes imperative in which the 
input parameters are treated as random variables and 
the influence of these input variables on the output 
responses, i.e., water heads of GWT and location of 
the tip of the salt water tongue are studied.

2. objectives of the Present Study

In the present study, the work proposed by Guo 
and Jiao (2007) is studied in the light of probabilistic 
analysis. The heterogeneity of the aquifer system is 
taken into consideration to study the impact of coastal 
land reclamation on GWT (h) and sea water interface 
(Xtr). Monte Carlo simulations are done to obtain the 
statistical information on mean and variance of output 
parameters h and Xtr. Using FORM, the reliability of 
getting a particular value of h and Xtr are evaluated.

3. Geotechnical Uncertainties and Its Quantification

Quantitative assessment of soil uncertainty 
modeling requires use of statistics, as well as 
probabilistic modeling to process data from laboratory 
or in situ measurements. In the probabilistic analysis, 
the input parameters are modeled as either discrete 
or continuous random variables defined by their 
probability density functions (pdf) or the parameters 
of distributions (Baecher and Christian, 2003).

Normally, in geotechnical practice, the soil 
parameters are either modeled as normally distributed 
or log-normally distributed continuous random 
variables. The parameters of the normal and log-
normal probability distribution function (pdf) are 
directly related to the unbiased estimates of statistical 
moments, i.e., sample mean (µ) and variance (σ2) of 
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the measured data set. The coefficient of variation 
(CoV%), which is obtained by dividing the sample 
standard deviation (σ) by the sample mean (µ), is 
commonly used in quantifying the geotechnical 
uncertainty analysis because of the advantages of 
being dimensionless as well as providing a meaningful 
measure of relative dispersion of data around the 
sample mean.

Where site-specific data are not available to 
estimate parameters of random variables, uncertainty 
can be characterized by assuming that the coefficient 
of variation (CoV%) of a parameter is similar in 
magnitude to that observed at other sites. Typical 
values of coefficients of variation for soil properties 
have been compiled and reported by Uzielli et al., 
(2007). Typical values of range of coefficient of 
variation (CoV%) for selected geotechnical parameters 
are provided in Table 1.

Consideration of these uncertainties in the input 
soil parameters and its impact on the performance of a 
geotechnical system are studied using the reliability-
based design procedures. Reliability analysis focuses 
on the most important aspect of performance, i.e., 
probability of failure (pf).

table 1:CoV% for the selected geotechnical 
parameters

Property CoV% range
Dry unit weight (γd) 2 – 13

Undrained shear strength (cu) 6 – 80
Effective Friction angle (φ′) 7 – 20

Elastic Modulus (Es) 15 – 70
Coefficient of permeability (k) 68 - 90

4. Methods of reliability analysis

In FORM, if the demand is defined as D and 
capacity is defined as C; the margin of safety or 
the performance function G(x) or M is defined as 
below:
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where, δC,δD is coefficient of variation in C, and D, respectively. 

 

USACE (1997) made specific recommendation on target probability of failure (pf) and reliability 

indices (β) in geotechnical and infrastructure projects. The suggested guidelines say that a reliability 

index (β) value of at least 5.0 is considered to indicate high performance of the system and 3.0 for the 

above average performance. 

 

5. Results of Analysis and Discussion 

 

5.1 Deterministic Solutions 

 

A typical case of reclamation site of an extensive landmass in Hong Kong (Jiao et al., 2001) with the 

numerical values of the following parameters: K1 = 0.1 m/day, L1 = 1000 m, ρs = 1.025 g/cm3, ρf = 

1.000 g/cm
3
, w = 0.0005 m/day and Ho = 20m, is considered. The land reclamation will increase the 

GWT and change the fresh water and sea water interface. From the available analytical solutions, it 

can be seen that the highest GWT increase is at the original coastline. For L2 = 500m and K2 = 0.5 

m/day, the increase is 20.74 m. 

 

Fig.3 shows the displacement of the tip of the salt water tongue with hydraulic conductivity of the 

reclamation material and for different reclamation length (given values of K1 = 0.1 m/day, L1 = 1000 

m, ρs = 1.025 g/cm3, ρf = 1.000 g/cm3, w = 0.0005 m/day and Ho = 20m). It can be noted that 

permeability of reclamation material has high impact on displacement of the tip of the salt water 

tongue. As the permeability value reduces the tip of the sea water tongue moves sea side. Hence, it is 

always beneficial to keep the permeability of the reclamation material as low as possible. 

 

Considering the case of an island, assuming L1 = 2000 m and other parameters same as K1 = 0.1 

m/day, L1 = 1000 m, ρs = 1.025 g/cm
3
, ρf = 1.000 g/cm

3
, w = 0.0005 m/day and Ho = 20m, the 

calculations show that the displacement of the tip of the salt water tongue near the coastline on the 

reclamation side is similar to the results obtained in Fig. 3. 

 

It is observed that after reclamation, the salt water interface on the reclamation side is pushed toward 

the post-reclamation coastline. The salt water interface on the un-reclaimed side will similarly be 

pushed seaward. This is because the water-divide moves toward the reclaimed side, increasing the 

recharge to the aquifer and the ground water discharge to the sea on both sides of the island. The water 

table increases throughout the island as a result of the reclamation. The results are similar to those 

obtained for reclamation of extensive landmass. 
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where, δC,δD is coefficient of variation in C, and 
D, respectively.

USACE (1997) made specific recommendation 
on target probability of failure (pf) and reliability 
indices (β) in geotechnical and infrastructure projects. 
The suggested guidelines say that a reliability index 
(β) value of at least 5.0 is considered to indicate high 
performance of the system and 3.0 for the above 
average performance.

5. results of analysis and discussion

5.1 deterministic Solutions

A typical case of reclamation site of an extensive 
landmass in Hong Kong (Jiao et al., 2001) with the 
numerical values of the following parameters: K1 = 0.1 
m/day, L1 = 1000 m, ρs = 1.025 g/cm3, ρf = 1.000 g/cm3, 
w = 0.0005 m/day and Ho = 20m, is considered. The 
land reclamation will increase the GWT and change 
the fresh water and sea water interface. From the 
available analytical solutions, it can be seen that the 
highest GWT increase is at the original coastline. For L2 
= 500m and K2 = 0.5 m/day, the increase is 20.74 m.

Figure 3 shows the displacement of the tip of 
the salt water tongue with hydraulic conductivity of 
the reclamation material and for different reclamation 
length (given values of K1 = 0.1 m/day, L1 = 1000 m, 
ρs = 1.025 g/cm3, ρf = 1.000 g/cm3, w = 0.0005 m/day 
and Ho = 20m). It can be noted that permeability of 
reclamation material has high impact on displacement 
of the tip of the salt water tongue. As the permeability 
value reduces the tip of the sea water tongue moves 
sea side. Hence, it is always beneficial to keep the 
permeability of the reclamation material as low as 
possible.

Considering the case of an island, assuming L1 
= 2000 m and other parameters same as K1 = 0.1 m/
day, L1 = 1000 m, ρs = 1.025 g/cm3, ρf = 1.000 g/cm3, w 
= 0.0005 m/day and Ho = 20m, the calculations show 
that the displacement of the tip of the salt water tongue 
near the coastline on the reclamation side is similar to 
the results obtained in Figure 3.

It is observed that after reclamation, the salt 
water interface on the reclamation side is pushed 
toward the post-reclamation coastline. The salt water 
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interface on the un-reclaimed side will similarly be 
pushed seaward. This is because the water-divide 
moves toward the reclaimed side, increasing the 
recharge to the aquifer and the ground water discharge 
to the sea on both sides of the island. The water table 
increases throughout the island as a result of the 
reclamation. The results are similar to those obtained 
for reclamation of extensive landmass.

For the reliability index calculations, the mean 
capacity (µC) is taken as the calculated value of ∆h 
or Xtr and the demand (µD) is taken as deterministic 
(predefined numerical) values of ∆h and Xtr. The 
results of the reliability analysis of reclamation of 
extensive landmass are presented. Similar calculations 
can be performed for the reclamation of an island.

For the reliability analysis of the given problem 
in hand, the permeability parameter (K2) is considered 
as log-normally distributed continuous random 
variable. The coefficient of variation in demand is 
taken as zero, i.e., δD=0. The information on mean 
(µC) and coefficient of variation (δC) in capacity are 
obtained through Monte Carlo simulation results. 
For the parametric study, different values of mean (K2 
parameter = 0.1m/day, 0.5 m/day and 1.0 m/day) and 
the coefficients of variation (as 60%, 70%, 80%, and 
90%) of permeability parameter (K2) are assumed that 
constitutes the following cases:
CaSE – a: Mean K2 = 0.1 m/day and CoV = 60%, 70%, 

80%, and 90%
CaSE – b: Mean K2 = 0.5 m/day and CoV = 60%, 70%, 

80%, and 90%
CaSE – C: Mean K2 = 1.0 m/day and CoV = 60%, 70%, 

80%, and 90%

For each case; 30000 random numbers for 
K2parameter are generated to perform Monte Carlo 
simulations and to estimate the statistical information 
on mean and variance of ∆h and Xtr. For that purpose 
corresponding to each value of K2, proposed analytical 
solutions (Guo and Jiao, 2007) are utilized to obtain 
the corresponding values ∆h and Xtr. The simulation 
provides 30000 numerical values of ∆h and Xtr, which 
can be utilized in calculating mean (µC) and coefficient 
of variation (δC) in the capacity, as the case may be.  
It is further assumed that output values are random 
variables following lognormal distribution so that Eq. 
(14) can be utilized to calculate reliability index (β).

Table 2(a) shows typical results of the reliability 
analysis obtained for Xtr for CASE – A. It can be noted 
that the deterministic value of Xtr from analytical 
solution is 1499.317m. From the results of the reliability 
analysis, it can be noted that as Xtr is increased from 
1495 m to 1498 m the reliability index value decreases 
for the range of CoV% values assumed for K2. For 60% 
CoV in K2 parameter, an acceptable value of β≥ 5.0 is 
achieved when the value of Xtr ≤ 1496.71 m. If the CoV 
in K2 parameter is 90%, β ≥ 5.0 is achieved when Xtr 
≤ 1495.0 m. Since the permeability of the reclamation 
material is very low (0.1 m/day in Case A), a very 

Figure 3: Displacement of the tip of the salt water tongue with 
hydraulic conductivity of the reclamation material and for 

different reclamation length

5.2 Probabilistic Solutions

It can be noted that the deterministic values 
obtained for increase in GWT (∆h) and distance of 
sea water – fresh water interface (Xtr) are reliable to 
the extent the accuracy with which the permeability 
parameters of the soil are obtained from field or 
laboratory test results. As indicated earlier it is almost 
impossible to attain a single (deterministic) value of K1 
and K2 parameters for the in situ soil and reclamation 
material, respectively.

From Table 1, it is evident that the coefficient 
of variation (CoV%) in the permeability parameter 
can be expected in the range of 68% to 90%. Hence, 
assessment of ground water level and sea water 
interface in a reclamation project is extremely difficult 
in an uncertain environment. Through reliability 
analysis, the uncertainty in permeability parameters 
can be handled in a mathematical framework and 
the best way to answer to the following questions is 
probabilistically:
1. What is the reliability of getting tip of the salt 

water tongue at a particular distance (Xtr)?
2. What is the reliability of getting increased value 

of GWT (∆h) of some numerical value?

Amit Srivastava et al. / Life Cycle Reliability and Safety Engineering Vol. 1 Issue 3 (2012) 16-22



21 © 2012 SRESA All rights reserved

low value of coefficient of variation is obtained in Xtr 
through Monte Carlo simulations. Hence, not much 
variation in Xtr in observed for which reliability index 
(β) ≥ 5.0.

table 2a: results of the reliability analysis of Xtr 
for CaSE – a

Mean Xtr 
(µC) 1499.203 1499.168 1499.123 1499.086

CoV% in 
Xtr (δC) 0.033 0.039 0.049 0.055

Reliability Index (β) values
← (CoV% in K2 parameter) →

Xtr(m) 60% 70% 80% 90%
1495 8.46 7.11 5.58 4.94
1496 6.44 5.40 4.22 3.73
1497 4.43 3.70 2.87 2.52
1498 2.42 1.99 1.52 1.31

table 2b: results of the reliability analysis of Xtr 
for CaSE – b

Mean Xtr 
(µC) 1496.187 1496.078 1495.948 1495.826

CoV% in 
Xtr (δC) 0.152 0.185 0.215 0.272

Reliability Index (β) values
← (CoV% in K2 parameter) →

Xtr(m) 60% 70% 80% 90%
1480 7.14 5.84 4.99 3.91
1485 4.92 4.02 3.42 2.67
1490 2.72 2.20 1.85 1.44
1495 0.52 0.39 0.30 0.20

table 2c: results of the reliability analysis of Xtr 
for CaSE – C

Mean Xtr 
(µC)

1493.291 1493.479 1493.579 1493.855

CoV% in 
Xtr (δC)

0.270 0.299 0.360 0.382

Reliability Index (β) values
← (CoV% in K2 parameter) →

Xtr (m) 60% 70% 80% 90%
1470 5.82 5.29 4.42 4.22
1475 4.56 4.16 3.48 3.33
1480 3.31 3.03 2.54 2.44
1485 2.06 1.90 1.60 1.56

Table 3a: Results of the reliability analysis of ∆h 
for CaSE – a

Mean ∆h 
(µC)

64.971 65.893 66.765 68.494

CoV% in 
∆h (δC)

34.91 41.95 44.27 55.26

Reliability Index (β) values
← (CoV% in K2 parameter) →

∆h (m) 60% 70% 80% 90%
10 5.69 4.88 4.70 3.99
12 5.15 4.43 4.27 3.63
14 4.70 4.05 3.90 3.33
16 4.30 3.72 3.59 3.07
18 3.95 3.42 3.31 2.85
20 3.64 3.16 3.06 2.64

Table 3b: Results of the reliability analysis of ∆h 
for CaSE – b

Mean ∆h (µC) 22.994 23.831 24.499 25.367
CoV% in ∆h 

(δC) 42.65 54.99 57.00 64.87

Reliability Index (β) values
← (CoV% in K2 parameter) →

∆h (m) 60% 70% 80% 90%
1 7.87 6.43 6.30 5.75
2 6.18 5.08 4.99 4.58
3 5.19 4.29 4.22 3.90
4 4.48 3.73 3.68 3.41
5 3.94 3.30 3.26 3.04
6 3.49 2.94 2.92 2.73

Table 3c: Results of the reliability analysis of ∆h 
for CaSE – C

Mean ∆h (µC) 15.135 16.296 17.574 19.334
CoV% in ∆h 

(δC) 45.56 52.67 60.56 69.234

Reliability Index (β) values
← (CoV% in K2 parameter) →

∆h (m) 60% 70% 80% 90%
1 6.47 5.89 5.41 5.05
2 4.88 4.49 4.17 3.94
3 3.94 3.67 3.44 3.29
4 3.28 3.09 2.93 2.83
5 2.77 2.64 2.53 2.47
6 2.35 2.27 2.20 2.18

In other two cases B & C, in which mean value 
of K2 parameter is relatively high, the influence of 
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variation in K2 parameter is remarkably observed. The 
results of the reliability analysis for Case B & C are 
presented in Table 2(b) and Table 2(c), respectively. 
For CASE – B; it can be noted that the deterministic 
value of Xtr from analytical solution in 1496.579 m. 
The results of the reliability analysis indicate that 
a reliability index (β) ≥ 5.0 is achieved when Xtr is 
assumed at 1484.8 m and 1475.6 m for 60% and 90% 
CoV in K2 parameter, respectively. Similarly for CASE 
– C; it can be noted that the deterministic value of Xtr 
from analytical solution in 1493.152 m. The results of 
the reliability analysis indicate that a reliability index 
(β) ≥ 5.0 is achieved when Xtr is assumed at 1473.2 m 
and 1465.6 m for 60% and 90% CoV in K2 parameter, 
respectively. Similar calculations were performed for 
the reliability index (β) evaluation of ∆h value and 
results are presented in Table 3 for all the three cases. 
It can be noted that as CoV% in K2 parameter increases 
the reliability index (β) values decreases for the given 
value of ∆h. The β value also decreases with increase 
in ∆h values.

The results of the reliability analysis can be 
interpreted as follows: If the mean and CoV% in 
K2 parameter are 0.1 m/day and 60%, respectively, 
the reliability of getting ∆h ≤ 12.6 m is very high(β ≥ 
5.0). The reliability decreases as ∆h increases. It can 
be noted that for the same case analytical solution 
provides a deterministic value of ∆h = 61.61m. With 
due consideration of variability in estimating K2 
parameters, the reliability of getting ∆h = 61.61 m is 
extremely low. From these observations it can be stated 
that probabilistic assessment of Ground water level 
and sea water interface in coastal land reclamation 
projects is essential in view of heterogeneity of 
the material and uncertainties associated with the 
estimation of permeability properties governing the 
flow characteristics of reclaimed site.

6. Conclusions

The study highlights the influence of extent of 
variation in the permeability parameter in the increase 
in Ground water level and sea water interface in 
coastal land reclamation projects. The probabilistic 
analysis approach gives an opportunity to handle 
variability in a mathematical framework and it is a 
useful tool in decision making process. The results 
of the reliability analysis provide more rational 

information on selection of appropriate value of Xtr 
and ∆h that can be based upon the extent of variation 
in input K2 parameter and desired value of reliability 
index (β) acceptable to decision makers. It is noted 
that low mean value and low coefficient of variation 
in permeability of reclamation material is always 
beneficial and insures higher chances of getting 
increased Xtr and ∆h values. These observations are 
essentially useful in quality control purposes in a land 
reclamation projects.
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1. introduction 

Seaports are essential nodes of national and 
international transport system of a country. It is thus 
essential to minimize the damage of ports under 
natural disasters such as earthquakes and severe 
windstorms. In a port facility, container cranes are 
one of the most important types of structures that 
facilitate the movement of cargos between a ship and 
storage yards. Thus, damage or collapse incidents 
of cranes can hinder smooth port operation, causing 
significant amount of economic loss in terms of 
repair or replacement, downtime, and enduring 
loss of business due to permanent traffic rerouting. 
Although significant advancements have been 
achieved in terms of design and construction of 
modern-day huge cranes, recent failure incidents 
such as (a) in 2003, at Pusan port of S. Korea and 
(b) in 1996, the Zhanjiang port of Guangdong 
indicate that these cranes are highly vulnerable to 
windstorm induced loadings. Several researchers 
such as McCarthy and Vazifdar (2004), McCarthy 
et al. (2007), and McCarthy et al. (2009) carried out 
a few studies to identify different components 
of container cranes that are highly susceptible to 
failure during severe windstorm (tie-down wharf 
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abstract

Container cranes are highly susceptible to damage or even failure during severe windstorms. 
Damage of container crane causes significant amount of economic loss both in terms of repair/
replacement and downtime. This paper focuses on the effect of uncertainty of different parameters 
of wind field on the performance of container cranes. A representative crane of tower height 
72.60 m and total boom length of 131.00 m is chosen and modeled in a commercial software 
considering both material and geometric nonlinearities. Stochastic fluctuating wind fields have 
been simulated by means of spectral representation method using the Kaimal and Simiu power 
spectra in conjunction with along and across wind coherence functions. Nonlinear time history 
analyses are carried out using simulated wind fields and the performance of the crane is assessed 
in terms of fragility curves. Further, a sensitivity analysis is conducted by means of a tornado 
diagram and first-order second-moment analysis to rank different uncertain parameters of wind 
field. Based on these results, a few considerations for design have been provided.
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bracket and stowage-pin system, link plates, and 
turnbuckles) and different retrofitting schemes. 
In addition, several numerical and experimental 
studies are conducted [viz., Eden et al. (1980); Huang 
et al. (2006); Lee et al. (2007); and Lee and Kang 
(2007)] to determine values of different governing 
parameters for design of container crane due to wind 
load. Important conclusions of all those studies are: 
(a) effect of Reynolds number (Re) and Strouhal 
number (S) on different aerodynamic coefficients is 
negligible and (b) maximum value of uplifting force 
at any support occurs either for yaw angles between 
200 and 400 or between 1300 and 1500 and minimum 
value occurs at the yaw angle 900.

It can be observed from previous research 
that no systematic studies have been carried out to 
investigate the effect of different parameters on failure 
of container crane as well as all those previous studies 
did not explicitly consider the influence of spatial 
variation of wind field on failure vulnerability of 
container crane. The primary purpose of this study is 
twofold: (a) identification of different parameters that 
have significant influence on failure vulnerability of 
container cranes, and (b) estimate the influence of these 
parameters on failure of container cranes. 
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2. Stochastic Wind Field Simulation

Wind speed at any point and any instant of time 
[V(x,y,z;t)] consist of two parts: (a) mean wind speed 
[

 
2. Stochastic Wind Field Simulation 
 
Wind speed at any point and any instant of time [V(x,y,z;t)] consist of two parts: (a) mean wind speed 
[(z)], which is independent of space and time but only varies along the height and (b) fluctuating 
wind speed [v(x, y, z; t)], which varies both in space and time (Paola, 1998), as given by: 
 
                                                                                                        (1) 
 
In this study, wind fields are simulated by means of spectral representation method [viz., Shinozuka 
and Deodatis (1991); Shinozuka and Deodatis (1988) and Shinozuka and Jan (1972)].  
 
2.1 Mean Wind Field Simulation 
 
For the simulation of mean wind speed, at first, the original coordinate system (x, y, y) is transformed 
to the coordinate system of the wind flow direction (x1, y1, z1) considering wind flow as horizontal, and 
varying the yaw angle (, in degree). It is considered that the value of mean wind speed is zero at 
ground level and varying only with height according to the well-known power law, which is given as: 
 

                                                                                                                                       (2) 

 
where    is the mean wind speed at height Z,   is the gradient wind velocity at gradient 
height (the height at which wind velocity become constant) and  is a power law exponent that 
depends on terrain conditions. 
 
2.2 Fluctuating Wind Field Simulation 
 
Fluctuating part of wind speed is simulated as a zero mean, one-dimensional, multivariate (1D-mV) 
stationary Gaussian stochastic wind field and can be rewritten as: 
                j = 1, 2,……, m;   p = 0, 1,……, M-1;  
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Realizations of the wind speed time histories are 
simulated for 1023.75 sec with an interval of 0.25 sec. 
Figure 1(a) shows a realization of simulated wind 
speed data for Zg of 30.0 m and Vg of 60.0 m/sec at 
different nodes for a time window of 400 sec to 500 sec. 
To check the accuracy of simulated wind speed, Cross 
Power Spectral Density Function (CPSDF) between 
these two nodes (node 55 and 40) are calculated from 
the simulated wind field data and then considering 20 
samples, the average is calculated. Figure 1(b) shows 
the comparison of generated CPSDFs (a sample, 
the average CPSDF computed from 20 realizations 
obtained using a moving average method with 
a window size of 16 and the assumed-one) for a 
frequency range of 0.1 Hz to 1.0 Hz. It shows that in 
mean sense, the CPSDFs generated from the wind 
speed data are in very good agreement with the 
assumed CPSDF.
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2.3 Wind Force Computation

Only the drag and lift forces at each node are 
considered in the direction of wind and perpendicular 
to the plane of wind flow i.e., in the vertical direction. 
The drag force FD and lift force FL at any point can be 
expressed as (Simiu and Scanlan, 1986):
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where FD and FL are the drag and lift forces, 

respectively; ρ is the density of air (1.225 Kg/m3), CD 
and CL are the drag and lift coefficients, respectively; 

Figure 1: (a) Total wind speed along ‘X’ at different points plotted with respect to time and distance and 
           (b) Comparison of CPSDFs of wind speed between nodes 40 and 55

Figure 2: Representative container crane model at two different boom positions:  
(a) Boom-down and (b) Boom-up

and A is the effective area of any node in the direction 
of wind flow. Drag (CD) and lift (CL) coefficient values 
are taken from Lee and Kang (2007).

  3. numerical Modeling and analysis

For this study, a container crane of tower height 
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length 32.0 m, rail span 29.0 m and outreach length 
70.0 m) has been considered (Figure 2). The lifting 
capacity of the container crane model is 65.0 tones. 
The proposed container crane at different boom 
positions is modeled in SAP 2000 V14 (Computers 
and Structures, 2009) using frame element (67 nodes, 
connected by 109 elements). For modeling, isotropic 
tendon-type steel [Unit weight (γ): 76972.86 N/m3, 
Modulus of elasticity (E): 1.999 x 1011 N/m2, Poisson’s 
ratio (ν): 0.30, Shear Modulus (G): 7.690 x 1010 N/m2, 
Minimum yield stress (Fy): 1.493 x 109 N/m2] with 3 
% kinematic hardening is considered. 

3.1 Modal Properties 

Analysis is performed to estimate natural 
frequencies and mode shapes of the models. Ritz 
vector method is employed to extract only the first 
six modes of the model. Table 1 provides the natural 
periods of the first six modes of container crane 
models. It can be observed from these results that 
the periods in all modes of boom-up model is higher 
than the corresponding boom-down position, thereby 
implying that the boom-up position is more flexible, 
as one can expect.

table 1: natural periods and mode shape of the 
first six modes 

Mode 
number

time Periods (in sec.) Mode Shape 
type

boom 
down boom up boom 

down boom up

1st

2nd

3rd

4th

5th

6th

3.14162
2.38287
1.30613
1.06751
0.80840
0.71979

3.66817
2.58208
2.11273
1.50134
0.99998
0.73545

LOB
LBB
LTV

T
VB
LT

LOB
TOB1

L
LT
T

TOB2
Note: LOB: Lateral motion of outreach of boom girder; LBB: 
Lateral motions of back reach of boom  girder; LTV: Lateral 
torsion with vertical motion; T: Transverse motion; VB: Vertical 
motion of boom girder; LT: Lateral torsion motion; TOB1: 
Transverse motion of outreach of boom girder;  L: Lateral motion; 
TOB2: Torsional motion of outreach of boom girder.

3.2 Static and Wind Load Analysis

For a container crane, static load comes from 
different sources. These loads are applied at each 
nodes of the crane model and analysis is performed 
to obtain the state of stress and deformation of the 
model. For static analysis, geometric nonlinearity (P-Δ 
effect and large deformation) is considered. At first, 
the static load analysis is performed. Then holding 
the states of deformation and stress due to the applied 

static loads, the wind load analysis is performed. The 
wind load time history is applied at each node in both 
the directions (horizontal and vertical). Nonlinear time 
history analysis is carried out using Newmark’s direct 
integration technique. 

4. Covergence test and Sensitivity analysis 

Since wind fields are stochastic in nature, a 
convergence test of response parameters (normalized 
base moment) has been performed for Zg of 30.0 m and 
Vg of 60.0 m/sec to determine the approximate sample 
size of random wind field required for simulation 
convergence. Sensitivity analysis is then carried out 
to identify parameters that may have significant 
influence on failure of container cranes. Tornado 
diagram method and FOSM analysis is used for the 
purpose of sensitivity study. In tornado diagram 
method, all the uncertain parameters are considered 
as random variables and their two extreme values 
are chosen as mean - standard deviation and mean + 
standard deviation. The mean values and coefficients of 
variation of different uncertain parameters considered 
for the sensitivity analysis are given in Table 2. 

table 2: input parameter uncertainties

Parameter unit Mean CoV (in %)
Yaw angle [θ] In degree 90.0 33.33
Gradient 
Height [Zg]

In m 25.0 10.0

Gradient Wind 
Speed [Vg]

In m/s 50.0 10.0

Power Law 
Exponent [α] - 1/7 20.0

Roughness 
Height [z0]

In m 0.01 20.0

Coherence 
Function 
Constant [CX, 
CY, CZ]

-
6.0, 
10.0, 
16.0

15.0

Boom Position - Boom 
Down

Boom 
Articulated 

and Boom Up
Yield Strength 
[Fy]

In N/m2 1.493 x 
109 20.0

Elastic 
Modulus [E] In N/m2 200 x 

109 20.0

Kinematic 
Hardening 
Ratio [n]

In % 3.00 15.0

Damping Ratio 
[ξ] In % 2.00 15.0

Sourav Gur et al. / Life Cycle Reliability and Safety Engineering Vol.1 Issue 3 (2012) 23-30
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Swings have been plotted for all random variables 
from top to bottom in a decreasing size. These swings 
demonstrate relative contribution of each variable on 
the desired response parameter. Here larger swing 
implies higher influence of a random variable on 
the response parameter than the shorter one. FOSM 
analysis is performed to determine relative variance 
contribution by neglecting correlation terms.

5. Vulnerability assessment

Windstorm can sustain for a long duration, which 
can cause high magnitude of stress concentration 
along with frequent stress reversals. This may lead to 
low-cycle fatigue failure of the members connected to 
the supports. Now, the ratio R of the absolute value 
of the developed moment (M) in a member connected 
to any support to the plastic moment capacity (MP) 
of the section can be used to determine the failure 
probability of the member. In mathematical form, this 
can be expressed as:
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To calculate different medians for different 
damage states (c1, c2, ...cn) and a common log-standard 
deviation (ζ) for all the damage states, the method of 
maximum likelihood method is used here.

6. results and discussions 

Important results of this study are listed as 
follows:         
l	 Figure 3 shows that the normalize base moment 

value converges for a sample size of approximately 
60.

l	 Figure 4 and 5 show the sensitivity analysis results. 
From both of the figures, it can be observed that 
the gradient wind speed, boom position, yaw 
angle, and gradient height are the most important 
wind field parameters (in decreasing sequence of 
importance) to control the failure vulnerability of 
the container crane.  

l	 From Figure 6 it can be observed that considerable 
amount of variation in the failure probability 
occurs due to a change in boom position. Since 
the boom-up position is more flexible than the 
boom-down position, the failure probability at 
boom-up position is much more that of the boom-
down position.

l Figure 7 depicts that the failure probability of 
container crane also changes significantly with the 
change in yaw angle. At boom-down position, the 
failure probability decreases with the yaw angle 

Figure 3: Median and standard deviation (SD) of the 
normalized base moment for different sample sizes   

           of generated random wind field
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Fig. 4: Tornado diagram considering uncertainty in different parameters 
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Figure 6: Fragility curve at boom-down and boom-up condition for a particular yaw angle and gradient Height

in the sequence of 600, 1200, 900, 300, 1500, 1800, and 
00. However, at boom-up condition, this sequence 
of the yaw angle becomes 600, 1200, 00, 1800, 900, 
300, and 1500.

l	 From Figure 8 it can be observed that at a particular 
yaw angle and boom position, failure probability 
reduces with an increase in gradient height. A 
probable reason behind this is at lower value of 
gradient height, the mean wind field becomes 
very stiff, which causes higher application of 
wind load on the structure and thus, increases 
the failure probability.

7. Conclusions 

A parametric study is conducted to identify 
different wind field parameters that significantly 
influence the failure of container crane. Influence of 
these significant parameters on failure vulnerability 
of the container crane is then assessed in terms of 
fragility curves. It is observed from the results that the 
gradient wind speed, boom position, yaw angle, and 
gradient height are the most important parameters 
that significantly influence the failure of container 
crane. It is also observed that the boom-up position 
is much more vulnerable than the boom-down 
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Figure 7: Fragility curve at boom-down condition for a particular gradient height and different yaw angle

Figure 8: Fragility curve at boom-down condition for a particular yaw angle and different gradient height

position. Considerable amount of variation in the 
failure probability can occur with the change in yaw 
angle. It is also found that the failure probability of 
container crane increases with an increase in gradient 
wind speed and decreases with an increase in gradient 
height. 
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1. introduction

uncertainty quantification is important in the 
assessing and predicting performance of complex 
engineering systems, especially given limited 
experimental or real-world data. Simulation of complex 
physical systems involves multiple levels of modeling, 
ranging from the material to component to subsystem 
to system. Interacting models and simulation codes 
from multiple disciplines (multiple physics) may be 
required, with iterative analyses between some of the 
codes. As the models are integrated across multiple 
disciplines and levels, the problem becomes more 
complex and assessing the predictive capability of the 
overall system model becomes more difficult. Many 
factors contribute to the uncertainty in the prediction 
of the system model including: inherent variability in 
model input parameters, sparse data, measurement 
errors, and modeling errors, assumptions and 
approximations. 

The various sources of uncertainty in performance 
prediction can be grouped into three categories:
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l	 Physical variability, 
l	 Data uncertainty, and,
l	 Model error.

Physical variability: This type of uncertainty 
also referred to as aleatory or irreducible uncertainty, 
arises from natural or inherent random variability 
of physical processes and variables, due to many 
factors such as environmental and operational 
variations, construction processes, and quality 
control. This type of uncertainty is present both in 
system properties (e.g., material strength, porosity, 
diffusivity, geometry variations, chemical reaction 
rates) and external influences and demands on the 
system (e.g., concentration of chemicals, temperature, 
humidity, mechanical loads). As a result, in model-
based prediction of system behavior, there is 
uncertainty regarding the precise values for model 
parameters and model inputs, leading to uncertainty 
about the precise values of the model output. Such 
quantities are represented in engineering analysis as 
random variables, with statistical parameters such as 
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mean values, standard deviations, distribution types, 
etc., estimated from observed data or in some cases 
assumed. Variations over space or time are modeled 
as random processes.

data uncertainty: This type of uncertainty falls 
under the category of epistemic uncertainty (i.e., 
knowledge or information uncertainty) or reducible 
uncertainty (i.e., the uncertainty is reduced as more 
information is obtained). Data uncertainty occurs 
in different forms. In the case of a quantity treated 
as a random variable, the accuracy of the statistical 
distribution parameters depends on the amount of 
data available. If the data is sparse, the distribution 
parameters themselves are uncertain and may need 
to be treated as random variables. Alternatively, 
information may be imprecise or qualitative, or as 
a range of values, based on expert opinion. Both 
probabilistic and non-probabilistic methods have 
been explored to represent epistemic uncertainty. 
Measurement error (either in the laboratory or 
in the field) is another important source of data 
uncertainty. 

Model error: This results from approximate 
mathematical models of the system behavior and from 
numerical approximations during the computational 
process, resulting in two types of error in general – 
solution approximation error, and model form error. 
The performance assessment of a complex system 
involves the use of several analysis models, each with 
its own assumptions and approximations. The errors 
from the various analysis components combine in a 
complicated manner to produce the overall model 
error (described by both bias and uncertainty).

The roles of several types of uncertainty in 
the use of model-based simulation for performance 
assessment can be easily seen in the case of reliability 
analysis. Consider the probability of an undesirable 
event denoted by g(X) < k, which can be computed 
from Equation 1:

 

prediction of system behavior, there is uncertainty regarding the precise values for model parameters and 
model inputs, leading to uncertainty about the precise values of the model output. Such quantities are 
represented in engineering analysis as random variables, with statistical parameters such as mean values, 
standard deviations, distribution types, etc., estimated from observed data or in some cases assumed. 
Variations over space or time are modeled as random processes. 
 
Data uncertainty: This type of uncertainty falls under the category of epistemic uncertainty (i.e., 
knowledge or information uncertainty) or reducible uncertainty (i.e., the uncertainty is reduced as more 
information is obtained). Data uncertainty occurs in different forms. In the case of a quantity treated as a 
random variable, the accuracy of the statistical distribution parameters depends on the amount of data 
available. If the data is sparse, the distribution parameters themselves are uncertain and may need to be 
treated as random variables. Alternatively, information may be imprecise or qualitative, or as a range of 
values, based on expert opinion. Both probabilistic and non-probabilistic methods have been explored to 
represent epistemic uncertainty. Measurement error (either in the laboratory or in the field) is another 
important source of data uncertainty.  
 
Model error: This results from approximate mathematical models of the system behavior and from 
numerical approximations during the computational process, resulting in two types of error in general – 
solution approximation error, and model form error. The performance assessment of a complex system 
involves the use of several analysis models, each with its own assumptions and approximations. The 
errors from the various analysis components combine in a complicated manner to produce the overall 
model error (described by both bias and uncertainty). 
 
The roles of several types of uncertainty in the use of model-based simulation for performance assessment 
can be easily seen in the case of reliability analysis. Consider the probability of an undesirable event 
denoted by g(X) < k, which can be computed from Equation 1: 

 
    

<

=<
kg

dfkgP
)(

  )())((
X

X xxX      (1) 

 
where X is the vector of input random variables, fX(x) is the joint probability density function of X, g(X) 
is the model output,  and k is the regulatory requirement in performance assessment. Every term on the 
right hand side of Equation 1 has uncertainty. There is inherent variability represented by the vector of 
random variables X; data uncertainty (due to inadequate data) regarding the distribution type and 
distribution parameters of fX(x); and model errors in the computation of g(X). Thus it is necessary to 
systematically identify the various sources of uncertainty and develop the framework for including them 
in the overall uncertainty quantification in the performance assessment of engineering systems.  
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where X is the vector of input random variables, 
fX(x) is the joint probability density function of X, 
g(X) is the model output,  and k is the regulatory 
requirement in performance assessment. Every term 
on the right hand side of Equation 1 has uncertainty. 
There is inherent variability represented by the 
vector of random variables X; data uncertainty (due 
to inadequate data) regarding the distribution type 
and distribution parameters of fX(x); and model 

errors in the computation of g(X). Thus it is necessary 
to systematically identify the various sources of 
uncertainty and develop the framework for including 
them in the overall uncertainty quantification in the 
performance assessment of engineering systems. 

The uncertainty analysis methods covered in 
this paper are grouped by sections along the four 
major groups of analysis activities that are needed for 
performance assessment under uncertainty:
1. Input uncertainty quantification;
2. Uncertainty propagation analysis (includes model 

error quantification);
3. Model calibration, verification, validation, and 

extrapolation; and,
4. Probabilistic performance assessment.

A brief summary of the analysis methods 
covered in the four groups is as follows:

input uncertainty quantification: Physical 
variability of parameters can be quantified through 
random variables by statistical analysis. Parameters 
that vary in time or space are modeled as random 
processes or random fields with appropriate correlation 
structure. Data uncertainty that leads to uncertainty in 
the distribution parameters and distribution types can 
be addressed using confidence intervals and Bayesian 
statistics. Recent methods to include several sources 
of data uncertainty, namely, sparse data, interval data 
and measurement error, are discussed in this paper.

uncertainty propagation analysis: Both classical 
and Bayesian probabilistic approaches can be 
investigated to propagate inherent variability and data 
uncertainty through individual sub-models and the 
overall system model. To reduce the computational 
expense, surrogate models can be constructed using 
several different techniques. Methods for sensitivity 
analyses in the presence of uncertainty are discussed. 
The uncertainty in the overall model output also 
includes model errors and approximations in each 
step of the analysis; therefore approaches to quantify 
model error are included in the discussion.

Model calibration, verification, validation and 
extrapolation: Model calibration is the process of 
adjusting model parameters to obtain good agreement 
between model predictions and experimental 
observations. Both classical and Bayesian statistical 
methods are discussed for model calibration with 
available data. One particular concern is how to 
properly integrate different types of data, available 
at different levels of the model hierarchy. Assessment 
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uncertainty in the distribution parameters and distribution types can be addressed using confidence 
intervals and Bayesian statistics. Recent methods to include several sources of data uncertainty, 
namely, sparse data, interval data and measurement error, are discussed in this paper. 

Uncertainty propagation analysis: Both classical and Bayesian probabilistic approaches can be 
investigated to propagate inherent variability and data uncertainty through individual sub-models and 
the overall system model. To reduce the computational expense, surrogate models can be constructed 
using several different techniques. Methods for sensitivity analyses in the presence of uncertainty are 
discussed. The uncertainty in the overall model output also includes model errors and approximations 
in each step of the analysis; therefore approaches to quantify model error are included in the 
discussion. 

Model calibration, verification, validation and extrapolation: Model calibration is the process of 
adjusting model parameters to obtain good agreement between model predictions and experimental 
observations. Both classical and Bayesian statistical methods are discussed for model calibration with 
available data. One particular concern is how to properly integrate different types of data, available at 
different levels of the model hierarchy. Assessment of the “correct” implementation of the model is 
called verification and assessment of the degree of agreement of the model response with the 
available physical observation is called validation. Model verification and validation activities help to 
quantify model error (both model form error and solution approximation error). A Bayesian network 
framework is discussed for quantifying the confidence in model prediction based on data, models, and 
activities at various levels of the system hierarchy. Such information is available in heterogeneous 
formats from multiple sources, and a consistent framework to integrate such disparate information is 
important. 

Performance assessment: Limit state-based reliability analysis methods are available to help quantify 
the assessment results in a probabilistic manner. Monte Carlo simulation with high-fidelity analyses 
modules is computationally expensive; hence surrogate (or abstracted) models are frequently used 
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of the “correct” implementation of the model is called 
verification and assessment of the degree of agreement 
of the model response with the available physical 
observation is called validation. Model verification 
and validation activities help to quantify model error 
(both model form error and solution approximation 
error). A Bayesian network framework is discussed 
for quantifying the confidence in model prediction 
based on data, models, and activities at various levels 
of the system hierarchy. Such information is available 
in heterogeneous formats from multiple sources, and 
a consistent framework to integrate such disparate 
information is important.

Performance assessment: Limit state-based 
reliability analysis methods are available to help 
quantify the assessment results in a probabilistic 
manner. Monte Carlo simulation with high-fidelity 
analyses modules is computationally expensive; 
hence surrogate (or abstracted) models are frequently 
used with Monte Carlo simulation. In that case, the 
uncertainty or error introduced by the surrogate 
model also needs to be quantified. 

Figure 1 shows the four groups of activities, 
within a conceptual framework for systematic 
quantification, propagation and management of 
various types of uncertainty. The methods discussed 
in this paper address all the four steps shown in Figure 
1. The different steps of analysis in Figure 1 are not 
strictly sequential. While uncertainty has been dealt 

with using probabilistic as well as non-probabilistic 
(e.g., fuzzy sets, possibility theory, evidence theory 
etc.) formats in the literature, this paper will only focus 
on probabilistic analysis.

In Figure 1, the box “Data” in the input 
uncertainty quantification step includes laboratory 
data, historical field data, literature sources, and 
expert opinion.  The box “Design Changes” may 
refer to conceptual, preliminary, or detailed design, 
depending on the development stage. The boxes 
“Design Changes” and “Risk Management” are 
outside the scope of this paper, although they are part 
of the overall uncertainty management framework.

2. Input Uncertainty Quantification

2.1 Physical Variability 

Examples of model input variables with 
physical variability (i.e., inherent, natural variability) 
include:
a. Material properties (e.g., mechanical and 

thermal properties, soil properties, chemical 
properties)

b. Geometrical properties (e.g. ,  Structural 
dimensions, concrete cover depth)

c. External conditions (e.g., mechanical loading, 
boundary conditions, physical processes such 
as freeze-thaw, chemical processes such as 
carbonation, chloride or sulfate attack)
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Many uncertainty quantification studies have 
only focused on quantifying and propagating the 
inherent variability in the input parameters. Well-
established statistical (both classical and Bayesian) 
methods are available for this purpose. 

In probabilistic analysis, the sample to sample 
variations (random variables) in the parameters are 
addressed by defining them as random variables with 
probability density functions (PDFs). Some parameters 
may vary not only from sample to sample (as is the 
case for random variables), but also in spatial or time 
domain. Parameter variation over time and space can 
be modeled as random processes or random fields. 

Some well-known methods for simulating 
random processes are spectral representation (SR) 
(Gurley, 1997), Karhunen-Loeve expansion (KLE) 
(Ghanem and Spanos, 2003, Huang et al., 2007; 
Mathelin et al., 2005), and polynomial chaos expansion 
(PCE) (Huang et al., 2007; Mathelin et al., 2005; Red-
Horse and Benjamin, 2004). The PCE method has been 
used to represent the stochastic model output as a 
function of stochastic inputs. 

Consider an example of representing a random 
process using KLE, expressed as
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shorter periods and also a trend over longer periods. Both can be numerically represented by a seasonal 
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where ( )xϖ  is the mean of the random 
process ( )xϖ χ, , iλ  and ( )if x  are eigen values 
and eigen functions of 1 2( )C x x, , and ( )iξ χ  is a set 
of uncorrelated standard normal random variables 
(x is a space or time coordinate, and χ is an index 
representing different realizations of the random 
process). Using Equation 2, realizations of the 
random process ( )xϖ χ,  can be easily simulated by 
generating samples of the random variables ( )iξ χ , 
and these realizations of ( )xϖ χ,  can be used in the 
reliability analysis.

Some boundary conditions (e.g. temperature 
and moisture content) might exhibit a recurring 
pattern over shorter periods and also a trend 
over longer periods. Both can be numerically 
represented by a seasonal model using an 
autoregressive integrated moving average (ARIMA) 
method generally used for linear1 non stationary 

processes2 (Box et al., 1994). This method can be used 
to predict the temperature or the rainfall magnitudes 

in the future so that it can be used in the durability 
analysis of the structures under future environmental 
conditions.

It may also be important to quantify the 
statistical correlations between some of the input 
random variables. Many previous studies on 
uncertainty quantification simply assume either zero 
or full correlation, in the absence of adequate data. A 
Bayesian approach may be pursued for this purpose, 
as described in subsection 2.2. 

2.2 data uncertainty 

This section discusses methods to quantify 
uncertainty due to limited statistical data and 
measurement errors (εexp). Data may also be available 
in interval format (e.g., expert opinion).  A Bayesian 
approach, consistent with the framework proposed in 
Figure 1, can be used in the presence of data uncertainty. 
The prior distributions of different physical variables 
and their distribution parameters can be based on 
available data and expert judgment, and these are 
updated as more data becomes available through 
experiments, analysis, or real-world experience. 

Data qualification is an important step in the 
consideration of data uncertainty. All data points 
may not have equal weight; a careful investigation of 
data quality will help to assign appropriate weights 
to different data sets. 

Sparse statistical data

 For any random variable that is quantitatively 
described by a probability density function, there is 
always uncertainty in the corresponding distribution 
parameters due to small sample size. As testing and 
data collection activities are performed, the state of 
knowledge regarding the uncertainty changes, and a 
Bayesian updating approach can be implemented. The 
Bayesian approach also applies to joint distributions of 
multiple random variables, which also helps to include 
the uncertainty in correlations between the variables. 
A prior joint distribution is assumed (or individual 
distributions and correlations are assumed), and then 
updated as data becomes available.

Instead of assuming a well-known prior 
distribution form (e.g., uniform, normal) for sparse 
data sets, either empirical distribution functions, 
or flexible families of distributions based on 
the data can be constructed. A bootstrapping3 
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1The current observation can be expressed as a linear function of past observations.
2A process is said to be non-stationary if its probability structure varies with the time or space coordinate.
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 technique can then be used to quantify the uncertainty 
in the distribution parameters. The empirical distribution 
function is constructed by ranking the observations 
from lowest to highest value, and assigning a 
probability value to each observation. Examples of 
flexible distribution families include the: Johnson 
family, Pearson family, gamma distribution, and 
stretched exponential distribution (e.g., McDonald et 
al., 2008). Recently, Sankararaman and Mahadevan 
(2010) developed a likelihood-based approach to 
construct non-parametric probability distributions in 
the presence of both sparse and interval data. 

Transformations have been proposed from a 
non-probabilistic to probabilistic format, through the 
maximum likelihood approach (Langley, 2000; Ross 
et al., 2002). Such transformations have attracted the 
criticism that information is either added or lost in 
the process. Two ways to address the criticism are to: 
(1) construct empirical distribution functions based 
on interval data collected from multiple experts or 
experiments (Ferson et al., 2007); or (2) construct 
flexible families of distributions with bounds on 
distribution parameters based on the interval data, 
without forcing a distribution assumption (McDonald 
et al., 2008). These can then be treated as random 
variables with probability distribution functions and 
combined with other random variables in a Bayesian 
framework to quantify the overall system model 
uncertainty. The use of families of distributions will 
result in multiple probability distributions for the 
output, representing the contributions of both physical 
variability and data uncertainty. The non-parametric 
approach of Sankararaman and Mahadevan (2010) 
also has the ability to quantify the contributions of 
aleatory and epistemic uncertainty to the probabilistic 
representation of an uncertain variable.

Measurement error

The measurement error in each input variable 
in many studies (e.g., Barford, 1985) is assumed to 
be independent and identically distributed (IID) 
normal with zero mean and an assumed variance, 
i.e., ),0(~ 2

expexp σε N . Due to the measurement 
uncertainty, the distribution parameter σexp cannot 
be obtained as a deterministic value. Instead, it 
is a random variable with a prior density τ(σexp). 
Thus, when new data is available after testing, the 
distribution of σexp can be easily updated using 
the Bayes theorem. Another way to represent 
measurement error expε  is through an interval only, 
and not as a random variable.

3. uncertainty Propagation analysis

In this section, methods to quantify the 
contributions of different sources of uncertainty and 
error as they propagate through the system analysis 
model, including the contribution of model error, are 
discussed, in order to quantify the overall uncertainty 
in the system model output. 

This section covers two issues: (1) quantification 
of model output uncertainty, given input uncertainty 
(both physical variability and data uncertainty), and 
(2) quantification of model error (due to both model 
form selection and solution approximations). 

Several uncertainty analysis studies, including a 
study with respect to the proposed Yucca Mountain 
high-level waste repository, have recognized the 
distinction between physical variability and data 
uncertainty (Helton and Sallaberry, 2009a & 2009b). 
As a result, these methods evaluate the variability in 
an inner loop calculation and data uncertainty in an 
outer loop calculation. 

3.1 Propagation of Physical Variability

Various probabilistic methods (e.g., Monte 
Carlo simulation and first-order or second-order 
analytical approximations) have been studied for the 
propagation of physical variability in model inputs 
and model parameters (Haldar and Mahadevan, 
2000a, expressed through random variables and 
random process or fields.  Stochastic finite element 
methods (e.g., Ghanem and Spanos, 2003; Haldar and 
Mahadevan, 2000b) have been developed for single 
discipline problems, in structural, thermal and fluid 
mechanics. An example of such propagation is shown 
in Figure 2. Several types of combinations of system 
analysis model and statistical analysis techniques are 
available: 
l	 Monte Carlo simulation with the deterministic 

system analysis as a black-box (e.g., Robert and 
Cesalla, 2004) to estimate model output statistics 
or probability of regulatory compliance;

l	 Monte Carlo simulation with a surrogate model 
to replace the deterministic system analysis model 
(e.g., Ghanem and Spanos, 2003; Isukapalli et 
al., 1998; Xiu and Karniadakis, 2003; Huang et 
al., 2007), to estimate model output statistics or 
probability of regulatory compliance;

l	 Local sensitivity analysis using finite difference, 
perturbation or adjoint analyses, leading to 
estimates of the first-order or second-order 
moments of the output (e.g., Blischke and Murthy, 
2000);  and,
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• Monte Carlo simulation with the deterministic system analysis as a black-box (e.g., Robert and 
Cesalla, 2004) to estimate model output statistics or probability of regulatory compliance; 

• Monte Carlo simulation with a surrogate model to replace the deterministic system analysis 
model (e.g., Ghanem and Spanos, 2003; Isukapalli et al., 1998; Xiu and Karniadakis, 2003; 
Huang et al., 2007), to estimate model output statistics or probability of regulatory compliance; 

• Local sensitivity analysis using finite difference, perturbation or adjoint analyses, leading to 
estimates of the first-order or second-order moments of the output (e.g., Blischke and Murthy, 
2000);  and, 

• Global sensitivity and effects analysis, and analysis of variance in the output (e.g., Box et al., 
1978). 

 
These techniques are generic, and can be applied to engineering systems with multiple component 
modules and multiple physics. However, most applications of these techniques have only considered 
physical variability. The techniques need to include the contribution of data uncertainty and model error 
to the overall model prediction uncertainty. Computational effort is a significant issue in practical 
applications, since these techniques involve a number of repeated runs of the system analysis model. The 
system analysis may be replaced with an inexpensive surrogate model in order to achieve computational 
efficiency; this is discussed in Section 3.3 of this report. Efficient Monte Carlo techniques have also been 
pursued to reduce the number of system model runs, include Latin hypercube sampling (LHS) (Mckay et 
al., 1979; Farrar et al., 2003) and importance sampling (Mahadevan and Raghothamachar, 2000; Zou et 
al. 2003).  
 
When multiple requirements are defined, computation of the overall probability of satisfying multiple 
performance criteria requires integration over a multidimensional space defined by unions and 
intersections of individual events (of satisfaction or violation of individual criteria). 

 

3.2 Propagation of Data Uncertainty 
 
Three types of data uncertainty were discussed in Section 2. Sparse point data results in uncertainty about 
the parameters of the probability distributions describing quantities with physical variability. In that case, 
uncertainty propagation analysis takes a nested implementation. In the outer loop, samples of the 
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l	 Global sensitivity and effects analysis, and 
analysis of variance in the output (e.g., Box et al., 
1978).

These techniques are generic, and can be applied 
to engineering systems with multiple component 
modules and multiple physics. However, most 
applications of these techniques have only considered 
physical variability. The techniques need to include 
the contribution of data uncertainty and model 
error to the overall model prediction uncertainty. 
Computational effort is a significant issue in practical 
applications, since these techniques involve a number 
of repeated runs of the system analysis model. The 
system analysis may be replaced with an inexpensive 
surrogate model in order to achieve computational 
efficiency; this is discussed in Section 3.3 of this 
report. Efficient Monte Carlo techniques have also 
been pursued to reduce the number of system model 
runs, include Latin hypercube sampling (LHS) (Mckay 
et al., 1979; Farrar et al., 2003) and importance sampling 
(Mahadevan and Raghothamachar, 2000; Zou et al. 
2003). 

When multiple requirements are defined, 
computation of the overall probability of satisfying 
multiple performance criteria requires integration 
over a multidimensional space defined by unions and 
intersections of individual events (of satisfaction or 
violation of individual criteria).

σµ +σµ −( )ixσ( )ixε ( )ixδ
3.2 Propagation of data uncertainty

Three types of data uncertainty were discussed 
in Section 2. Sparse point data results in uncertainty 
about the parameters of the probability distributions 
describing quantities with physical variability. In that 
case, uncertainty propagation analysis takes a nested 
implementation. In the outer loop, samples of the 
distribution parameters are randomly generated, and 
for each set of sampled distribution parameter values, 
probabilistic propagation analysis is carried out as in 
Section 3.1. This results in the computation of multiple 
probability distributions of the output, or confidence 
intervals for the estimates of probability of failure. 

In the case of measurement error, choice of the 
uncertainty propagation technique depends on how the 
measurement error is represented. If the measurement 
error is represented as a random variable, it is simply 
added to the measured quantity, which is also a 
random variable due to physical variability. Thus a 
sum of two random variables may be used to include 
both physical variability and measurement error in 
a quantity of interest. If the measurement error is 
represented as an interval, one way to implement 
probabilistic analysis is to represent the interval 
through families of distributions or upper and lower 
bounds on probability distributions, as discussed 
in Section 2.2.3. In that case, multiple probabilistic 
analyses, using the same nested approach as in the 
case of sparse data, can be employed to generate 
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multiple output distributions or confidence intervals 
for the model output. The same approach is possible 
for interval variables that are only available as a range 
of values, as in the case of expert opinion.

Propagation of uncertainty is conceptually 
very simple, but computationally quite expensive to 
implement, especially when both physical variability 
and data uncertainty are to be considered. The 
presence of both types of uncertainty requires a 
nested implementation of uncertainty propagation 
analysis (simulation of data uncertainty in the outer 
loop and simulation of physical variability in the inner 
loop). If the system model runs are time-consuming, 
then uncertainty propagation analysis could be 
prohibitively expensive. One way to overcome the 
computational hurdle is to use an inexpensive 
surrogate model to replace the detailed system model, 
as discussed next.

3.3 Surrogate Models

Surrogate models (also known as response surface 
models) are frequently used to replace the expensive 
system model, and used for multiple simulations to 
quantify the uncertainty in the output. Many types 
of surrogate modeling methods are available, such 
as linear and nonlinear regression, polynomial chaos 
expansion, Gaussian process modeling (e.g., Kriging 
model), splines, moving least squares, support vector 
regression, relevance vector regression, neural nets, 
or even simple look-up tables. For example, Goktepe 
et al., 2006 used neural network and polynomial 
regression models to simulate expansion of concrete 
specimens under sulfate attack. All surrogate models 
require training or fitting data, collected by running 
the full-scale system model repeatedly for different 
sets of input variable values. Selecting the sets of 
input values is referred to as statistical design of 
experiments, and there is extensive literature on this 
subject. Two types of surrogate modeling methods are 
discussed below, that might achieve computational 
efficiency while maintaining high accuracy in output 
uncertainty quantification. The first method expresses 
the model output in terms of a series expansion of 
special polynomials such as Hermite polynomials, and 
is referred to as a stochastic response surface method 
(SRSM). The second method expresses the model 
output through a Gaussian process, and is referred 
to as Gaussian process modeling.

Stochastic response surface method (SrSM)

The common approach for building a surrogate 
or response surface model is to use least squares 

fitting based on polynomials or other mathematical 
forms based on physical considerations. In SRSM, 
the response surface is constructed by approximating 
both the input and output random variables and 
fields through series expansions of standard 
random variables (e.g. Isukapalli et al., 1998; Xiu and 
Karniadakis, 2003; Huang et al., 2007). This approach 
has been shown to be efficient, stable and convergent 
in several structural, thermal and fluid flow problems. 
A general procedure for SRSM is as follows:
a. Representation of random inputs (either random 

variables or random processes) in terms of 
Standard Random Variables (SRVs) by K-L 
expansion, as in Equation 2.

b. Expression of model outputs in chaos series 
expansion. Once the inputs are expressed as 
functions of the selected SRVs, the output 
quantities can also be represented as functions of 
the same set of SRVs.  If the SRVs are Gaussian, 
the output can be expressed a Hermite polynomial 
chaos series expansion in terms of Gaussian 
variables. If the SRVs are non-Gaussian, the 
output can be expressed by a general Askey chaos 
expansion in terms of non-Gaussian variables 
(Ghanem and Spanos, 2003).  

c. Estimation of the unknown coefficients in the 
series expansion. The improved probabilistic 
collocation method (Isukapalli et al., 1998) is used 
to minimize the residual in the random dimension 
by requiring the residual at the collocation points 
equal to zero. The model outputs are computed 
at a set of collocation points and used to estimate 
the coefficients.  These collocation points are the 
roots of the Hermite polynomial of a higher order. 
This way of selecting collocation points would 
capture points from regions of high probability 
(Tatang et al., 1997). 

d. Calculation of the statistics of the output that 
has been cast as a response surface in terms of 
a chaos expansion. The statistics of the response 
can be estimated with the response surface using 
either Monte Carlo simulation or analytical 
approximation.

Kriging or Gaussian process models

Gaussian process (GP) models have several 
features that make them attractive for use as surrogate 
models. The primary feature of interest is the ability of 
the model to “account for its own uncertainty”. That 
is, each prediction obtained from a Gaussian process 
model also has an associated variance, or uncertainty. 
This prediction variance primarily depends on the 
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closeness of the prediction location to the training 
data, but it is also related to the functional form of the 
response. For example, see Figure 4, which depicts 
a one-dimensional Gaussian process model. Note 
how the uncertainty bounds are related to both the 
closeness to the training points, as well as the shape 
of the curve. 

The basic idea of the GP model is that the output 
quantities are modeled as a group of multivariate 
normal random variables. A parametric covariance 
function is then constructed as a function of the inputs. 
The covariance function is based on the idea that when 
the inputs are close together, the correlation between 
the outputs will be high. As a result, the uncertainty 
associated with the model prediction is small for 
input values that are close to the training points, and 
large for input values that are not close to the training 
points. In addition, the GP model may incorporate a 
systematic trend function, such as a linear or quadratic 
regression of the inputs (in the notation of Gaussian 
process models, this is called the mean function, while 
in Kriging it is often called a trend function). The effect 
of the mean function on predictions which interpolate 
the training data is small, but when the model is used 
for extrapolation, the predictions will follow the mean 
function very closely.

Within the GP modeling technique, it is also 
possible to adaptively select the design of experiments 
to achieve very high accuracy. The method begins with 
an initial GP model built from a very small number 
of samples, and then one intelligently chooses where 
to generate subsequent samples to ensure the model 
is accurate in the vicinity of the region of interest. 

Figure 3. Gaussian process model with uncertainty bounds.

Since the GP model provides the expected value 
and variance of the output quantity, the next sample 
may be chosen in the region of highest variance, if 
the objective is to minimize the prediction variance. 
The method has been shown to be both accurate 
and computationally efficient for arbitrarily shaped 
functions (Bichon et al., 2007).

3.4 Sensitivity analysis

Sensitivity analysis serves several important 
functions: (1) identification of dominant variables 
or sub-models, thus helping to focus data collection 
resources efficiently; (2) identification of insignificant 
variables or sub-models of limited significance, helping 
to reduce the size of the problem and computational 
effort; and (3) quantification of the contribution 
of solution approximation error.  Both local and 
global sensitivity analysis techniques are available 
to investigate the quantitative effect of different 
sources of variation (physical parameters, models, 
and measured data) on the variation of the model 
output. The primary benefit of sensitivity analysis to 
uncertainty analysis is to enable the identification of 
which physical parameters have the greatest influence 
on the output (Campolongo et al., 2000; Saltelli et al., 
2000). 

Sensitivity analysis can be local or global. Local 
sensitivity analysis utilizes first-order derivatives 
of system output quantities with respect to the 
parameters. It is usually performed for a nominal 
set of parameter values. Global sensitivity analysis 
typically uses statistical sampling methods, such as 
Latin Hypercube Sampling, to determine the total 
uncertainty in the system output over the entire 
range of the input uncertainty and to apportion that 
uncertainty among the various parameters. 

3.5 Model Error Quantification

Model errors may relate to governing equations, 
boundary and initial condition assumptions, loading 
description, and approximations or errors in solution 
algorithms (e.g., truncation of higher order terms, 
finite element discretization, curve-fitting models 
for material damage such as S-N curve). Overall 
model error may be quantified by comparing model 
prediction and experimental observation, properly 
accounting for uncertainties in both. This overall error 
measure combines both model form and solution 
approximation errors, and so it needs to be considered 
in two parts. Numerical errors in the model prediction 
can be quantified first, using sensitivity analysis, 
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uncertainty propagation analysis, discretization 
error quantification, and truncation (residual) error 
quantification. The measurement error in the input 
variables can be propagated to the prediction of the 
output. The error in the prediction of the output 
due to the measurement error in the input variables 
is approximated by using a first-order sensitivity 
analysis (Rebba et al., 2006). Then the model form 
error can be quantified based on all the above errors, 
following the approach illustrated for a heat transfer 
problem by Rebba et al., 2006.

Solution approximation error

Several components of prediction error, such as 
discretization error (denoted by εd) and uncertainty 
propagation analysis error (εs) can be considered. 
Several methods to quantify the discretization error in 
finite element analysis are available in the literature. 
However, most of these methods do not quantify the 
actual error; instead, they only quantify some indicator 
measures to facilitate adaptive mesh refinement. The 
Richardson extrapolation (RE) method comes closest 
to quantifying the actual discretization error (Richards, 
1997). (In some applications, the model is run with 
different levels of resolution, until an acceptable level 
of accuracy is achieved; formal error quantification 
may not be required).

Errors in uncertainty propagation analysis (εs) 
are method-dependent, i.e. sampling error occurs in 
Monte Carlo methods and truncation error occurs 
in response surface methods (either conventional or 
polynomial chaos-based). For example, sampling error 
could be assumed to be a Gaussian random variable 
with zero mean and variance given by σ2/N where 
N is the number of Monte Carlo runs and σ2 is the 
original variance of the model output (Rubinstein, 
1981) The truncation error is simply the residual error 
in the response surface. 

Rebba et al. (2006), and Liang and Mahadevan 
(2011) used the above concept to construct a surrogate 
model for finite element discretization error in 
structural analysis, using the stochastic response 
surface method (SRSM). Gaussian process models 
may also be employed for this purpose. Both options 
are helpful in quantifying the solution approximation 
error.

Model form error

The overall prediction error is a combination 
of errors resulting from numerical solution 
approximations and model form selection. A simple 

way is to express the total observed error (difference 
between prediction and observation) as the sum of the 
following error sources:

εobs = εnum + εmodel – εexp                                                  (3)

where εnum, εmodel, and εexp represent numerical 
solution error, model form error, and output 
measurement error, respectively. However solution 
approximation error results from multiple sources 
and is probably a nonlinear combination of various 
errors such as discretization error, round-off and 
truncation errors, stochastic analysis errors etc. One 
option is to construct a regression model consisting 
of the individual error components (Rebba et al., 
2006). The residual of such a regression analysis will 
include the model form error (after subtracting the 
experimental error effects). By denoting εobs as the 
difference between the data and prediction, i.e., εobs = 
yexp - ypred, we can construct the following relation by 
considering a few sources of numerical solution error 
(Rebba et al., 2006):

εobs = f(εh, εd, εs) + εmodel – εexp                  (4)

where εh, εd, and εs represent output error due 
to input parameter measurement error, finite element 
discretization error, and uncertainty propagation 
analysis error, respectively, all of which contribute to 
numerical solution error. Rebba et al., 2006 illustrated 
the estimation of model form error using the above 
concept for a one-dimensional heat conduction 
problem, using a polynomial chaos expansions for 
the input-output model as well as numerical solution 
error. Kennedy and O’Hagan (2001) calibrated 
Gaussian process surrogate models for both the input-
output model and the model form error (which is also 
referred to as model discrepancy or model inadequacy 
term). Both approaches incorporate the dependence 
of model error on input values.

4. Model Calibration, Validation and Extrapolation

After quantifying and propagating the physical 
variability, data uncertainty and model error for 
individual components of the overall system model, 
the probability of meeting performance requirements 
(and our confidence in the model prediction) needs 
to be assessed based on extrapolating the model to 
field conditions (which are uncertain as well), where 
sometimes very limited or no experimental data 
is available. Rigorous verification, validation and 
calibration methods are needed to establish credibility 
in the modeling and simulation. Both classical 
and Bayesian statistical methodologies have been 
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investigated during recent years. The methods have 
the capability to consider multiple output quantities 
or a single model output at different spatial and 
temporal points. 

This section discusses methods for (1) calibration 
of model parameters, based on observation data; 
(2) validation assessment of the model, based on 
observation data; and (3) estimation of confidence in 
the extrapolation of model prediction from laboratory 
conditions to field conditions.

4.1 Model Calibration

Two types of statistical techniques may be 
pursued for model calibration uncertainty, the least 
squares approach and the Bayesian approach. The least 
squares approach estimates the values of the calibration 
parameters that minimize the discrepancy between 
model prediction and experimental observation. 
This approach can also be used to calibrate surrogate 
models or low-fidelity models, based on high-fidelity 
runs, by treating the high-fidelity results similar to 
experimental data.  

The second approach is Bayesian calibration 
(Kennedy and O’Hagan, 2001) using Gaussian process 
surrogate models. This approach is flexible and 
allows different forms for including the model errors 
during calibration of model parameters (McFarland 
and Mahadevan, 2007). Recently, Sankararaman and 
Mahadevan (2010) extended least squares, likelihood 
and Bayesian calibration approaches to include 
imprecise and unpaired input-output data sets, a 
commonly occurring situation when using historical 
data or data from the literature, where all the inputs 
to the model may not be reported.

Markov Chain Monte Carlo (MCMC) simulation 
is used for numerical implementation of the Bayesian 
updating analysis. Several efficient sampling techniques 
are available for MCMC, such as Gibbs sampling, the 
Metropolis algorithm, and the Metropolis-Hastings 
algorithm (Gilks et al., 1996). 

4.2 Model Validation

Model validation involves comparing prediction 
with observation data (either historical or experimental) 
when both have uncertainty. Since there is uncertainty 
in both model prediction and experimental observation, 
it is necessary to pursue rigorous statistical techniques 
to perform model validation assessment rather 
than simple graphical comparisons, provided data 
is even available for such comparisons. Statistical 

hypothesis testing is one approach to quantitative 
model validation under uncertainty, and both classic 
and Bayesian statistics have been explored. Classical 
hypothesis testing is a well-developed statistical 
method for accepting or rejecting a model based 
on an error statistic (see e.g., Trucano et al., 2001). 
Validation metrics have been investigated in recent 
years based on Bayesian hypothesis testing (Zhang 
and Mahadevan, 2003; Mahadevan and Rebba, 2005; 
Rebba and Mahadevan, 2006), reliability-based 
methods (Rebba and Mahadevan, 2008), and risk-
based decision analysis (Jiang and Mahadevan, 2007a 
& 2007b). Ling and Mahadevan (2012) provide detailed 
discussion of the interpretations of various metrics, 
their mathematical relationships, and implementation 
issues, with the example of a MEMS device reliability 
prediction problem and validation data.

In Bayesian hypothesis testing, we assign prior 
probabilities for the null and alternative hypotheses; 
let these be denoted as P(H0) and P(Ha) such that P(H0) 
+ P(Ha) = 1. Here H0 : model error < allowable limit, 
and Ha: model error > allowable limit When data D 
is obtained, the probabilities are updated as P(H0 | 
D) and P(Ha | D) using the Bayes theorem. Then a 
Bayes factor (Jeffreys, 1961) B is defined as the ratio 
of likelihoods of observing D under H0 and Ha; i.e., 
the first term in the square brackets on the right hand 
side of Eq. (12).

0 0 0( | ) ( | ) ( )

( | ) ( | ) ( )a a a

P H D P D H P H
P H D P D H P H

 
=  

 
                            (4)

If B > 1, the data gives more support to H0 than 
Ha. Also the confidence in H0, based on the data, comes 
from the posterior null probability P(H0 | D), which 
can be rearranged from above Eq. as . 

 0

0 0

( )

( ) 1 ( )
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Typically, in the absence of prior knowledge, we 
may assign equal probabilities to each hypothesis and 
thus P(H0) = P(Ha) = 0.5. In that case, the posterior null 
probability can be further simplified to B/(B+1). Thus 
a B value of 1.0 represents 50% confidence in the null 
hypothesis being true.

The Bayesian hypothesis testing is also able to 
account for uncertainty in the distribution parameters 
(mentioned in Section 2). For such problems, the 
validation metric (Bayes factor) itself becomes a 
random variable. In that case, the probability of 
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the Bayes factor exceeding a specified value can be 
used as the decision criterion for model acceptance/
rejection. 

Notice that model validation only refers to the 
situation when controlled, target experiments are 
performed to evaluate model prediction, and both the 
model runs and experiments are done under the same 
set of input and boundary conditions. The validation is 
done only by comparing the outputs of the model and 
the experiment. Once the model is calibrated, verified 
and validated, it may be investigated for confidence 
in extrapolating to field conditions different from 
laboratory conditions. This is discussed in the next 
section.

4.3 Overall Uncertainty Quantification

While individual methods for calibration, 
verification, and validation have been developed 
as mentioned above, it is necessary to integrate the 
results from these activities for the purpose of overall 
uncertainty quantification in the model prediction. 
This is not trivial because of several reasons. First, 
the solution approximation errors calculated as a 
result of the verification process need to be accounted 
for during calibration, validation, and prediction. 
Second, the result of validation may lead to a binary 
result, i.e. the model is accepted or rejected; however, 
even when the model is accepted, it is not completely 
correct. Hence, it is necessary to account for the 
degree of correctness of the model in the prediction. 
Third, calibration and validation are performed using 
independent data sets and it is not straightforward 
to compute their combined effect on the overall 
uncertainty in the response.

The issue gets further complicated when system-
level behavior is predicted based on a hierarchy of 
models. As the complexity of the system under study 
increases, there may be several components and 
subsystems at multiple levels of hierarchy, which 
integrate to form the overall multi-level system. 
Each of these components and subsystems are 
represented using component-level and subsystem-
level models which are mathematically connected to 
represent the overall system model which is used to 
study the underlying system. In each level, there is a 
computational model with inputs, parameters, and 
outputs, experimental data (hopefully available for 
calibration and validation separately), and several 
sources of uncertainty – physical variability, data 
uncertainty (sparse or imprecise data, measurement 
errors, expert opinion), and model uncertainty 

(parameter uncertainty, solution approximation errors 
and model form error). 

Recent studies by the author and coworkers have 
demonstrated that the Bayes network methodology 
provides an efficient and powerful tool to integrate 
multiple levels of models, associated sources of 
uncertainty and error, and available data at multiple 
levels and in multiple formats. While the Bayesian 
approach can be used to perform calibration and 
validation individually for each model in the multi-
level system, it is not straightforward to integrate 
the information from these activities in order to 
compute the overall uncertainty in the system-level 
prediction. Sankararaman and Mahadevan (2012) 
extend the Bayesian approach to integrate and 
propagate information from verification, calibration, 
and validation activities in order to quantify the 
margins and uncertainties in the overall system level 

Figure 4.  Bayes network.

prediction. 

Bayes networks (Jensen and Jensen, 2001) are 
directed acyclic graphical representations with nodes 
to represent the random variables and arcs to show the 
conditional dependencies among the nodes. Data in 
any one node can be used to update the statistics of all 
other nodes. This property makes the Bayes network a 
powerful tool to integrate information generated from 
multiple activities and to quantify the uncertainty in 
prediction under actual usage conditions (Mahadevan 
and Rebba, 2005).

Figure 4 shows an illustrative Bayes network 
for confidence extrapolation. An ellipse represents a 
random variable and a rectangle represents observed 
data. A solid line arrow represents a conditional 
probability link, and a dashed line arrow represents 
the link of a variable to its observed data if available. 
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The probability densities of the variables Ω, z, and y 
are updated using the validated data y. The updated 
statistics of Ω, z, and y are then used to estimate 
the updated statistics of the decision variable d 
(i.e., assessment metric). In addition, both model 
prediction and predictive experiments are related to 
input variables X via physical parameters Φ. Note 
that there is no observed data available for d; yet we 
are able to calculate the confidence in the prediction 
of d, by making use of observed data in several other 
nodes and propagation of posterior statistics through 
the Bayes network. 

The Bayes network thus links the various 
simulation codes and corresponding experimental 
observations to facilitate two objectives: (1) uncertainty 
quantification and propagation, and (2) confidence 
assessment in system behavior prediction in the 
application domain, based on data from the laboratory 
domain, expert opinion, and various computational 
models at different levels of the system hierarchy.

5. Conclusion

Uncertainty quantification in performance 
assessment involves consideration of three sources 
of uncertainty – inherent variability, information 
uncertainty, and model errors. This paper surveyed 
probabilistic methods to quantify the uncertainty 
in model-based prediction due to each of these 
sources, and addressed them in four stages – input 
characterization based on data; propagation of 
uncertainties and errors through the system model; 
model calibration, validation and extrapolation; and 
performance assessment. Flexible distribution families 
as well as a non-parametric Bayesian approach were 
discussed to handle sparse data and interval data. 
Methods to quantify model errors resulting from both 
model form selection and solution approximation 
were discussed. Bayesian methods were discussed 
for model calibration, validation and extrapolation. 
An important issue is computational expense, 
when iterative analysis between multiple codes is 
necessary. Uncertainty quantification multiplies the 
computational effort of deterministic analysis by an 
order of magnitude. Therefore the use of surrogate 
models, sensitivity and screening analyses, and first-
order approximations of overall output uncertainty, 
are available to reduce the computational expense.

Many of the methods described in the paper have 
been applied to mechanical systems that are small 
in size, or time-independent, and the uncertainties 

considered were not very large. None of these 
simplifications are available in the case of long-
term performance assessment of civil infrastructure 
systems, and real-world data to validate long-term 
model predictions are not available. Thus the 
extrapolations are based on laboratory data or limited 
term observations, and come with large uncertainty. 
The application of the methods described in this paper 
to such complex systems needs to be investigated. 
However, it should be recognized that the benefit of 
uncertainty quantification is not so much in predicting 
the actual failure probability or similar measures, 
but in facilitating engineering decision making, such 
as comparing different design and analysis options, 
performing sensitivity analyses, and allocating 
resources for uncertainty reduction through further 
data collection and/or model refinement.
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1. introduction

The basic safety requirements of a nuclear 
power plant (NPP) include the safe shutdown of 
the reactor, to remove decay heat and to limit the 
release of radioactivity to the environment. Safety 
evaluation of the structures is an important issue for 
any NPP, which has to be carried out to take care of 
number of factors including the ageing effects, if any. 
As NPP structures age, a number of degradation 
mechanisms start affecting the load carrying capacity 
and serviceability of these structures. Some of the 
degradation mechanisms for RC structures include 
corrosion of steel reinforcement, alkali-silica reaction, 
freeze-thaw damage, sulphate attack, etc. Out of these 
mechanisms, corrosion of steel has been identified 
as being the most widespread and predominant 
mechanism responsible for the deterioration of 
RC structures. Corrosion causes the reduction of 
reinforcement cross-sectional area which in extreme 
forms, can be significant enough to reduce the 
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abstract 

Corrosion of reinforcement causes premature deterioration in reinforced concrete (RC) structures 
and reduces their intended residual service life. Damages to RC structures due to reinforcement 
corrosion generally manifest in the form of expansion, cracking and eventual spalling of the cover 
concrete, loss of steel cross-sectional area, and loss of bond between corroded reinforcement and 
surrounding cracked concrete. These damages may sometime result in structural failure. This paper 
initially presents predictive models for time-dependent damages in corrosion-affected RC beams, 
recognized as loss of mass and cross-sectional area of reinforcing bar, and loss of concrete section 
owing to the peeling of cover concrete. Then these models have been used to present analytical 
formulations for evaluating time-dependent flexural and shear strengths for corroded RC beams 
based on the standard composite mechanics expressions for RC sections. Further by considering 
variability in the identified basic variables that could affect the time-dependent strengths of 
corrosion-affected RC beams, an attempt is made in this paper to present simple estimations for 
the time-dependent mean strengths and time-dependent coefficient of variation (c.o.v.) associated 
with the strengths for a typical simply supported RC beam. Comparison of presented simple 
estimations of mean strengths and c.o.v. associated with strengths has been made with those 
obtained using Monte Carlo Simulation.
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strength of structural members below the minimum 
requirements. It also results in cracking and spalling 
of cover concrete due to formation of expansive of 
corrosion products, and reduction of bond between 
the corroded reinforcement and concrete, thereby 
resulting in further structural damage. By proper 
control and monitoring of the reinforcement corrosion, 
premature failure of RC structures can be prevented. 
Also the assessment of performance of corrosion 
damaged RC structures to withstand extreme events 
during their anticipated service life would help in 
arriving decisions pertaining to the inspection, repair, 
strengthening, replacement and demolition of such 
structures.

In this paper initially, predictive models are 
presented for the quantitative assessment of time-
dependent damages in RC beams, recognized as 
loss of concrete section owing to the peeling of cover 
concrete and loss of mass and cross-sectional area of 
reinforcing bar. Then these models have been used 
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to present analytical formulations for evaluating 
time-dependent flexural and shear strengths 
of corroded RC beams based on the standard 
composite mechanics expressions for RC sections. 
For the corroded RC beams, loss of flexural and shear 
strengths would be mainly due to loss of cross-section 
for concrete and reinforcing steel. The scope of 
flexural strength estimation has been limited to either 
by the yielding of tensile reinforcement or by the 
crushing of concrete in compression zone. Although 
the continued rebar corrosion would also affect the 
composite action of concrete and reinforcing steel due 
to bond deterioration between them, the evaluation 
of time-dependent flexural strength due to loss of 
bond has not been considered in the present study. 
The performance of the presented formulations has 
been evaluated through their ability to reproduce 
the available experimental trends. The paper further 
presents probabilistic assessment of time-dependent 
strengths for a typical simply supported corroded 
RC beam. The basic variables that can affect time-
dependent strengths for a corroded RC beam are 
identified as material strengths of concrete and 
reinforcement, modulus of elasticity of reinforcing 
steel plus expansive corrosion products combine, 
creep-coefficient for concrete, dimensions of the 
beams and annual mean corrosion rate. By considering 
variability in these variables, simple estimations of 
following are presented: (i) time-dependent mean 
strength and c.o.v. associated with the strength, 
and (ii) time-dependent mean degradation function 
and c.o.v. associated with the degradation function, 
wherein, the degradation function is defined as the 
ratio of strength at time, t, to the initial strength for 
an un-corroded RC beam. The estimation of time-
dependent strengths and degradation functions are 
carried out for two limit states: (a) flexural failure, 
and (b) shear failure. An attempt has also been made 
to present analytical models for estimating time-
dependent c.ov. associated with the degradation 
functions. The performance of simple estimations of 
mean strengths and c.o.v. associated with strengths 
and degradation functions has been evaluated by 
comparing their results with those obtained using 
Monte Carlo Simulation.

2. Corrosion Propagation in rC beams

A quantitative description of corrosion 
propagation is generally given in terms of the loss 
of metal per unit surface area per unit time and this 
can be obtained by measuring the mass differences in 
the reinforcing steel with reference to its surface area 

exposed to corrosion. Most of the non-destructive 
techniques used for the corrosion monitoring are 
based on the electrochemical measurements, in which 
the annual mean corrosion rate is estimated in terms 
of the corrosion current density, CORi  (Val et al. 1998). 
This CORi  can be transformed into the loss of metal 
by using the diffusion law related to the growth of 
expansive corrosion products (Liu and Weyers 1998; 
Bhargava et al. 2003; Bhargava et al. 2005; Bhargava 
et al. 2006). Reduction in cross-sectional area of 
reinforcing bars shall result in the reduced flexural 
and shear strengths of the corrosion-damaged RC 
beams (Bhargava 2008). Corrosion of reinforcement 
causes cracking, and eventually spalling and/
or peeling of the cover concrete. Reduction in 
concrete section owing to the peeling of cover 
concrete shall also result in the reduced flexural 
and shear strengths of the corrosion-damaged 
RC beams (Rodriguez et al. 1997). Following sub-
sections present estimation of time-dependent loss 
of concrete and steel sections for the purpose of 
corrosion propagation in RC beams.

2.1 loss of Concrete Section

Reduction in concrete section occurs due 
to peeling of bottom, top and side covers to the 
reinforcements. Methodology for estimating the time 
required for peeling of cover concrete is adopted 
from Bhargava (2008). Figure 1 shows the crack 
propagating condition for the concrete block with 
two reinforcing bars of initial diameter iD . The bars 
have clear cover, C, and the centre line spacing, bS
. Due to the formation of corrosion products; the 
propagation of radial splitting cracks shall take 
place in all the directions to the same distance cR
, i.e., the radius of crack front. With ( / 2)i iR D=  
and ( )o iR R C= + , the cover concrete is assumed 
to be fully cracked when cR  becomes equal to oR  
(Bhargava et al. 2006). Bazant (1979) reported that 
failure may occur in two different modes in case of 

cR  becoming equal to oR : (i) when C > ( )/ 2b iS D−
, then the failure shall consist of peeling of cover 
concrete, and (ii) when the spacing of bars, bS , is 
large (say bS  > 6 iD⋅ ), the failure shall consist of 
inclined cracking. Based on the suggested failure 
philosophy of Bazant (1979), the cover peeling time 
for top, bottom, and side covers are evaluated using 
corrosion cracking model of Bhargava et al. (2006).
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2.2 loss of reinforcing Steel

Corrosion process is a dynamic process; growth 
of expansive corrosion products is given by Eq. 1 (Liu 
and Weyers 1998; Bhargava et al. 2003; Bhargava et al. 
2005; Bhargava et al. 2006).

pr

r

kdW
dt W

=

                                                                 

 (1)

where rW  = mass of expansive corrosion 
products (mg/mm); t = corrosion time (years); pk  = 
function of rate of metal loss. pk  is expressed by Eq. 
(2) (Bhargava et al. 2006).

2.48614p i CORk D iπ= ⋅ ⋅ ⋅
                                         

(2) 

           where iD  = initial diameter of reinforcement 
(mm); CORi  = annual mean corrosion rate (μA/
cm2). Various parameters associated with the loss of 
reinforcing steel at time, t, since initiation of corrosion 
are evaluated by Eqs. (3 – 6) (Bhargava 2008).

( ) 2.42362s i CORW t D i t= ⋅ ⋅ ⋅

                                 
(3) 

 2
r i i CORD ( t ) D 0.39245 D i t= − ⋅ ⋅ ⋅

                    

(4)

 ( ) 0.30835cor i CORA t D i t= ⋅ ⋅ ⋅

                               

(5)

 [ ]1
( ) ( )

2 i rX t D D t= ⋅ −

                                                

(6)

where, ( )sW t = mass of steel  per unit length 
of the reinforcement (mg/mm) getting consumed 

by corrosion process; ( )rD t = reduced bar diameter 
(mm); ( )corA t = loss of cross-sectional area of steel 
(mm2); X(t) = corrosion penetration depth (mm).

2.3 Predictions for loss of reinforcing Steel – 
Comparison with Experimental results

Analytical predictions for Ws
 and X are made for 

the available experimental data by using Eqs. (3 and 6) 
(Rasheeduzzafar et al. 1992; Andrade et al. 1993; Liu 
1996; Rodriguez et al. 1997; Mangat and Elgarf 1999; 
Torres-Acosta 1999). Figure 2 presents the comparison 
between P

sW  and E
sW  for the available experimental 

data. Similarly, Figure 3 presents the comparison 
between PX  and EX  for the same experimental data. 
The superscripts P and E correspond to the analytically 
predicted and the experimental observed values, 
respectively. The data in both the figures are presented 
by different symbols to represent the analytical 
predictions made for different experimental data. It is 
clear from the same figures that the deviation between 
the analytically predicted and the experimentally 
observed values is generally less than by a factor of 
two and this is a considerably good agreement in view 
of the large variability associated with the corrosion 
phenomena.

To test the goodness of Eqs. (3 and 6), the 
correlation between the predicted and experimental 
values is estimated. Assuming that P

sx W=  (the 
independent variable) and E

sy W=  (the dependent 
variable), the values of both r2

xy and s2
yx are estimated 

as 0.895 and 0.126 gm2/cm, respectively for Eq. (3); 
wherein, r, is the coefficient of correlation between 
x and y, and, s, is the root mean square error of 
estimate of y on x. Similarly, by assuming Px X=

Figure  1: Crack propagating condition for concrete block with 
two reinforcing bars due to reinforcement corrosion (Bhargava 

2008)

Figure  2: Comparison between experimental E
sW  and 

predicted P
sW  using Eq. (3)
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and Ey X= , the values of both r2
xy and s2

yx are 
estimated as 0.851 and 0.028 mm2, respectively for 
Eq. (6). The quite high values associated with r2

xy in 
both the predictions suggest that Eqs. (3 and 6) can be 
effectively used for estimating the values of Ws and X 
for the reinforced concrete members exposed to the 
corrosive environment.

Figure 3: Comparison between experimental EX  and 
predicted PX  using Eq. (6)

3. time dependent Strengths of Corroded rC 
beams

Figure  4 shows typical cross-section of a simply 
supported un-corroded RC beam, which is subjected to 
flexure and shear under loads. This doubly reinforced 
beam has b and D as its width and depth, respectively. 
The beam is reinforced with bottom tensile reinforcing 
steel bars having initial area, stiA  and top compressive 
reinforcing steel bars having initial area, sciA . The 
distance between the centroid of tensile steel and 
the edge of the compression zone is d (also known 
as effective depth). The shear stirrups are having an 
initial area, sviA  and are provided at spacing, vS .

Figure  4: Typical cross-section of an un-corroded RC beam

Figure  5: Different schemes of deteriorated reinforced concrete 
sections for corroded RC beams (Rodriguez et al. 1997)

Figure 5 shows three representative schemes 
of deteriorated reinforced concrete sections for a 
corrosion affected RC beam (Rodriguez et al. 1997). 
The Section 1 indicates the intact concrete section, 
wherein the peeling of covers is yet to occur. The 
section 2 indicates the reduced concrete section due 
to the peeling of top and bottom covers. In section 2, 
effective depth to tensile reinforcement of the beam is 
reduced to ( )scd C− , wherein scC  is clear cover to the 
compression steel. The section 3 indicates the reduced 
concrete section due to the peeling of all the top, 
bottom and side covers. In section 3, effective depth to 
tensile reinforcement and effective width of the beam 
are reduced to ( )scd C−  and ( 2 )shb d− ⋅  respectively; 
wherein shd  is the clear cover to the shear stirrups. All 
the three sections also indicate the reduced sections 
of main bars and shear stirrups at time, t. It is very 
important to point out that, the reduced concrete 
section for a deteriorated corroded beam at time, 
t, is governed by the individual cover peeling time 
for top, bottom and side covers and in some cases 
it may be different than those shown in Figure 5. 
Formulations for time-dependent flexural and shear 
strengths of corroded RC beams are proposed with 
the considerations that the loss of strengths is mainly 
due to reduction in cross-sectional areas of reinforcing 
steel and concrete.

3.1 time dependent flexural Strength

Figure 6: Formulation of time-dependent flexural strength of 
corroded RC beams: (a) beam section; (b) strain distribution 

(BIS 2000); (c) stress distribution (BIS 2000)
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Figure 6(a) shows the typical beam section for 
a doubly reinforced corroded beam, wherein the 
different notations pertaining to dimensions and 
reinforcing steels have their usual meanings at time, 
t, from the initiation of corrosion. Figures. 6(b and c) 
present the strain and stress distribution across the 
cross-section of the beam, respectively, wherein ( ) ( )

( )
( )

u
st cc

u

d t x tt
x t

ε ε
 −

= ⋅ 
 

  is 
the ultimate strain in concrete and is taken as 0.0035 
(BIS 2000).

In the same figures, ( )st tε  and ( )sc tε  are the 
strains in tensile and compressive reinforcements, 
respectively; ( )ux t  is the height of compression zone; 

( )ccF t  and  ( )scF t  are the forces of compression in 
concrete and compressive steel, respectively; ( )ccY t  is 
the distance of point of application of ( )ccF t  from the 
edge of compression zone; ( )stF t  is the force of tension 
in tensile steel; ckf  is the 28 day characteristic cube 
compressive strength of concrete (BIS 2000). Uniform 
corrosion around the surface and along the length of 
the bar is assumed. Considering the simple bending 
theory, ( )st tε  and ( )sc tε are given by Eq. (7).

 ( ) ( )
( )

( )
u

st cc
u

d t x tt
x t

ε ε
 −

= ⋅ 
   ;   

 ( ) ( )
( )

( )
u sc

sc cc
u

x t d tt
x t

ε ε
 −

= ⋅ 
 

                                           (7)                                    

The total force of compression, ( )cF t  is given 
by Eq. (8).

 ( ) ( ) ( )c cc scF t F t F t= +
                                               

 (8)

( )ccF t  and ( )ccY t  are given by Eq. (9).

 
3 0.002

( ) ( ) ( )
3
cc

cc ck u
cc

F t f b t x t εκ
ε

 ⋅ −
= ⋅ ⋅ ⋅ ⋅  ⋅  

0.000004
6

( ) ( ) ( )
12 0.008

cc
cc

cc u u
cc

Y t x t x t
ε

ε
ε

  
⋅ −  

  = − ⋅  ⋅ −
 
  

       (9)

 
where κ = a factor which is decided based on the 
design compressive strength of the concrete in the 
structures and the partial safety factor appropriate to 
the material strength of concrete (BIS 2000). The force 
of compression in compressive steel, ( )scF t , is given 
by Eq. (10).

( ) ( ) ( )sc sc st scF t t E A tε= ⋅ ⋅ ;  for ( )sc sytε ε≤ ,  and, 
( ) ( )sc y scF t f A tη= ⋅ ⋅ ; for ( )sc tε  > syε                (10)          

where fy = yield strength of reinforcing steels; 
η = a factor which is decided based on the partial 
safety factor appropriate to material strength of 
reinforcing steels (BIS 2000); Est = modulus of 
elasticity of reinforcing steel; syε  = yield strain for 
the reinforcing steels = ( / )y stf Eη ⋅ . In the present 
study, both κ and η are considered as 1.0. The 
distance, Yc(t), of point of application of total force 
of compression, ( )cF t , from the edge of compression 
zone is given by Eq. (11).

 ( ) ( ) ( ) ( )
( )

( ) ( )
cc cc sc sc

c
cc sc

F t Y t F t d tY t
F t F t

⋅ + ⋅
=

+
                      (11)

The force of tension, ( )stF t , in tensile steel is 
given by Eq. (12).

( ) ( ) ( )st st st stF t t E A tε= ⋅ ⋅ ;  f o r  ( )st sytε ε≤ ,  a n d , 
( ) ( )st y stF t f A tη= ⋅ ⋅ ; for ( )st tε  > syε

                 
  (12) 

                

By equating the force of compression given by 
Eq. (8) and the force of tension given by Eq. (12), the 
height of compression zone ( )ux t  is evaluated. The 
flexural strength, Mu(t), at time, t, is then determined 
by Eq. (13). 

[ ]( ) ( ) ( ) ( )st cMu t F t d t Y t= ⋅ −

                                   
(13) 

3.2 time dependent Shear Strength

The permissible shear stress of concrete at time, 
t, from the initiation of corrosion is given by Eq. (14) 
(BIS 2000; SP16 1980).

( )
( )

( )
0.85 0.8 ( 1 5 1)

6
ck

c
f t

t
t

β
τ

β
⋅ ⋅ ⋅ + ⋅ −

=
⋅  

 ( ) ( ) ( )
( )

0.8

689
ck

st

f b t d t
t

A t
β

⋅ ⋅ ⋅
=

⋅                                                                                      
(14)

The shear strength, Vu(t), at time, t, is determined 
by Eq. (15).

 ( ) ( )
( ) ( ) ( ) ( ) y sv

c
v

f A t d t
Vu t t b t d t

S
η

τ
⋅ ⋅ ⋅

= ⋅ ⋅ +        (15)

The maximum value of the shear strength of 
the corroded RC beam, Vumax(t), is given by Eq. (16) 
(BIS 2000).

 ( ) ( ) ( )max maxcVu t b t d tτ= ⋅ ⋅                                   (16)

where τcmax = maximum shear stress of concrete 
for a given value of fck (BIS 2000). If calculated Vu(t) 
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is more than Vumax(t) then Vu(t) is limited to Vumax(t) 
(BIS 2000).

Figure  7: Time-dependent flexural strength for type 13 
corroded beams of Rodriguez et al. (1997)

Figure 8: Time-dependent shear strength for type 13 corroded 
beams of Rodriguez et al. (1997)

3.3 Predictions for time-dependent flexural and  
Shear Strengths of Corroded rC beams – 
Comparison with Experimental results

Predictions have been made for the residual 
flexural and shear capacity of the corrosion-degraded 
RC beams for which the experimental results are 
available (Rodriguez et al. 1997). Rodriguez et al. 
(1997) tested six different types of RC beams of sections 
150 mm x 200 mm with spans ranging from 2050 mm 
to 2300 mm. The beams were provided with different 
ratios of tensile and compressive reinforcement, 
different spacing of shear reinforcement and different 

locations of curtailment of tensile reinforcing bars. The 
various reinforcing bars were corroded to different 
degree of corrosion in terms of attack penetration 
i.e. reduction in bar radius. After having corroded 
the reinforcement, the beams were tested up to the 
failure.

Figure (7 and 8) present the comparison of 
experimentally observed and analytically predicted 
values for time-dependent flexural and shear strengths, 
respectively, for type 13 beams of Rodriguez et al. 
(1997). Analytical predictions are presented for all the 
three deteriorated schemes for RC sections as shown in 
Figure 5 for comparison purposes. However, for these 
beams, Section 2 deteriorated scheme is expected at 
the end of the corrosion period. Analytical predictions 
are found to agree within 17 % of the experimentally 
observed values for flexural and shear strengths for 
Section 2 deteriorated scheme; this is a considerably 
good agreement in view of the large variability 
associated with the corrosion phenomena. Therefore the 
proposed analytical formulations for time-dependent 
flexural and shear strengths predict the analytical 

Figure 9: Typical RC beam cross-section: (a) at mid span, (b) at 
supports
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trends which are in considerably good agreement with 
those of the observed experimental trends.

4. illustration of time dependent Strengths of 
Corroded rC beams – Probabilistic approach

For the purpose of illustration, a simply 
supported RC beam with its reinforcement details as 
shown in Figure 9 is considered. The span of the beam 
is considered as 4.0 m, and it is subjected to corrosion 
attack. The statistical parameters for the basic variables 
for material strengths, dimensions and annual mean 
corrosion rate appropriate for the RC beam are given 
in Table 1. These statistical parameters are similar to 
the ones suggested by many researchers (Ellingwood 
and Ang 1974; Ellingwood 1977; Mirza et al. 1979; 
Mirza and MacGregor 1979a and 1979b; Ellingwood 
1982; Ellingwood and Hwang 1985; Hwang et al. 1987; 
Israel et al. 1987; CEB-FIP 1990; ACI 1995; Frangopol 
et al. 1997; Enright and Frangopol 1998a and 1998b; 
Stewart and Rosowsky 1998; Thoft-Christensen 1998; 
Val et al. 1998; Hong and Zhou 1999; BIS 2000; Haldar 
and Mahadevan 2000; Hong 2000; Ranganathan 2000; 
Vu and Stewart 2000; Li 2003; Vu and Stewart 2005; 
Li et al. 2005).  

Time-dependent flexural and shear strengths 
are estimated using the formulations given in the 
preceding sections. Since the formulations are 
provided based on BIS (2000) and SP16 (1980), 
following is adopted in the present study: (i) time-
dependent flexural strength is calculated by using 

cmf  instead of . ckfκ  and by using sE  instead of stE  
, and (ii) time-dependent shear strength is calculated 
by using cmf  instead of ckf .

Monte Carlo simulation is used for evaluating 
time-dependent mean strengths and c.o.v. associated 
with the strengths. Here, the “Latin Hypercube 
Sampling (LHS)” technique with 40 samples (Mckay et 
al. 1979) is used for an efficient sampling considering 
the variability in the variables given in Table 1. The 
results are presented in Figures (10 – 15) and are 
discussed in the following sections. The 40 random 
samples of the basic variables and their random 
combinations obtained through LHS technique are 
used for evaluating the sample mean of strengths and 
c.o.v. associated with the strengths in Figures  (10 – 15). 
The approximated mean for strengths is evaluated by 
considering all the basic variables to be at their mean 
values. In all the figures, VI stands for the c.o.v. of 
CORi . Results are presented typically for a corrosion 

period of 60 years.

4.1 time dependent flexural Strength

Figures  10(a) – 12(a) present the time-dependent 
flexural strength, Rnb(t), at time t (years) from the 
initiation of corrosion, for different mean values 
of CORi . In the same figures, mRnb stands for the 
sample mean flexural strength, and m

nbR  stands for 
the approximated mean flexural strength. Figures. 
10(b) – 12(b) present the time-dependent c.o.v., 
VRnb(t), associated with Rnb(t), at time t (years) from 
the initiation of corrosion, for different mean values 
of CORi . These figures depict the following:

table 1: Statistical parameters for the basic 
variables for material strengths, dimensions and 

annual mean corrosion rate

Variables Mean c.o.v. distribution

Material 
strengths

cmf 25.8 MPa 0.18 Normal

Cτ 0.421 MPa 0.18 Normal

θ 2.0 0.20 Normal

yf 466.88 
MPa 0.11 Lognormal

sE
200000 
MPa 0.051 Lognormal

Dimensions

b 310.3 mm 0.033 Normal
D 614.4 mm 0.017 Normal
CB 46.6 mm 0.123 Normal
CT 48.2 mm 0.105 Normal
CS 40.6 mm 0.099 Normal

Annual 
mean 

corrosion 
rate

CORi
1, 3, 5 μA/

cm2

0.1, 
0.2 
and 
0.3

Normal

Notations:

cmf : Compressive strength of concrete; Cτ : Shear 
strength of concrete; θ: Creep coefficient; sE : 
Modulus of elasticity of steel plus corrosion products 
combine; CB, CT, and CS: Clear covers to bottom, top 
and side reinforcements, respectively.

(i) For a given CORi , m
nbR  agrees well with mRnb 

except in the time interval of 0 – 5 years, where a 
slight difference between them is observed. This 
difference is mainly attributed to the randomness 
associated with the time of cover peeling at 
bottom, top, and side resulting in the change of 
cross-section for the concrete. Flexural strength is 
mainly governed by all the basic variables (except 

Cτ ) given in Table 1, and is a non-linear function 
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of those variables. Figure 6 also shows that, at 
time t, Rnb(t) is evaluated after estimating various 
parameters, such as, beam dimensions, cross-
sectional area of steels, neutral axis depth, forces 
of compression in concrete and compression 
steel and their points of application, and force of 
tension in tension steel and its point of application. 
Good agreement between the sample mean and 
approximated mean values of Rnb(t) shows that 
the time-dependent mean flexural strength can be 
approximated by considering the linear terms in 
Taylor series expansion of performance functions  
for the aforementioned parameters needed to 
evaluate Rnb(t) [Eqs. (5, 7 – 13)].

Figure 10(a): Time-dependent flexural strength 
 ( CORi  = 1 μA/cm2)

Figure 10(b): Time-dependent c.o.v. for flexural strength  
( CORi = 1 μA/cm2)

Figure 11(a): Time-dependent flexural strength  
( CORi  = 3 μA/cm2)

Figure 11(b): Time-dependent c.o.v. for flexural strength  

( CORi = 3 μA/cm2)

(ii) For a given CORi , an increase in VRnb(t) is observed 
in the time interval of 0 – 5 years for all VI values. 
This is attributed to the randomness associated 
with the time of cover peeling at the bottom, top 
and side resulting in the change of cross-section 
for the concrete.

(iii) For a given CORi , VI has negligible effect on the 
mean values of the Rnb(t); however it affects VRnb(t). 
As VI increases, VRnb(t) also increases. This is 
because Rnb(t) is a function of CORi , and variation 
in CORi  values will result in the variation of 
corresponding Rnb(t) values.

(iv) CORi  affects Rnb(t) and VRnb(t). As CORi  increases, 
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Figure 13(a): Time-dependent shear strength  
( CORi  = 1 μA/cm2)

Figure 13(b): Time-dependent c.o.v. for shear strength  
( CORi = 1 μA/cm2)

Figure 12(a): Time-dependent flexural strength  
( CORi  = 5 μA/cm2)

Figure 12(b): Time-dependent c.o.v. for flexural strength  
( CORi = 5 μA/cm2)

4.2 time dependent Shear Strength

AsCOR(t) for tension steel also increases, thus 
further resulting in reduced Rnb(t) and more 
variability for AsCOR(t). Increase in variability 
for AsCOR(t) will result in the increase in VRnb(t) 
values. Here, AsCOR is defined as the ratio of loss 
of cross-sectional area to the initial un-corroded 
area of reinforcement.

 Figures. 13(a) – 15(a) present the time-dependent 
shear strength, Rsh(t), at time t (years) from the initiation 
of corrosion, for different mean values of CORi . In the 
same figures, mRsh stands for the sample mean shear 
strength, and m

shR  stands for the approximated mean 
shear strength. Figures 13(b) – 15(b) present the 

time-dependent c.o.v., VRsh(t), associated with Rsh(t), 
at time t (years) from the initiation of corrosion, for 
different mean values of CORi . These figures depict 
the following:
(i) For a given CORi , m

shR agrees well with mRsh 
except in the time interval of 0 – 5 years, where a 
slight difference between them is observed. This 
difference is mainly attributed to the randomness 
associated with the time of cover peeling at the 
bottom, top, and side resulting in the change of 
cross-section for the concrete. Shear strength is 
governed by all the basic variables given in Table 
1, and is a non-linear function of those variables. 
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Figure 14(a): Time-dependent shear strength    

( CORi  = 3 μA/cm2)

Figure 14(b): Time-dependent c.o.v. for shear strength  
( CORi = 3 μA/cm2)

Figure 15(a): Time-dependent shear strength    
( CORi  = 5 μA/cm2)

Figure 15(b): Time-dependent c.o.v. for shear strength  
( CORi = 5 μA/cm2)

At time t, Rsh(t) is evaluated after estimating 
various parameters, such as, beam dimensions, 
cross-sectional area of steels, and shear strength of 
concrete and stirrups. Good agreement between 
the sample mean and approximated mean 
values of Rsh(t) shows that the time-dependent 
mean shear strength can be approximated by 
considering the linear terms in Taylor series 
expansion of performance functions for the 
aforementioned parameters needed to evaluate 
Rsh(t) [Eqs. (5, 14 – 16)].

(ii) For a given CORi , an increase in VRsh(t) is observed 
in the time interval of 0 – 5 years. This is attributed 
to the randomness associated with the time of 
cover peeling at the bottom, top and side resulting 

in the change of cross-section for the concrete. 
(iii) For a given CORi , VI has negligible effect on 

the mean values of the Rsh(t); however it affects 
VRsh(t). As VI increases, VRsh(t) also increases. 
This is because Rsh(t) is a function of CORi , and 
variation in CORi  values will result in the variation 
of corresponding Rsh(t) values.

(iv) CORi  affects Rsh(t) and VRsh(t). As CORi  increases, 
AsCOR(t) for shear stirrups also increases, thus 
further resulting in reduced Rsh(t) and more 
variability for AsCOR(t). Increase in variability 
for AsCOR(t) will result in the increase in VRsh(t) 
values.

(v) At time t = 0, VRsh(at t = 0) is slightly lower than 
VRnb(at t = 0). It is mentioned that shear strength 
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of beam is evaluated as sum of the shear strength 
contributions of concrete section and stirrups. 
Shear strengths of concrete section is evaluated 
as a product of beam dimensions and permissible 
shear stress of concrete, while that of stirrups is 
evaluated as a product of effective depth of beam, 
yield strength and cross-sectional area of stirrups 
[Eq. (14 – 16)]. Flexural strength for the given 
beam is mainly governed by the yielding of tensile 
reinforcement, and is evaluated as a product of 
lever arm (which is a function of effective depth 
of beam), yield strength and cross-sectional 
area of tensile reinforcement [Eq. (13)]. Since 
the considered variability in beam dimensions 
are smaller as compared to those for material 
strengths of concrete and steel, it may result in 
VRsh(at t = 0) slightly lower than VRnb(at t = 0).

5. time dependent degradation functions for 
time dependent Strengths of Corroded rC beams

Degradation function is defined as the ratio 
of strength at time, t, to the initial strength for an 
un-corroded RC beam. Time-dependent mean 
degradation functions for the time-dependent flexural 
and shear strengths, for the considered RC beam are 
expressed by Eq. (17). 

 

0

( )
( ) nb

nb
nb

R tg t
R

= ; 
0

( )
( ) sh

sh
sh

R tg t
R

=                            (17)

where ( )nbR t and ( )shR t  = flexural strength and 
shear strength, respectively, at time t; 0nbR and 0shR  
= flexural strength and shear strength, respectively, 

Figure 16: Time-dependent mean degradation function for 
flexural strength

Figure 17: Time-dependent mean degradation function for 
 shear strength

at time t = 0; ( )nbg t and ( )shg t = mean degradation 
functions for flexural strength and shear strength, 
respectively, at time t.

Figures (16 and 17) present the time-dependent 
mean degradation functions, gnb(t) and gsh(t), for 
flexural strength and shear strength, respectively, for 
different mean values of CORi . With the increase in
CORi , reduction in gnb(t) and gsh(t) is observed. This is 

attributed to the reduction in m
nbR and m

shR , respectively 
due to increase in CORi .

6. analytical Estimation of time dependent 
C.O.V. Associated With Degradation Function

Since time-dependent strengths and degradation 
functions for corroded RC beam are related to each 
other by Eq. (17), the time-dependent c.o.v. associated 
with degradation functions is evaluated by Eq. (18) 
(Benjamin and Cornell 1970)

 2 2
0

2
0

( )
( )

1
Rsh Rsh

Gsh
Rsh

V t VV t
V

−
=

+

2 2
0

2
0

( )
( )

1
Rnb Rnb

Gnb
Rnb

V t VV t
V

−
=

+ ;
                                                                             (18)

where ( )GnbV t and ( )GshV t  = c.o.v. associated 
with degradation functions for flexural strength and 
shear strength, respectively, at time t; ( )RnbV t and 

( )RshV t  = c.o.v. associated with flexural strength 
and shear strength, respectively, at time t; 0RnbV  
and 0RshV  = c.o.v. associated with initial flexural 
strength and initial shear strength, respectively, 
at time t = 0. The estimation of ( )RnbV t , ( )RshV t  

( )GnbV t  and ( )GshV t is addressed in the following 
sections.
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6.1 analytical Estimation of ( )RnbV t  and ( )GnbV t

At time t, the flexural strength, Rnb(t), is estimated 
by Eq. (13) [performance functions for Rnb(t)] for 
tension failure. Rnb(t) is a function of Fst(t), Yc(t) and d(t). 
At time t, if Rnbtσ  is the standard deviation associated 
with Rnb(t) then the first-order approximation of 
variance of Rnb(t) is given by Eq. (19) (Haldar and 
Mahadevan 2000).

 2 2 2
2 2 2 2( ) ( ) ( )

( ) ( ) ( )
nb nb nb

Rnbt Fstt Yct dt
st c

R t R t R t
F t Y t d t

σ σ σ σ
     ∂ ∂ ∂

= ⋅ + ⋅ + ⋅     ∂ ∂ ∂    
                                                                             (19)

where, Fsttσ  = standard deviation associated 
with Fst(t); Yctσ  = standard deviation associated with 
Yc(t); dtσ =  standard deviation associated with d(t). 
First order approximation for Fsttσ , Yctσ  and dtσ  
are given by Eqs. (20 – 22).
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(20a)
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                                                                                    (20b)
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2 2
dt D CBσ σ σ= + ; (Before peeling of top cover) (22a)

 
2 2 2

dt D CB CTσ σ σ σ= + + ;(After peeling of top cover) 
                                                                                           (22b) 

where, Esσ , fyσ , icorσ , Dσ , CBσ  and CTσ
= standard deviation associated with Es, fy, CORi , D, 
CB and CT, respectively, and are evaluated based on 
the statistical parameters for these variables given in 
Table 1. Xutσ  is the standard deviation associated with 
Xu(t), and the first-order approximation of variance 
of Xu(t) for different strain conditions in reinforcing 
steels shall give its value. Fcctσ , Ycctσ , Fsctσ and 

dsctσ  are the standard deviations associated with 
Fcc(t), Ycc(t), Fsc(t) and dsc(t), respectively, and the 

first-order approximation of variances of Fcc(t), Ycc(t) 
Fsc(t) and dsc(t) shall give their respective values. The 
time-dependent c.o.v., VRnb(t), associated with Rnb(t) is 
estimated from Eq. (23).

 ( )
( )

Rnbt
Rnb

nb
V t

R t
σ

=
                                                        (23)

At time t = 0, VRnb(t = 0) = VRnb0. Once VRnb0 and 
VRnb(t) are known, VGnb(t) is evaluated from Eq. (18).

6.2 analytical Estimation of ( )RshV t  and ( )GshV t

The shear strength, Rsh(t), at time t, is estimated 
by Eq. (15) [performance functions for Rsh(t)]. Rsh(t) 
is a function of ( )C tτ , b(t), d(t), fy and CORi . For the 
considered corroded RC beam [Figure 9], ( )C tτ  is 
not calculated by Eq. (14), rather Cτ  is considered as 
a separate random variable with statistical parameters 
provided in Table 1. At time t, if Rshtσ  is the standard 
deviation associated with Rsh(t) then the first-order 
approximation of variance of Rsh(t) is given by Eq. (24) 
(Haldar and Mahadevan 2000).
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                                                                             (24)

where cτσ  = standard deviations associated with 
Cτ  and is evaluated based on the statistical parameters 

for Cτ  given in Table 1; btσ = standard deviation 
associated with b(t) and first order approximation of 
variance of b(t) shall give its value. The time-dependent 
c.o.v., VRsh(t), associated with Rsh(t) is estimated from 
Eq. (25).

 ( )
( )

Rsht
Rsh

sh
V t

R t
σ

=
                                                         (25)

At time t = 0, VRsh(t = 0) = VRsh0. Once VRsh0 and 
VRsh(t) are known, VGsh(t) is evaluated from Eq. (18).

6.3 discussion of results for analytical Estimation 
of time-dependent c.o.v. associated with time 
dependent Strengths and time-dependent degra-
dation functions

For different mean values of CORi , at time t 
(years) from the initiation of corrosion: (i) Figures 
18(a) – 20(a) present the time-dependent c.o.v., VRnb(t), 
associated with Rnb(t), (ii) Figures. 18(b) – 20(b) present 
the time-dependent c.o.v., VGnb(t), associated with 
Gnb(t), (iii) Figures. 21(a) – 23(a) present the time-
dependent c.o.v., VRsh(t), associated with Rsh(t), and (iv) 
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Figures. 21(b) – 23(b) present the time-dependent c.o.v., 
VGsh(t), associated with Gsh(t). In the same figures S

RnbV  
and S

GnbV , and S
RshV  and S

GshV  are evaluated using 40 
random samples; A

RnbV  and A
RshV  are evaluated using 

the analytical formulations presented in the preceding 
sections; A

GnbV  and A
GshV  are evaluated using Eq. (18). 

Figure 18(a): Comparison of time-dependent c.o.v  A
RnbV  and 

S
RnbV

 
for flexural strength ( CORi

 
= 1 μA/cm2)

Figure 18(b): Comparison of time-dependent c.o.v A
GnbV  and 

S
GnbV  for degradation function for flexural strength  

( CORi  = 1 μA/cm2)

Figure 19(a): Comparison of time-dependent c.o.v A
RnbV  and 

S
RnbV  for flexural strength ( CORi  = 3 μA/cm2)

Figure 19(b): Comparison of time-dependent c.o.v 
A

GnbV  and 
S

GnbV
for degradation function for flexural strength ( CORi   = 3 μA/cm2)

For the purpose of comparison: (i) in Figures. 18(a) – 
20(a) S

RnbV  are reproduced from Figures. 10(b) – 12(b), 
and (ii) in Figures. 21(a) – 23(a) S

RshV  are reproduced 
from Figures. 13(b) – 15(b). For a given CORi , good 
agreement is observed between A

RnbV  and S
RnbV

, A
GnbV  and S

GnbV , A
RshV  and S

RshV , and A
GshV  and 

S
GshV , except in the time interval of about: (a) 0 – 15 

years, for CORi  = 1 μA/cm2, (b) 0 – 5 years for CORi  
= 3 μA/cm2, and (c) 0 – 3 years for CORi  = 5 μA/cm2. 
The difference in the aforementioned time intervals 
is mainly attributed to the randomness associated 
with the time of cover peeling at the bottom, top, and 

side resulting in the change of cross-section for the 
concrete. Good agreement between the analytically 
estimated and simulated values for the c.o.v. in the 
remaining time intervals shows that the first-order 
approximation of mean and variance of strengths can 
be used for estimating c.o.v. for both strengths and 
degradation functions.
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Figure 20(a): Comparison of time-dependent c.o.v A
RnbV  and 

S
RnbV  for flexural strength ( CORi  = 5 μA/cm2)

Figure 20(b): Comparison of time-dependent c.o.v 
A

GnbV  and 
S

GnbV
for degradation function for flexural strength  

( CORi  = 5 μA/cm2)

Figure 21(a): Comparison of time-dependent c.o.v A
RshV and 

S
RshV  for shear strength ( CORi  = 1 μA/cm2)

Figure 21(b): Comparison of time-dependent c.o.v A
GshV  and S

GshV   
for degradation function for shear strength ( CORi  = 1 μA/cm2)

Figure 22(a): Comparison of time-dependent c.o.v A
RshV and 

S
RshV  for shear strength ( CORi  = 3 μA/cm2)

Figure 22(b): Comparison of time-dependent c.o.v A
GshV  and S

GshV   

for degradation function for shear strength ( CORi  = 3 μA/cm2)
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Figure 23(a): Comparison of time-dependent c.o.v A
RshV and 

S
RshV  for shear strength ( CORi  = 5 μA/cm2)

Figure 23(b): Comparison of time-dependent c.o.v A
GshV  and 

S
GshV   for degradation function for shear strength  

( CORi  = 5 μA/cm2)

7. Conclusions

Following conclusions are drawn from the 
present study:
(i) Correlations with the experimental results indicate 

that the equations proposed for estimating the 
time-dependent mass loss of the reinforcement, 
Ws,  reduced diameter of reinforcement, Dr, loss 
of cross-sectional area of reinforcement, Acor, and 
corrosion penetration depth, X, are capable of 
providing their reasonable estimates that are in 
line with the available experimental trends.

(ii) Correlations with the experimental results 
indicate that good agreement is observed between 
analytical predictions and experimental results, 
for ultimate flexural and shear strengths for 
corrosion-affected RC beams. These findings 
also highlight the fair estimation of: (i) time to 
peeling of cover concrete using the proposed 
methodology to arrive at the time-dependent 
reduced concrete section, and (ii) Ws to arrive 
at the time-dependent reduced cross-section of 
reinforcing steel.

(iii) A methodology to evaluate time-dependent 
strengths and c.o.v. associated with strengths is 
presented for corrosion-affected RC beams, by 
using LHS technique.

(iv) For corrosion-affected RC beams, it is shown 
that time dependent mean flexural and shear 
strengths can be approximated by considering 
the linear terms in Taylor series expansion of their 
performance functions.

(v) For corrosion-affected RC beams, time-dependent 
c.o.v. associated with the strength is influenced by 

the c.o.v. associated with annual mean corrosion 
rate, CORi , at late stages of degradation (say 40 – 
60 years).

(vi) Good agreement is observed between the 
analytical and simulated estimations for the time-
dependent c.o.v. associated with flexural and 
shear strengths. 

(vii) Good agreement is observed between the 
analytical and simulated estimations for the time 
dependent c.o.v. associated with the degradation 
functions for the flexural and shear strengths.

(viii)Analytical estimation of c.o.v. associated with 
strengths and degradation functions substantially 
reduces the computational efforts involved in 
their estimation using LHS technique.
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