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1 introduction

Stochastic dynamics has gained increasing 
interests and has been extensively studied. 
However, although the original thought may 
date back to Einstein (1905) and Langevin (1908) 
and then studied in rigorous formulations by 
mathematicians (Kolmogorov, 1931; Wiener, 
1923; Itô, 1942), the random vibration theory, 
a component of stochastic dynamics, was only 
regarded as a branch of engineering science until 
the early of 1960’s (Crandall, 1958; Lin, 1967). Till 
early 1990’s, the theory and pragmatic approaches 
for random vibration of linear structures were 
well developed. Meanwhile, researchers were 
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abStract

In the past few years, starting with the thought of physical stochastic systems and the principle 
of preservation of probability, a family of probability density evolution methods (PDEM) has 
been developed. It provides a new perspective towards the accurate design and optimization of 
structural performance under random engineering excitations such as earthquake ground motions 
and strong winds. On this basis, a physical approach to structural stochastic optimal control 
is proposed in the present paper. A family of probabilistic criteria, including the criterion based 
on mean and standard deviation of responses, the criterion based on exceeding probability, and 
the criterion based on global reliability of systems, is elaborated. The stochastic optimal control 
of a randomly base-excited single-degree-of-freedom system with active tendon is investigated 
for illustrative purposes. The results indicate that the control effect relies upon control criteria 
of which the control criterion in global reliability operates efficiently and gains the desirable 
structural performance. The results obtained by the proposed method are also compared against 
those by the LQG control, revealing that the PDEM-based stochastic optimal control exhibits 
significant benefits over the classical LQG control. Besides, the stochastic optimal control, 
using the global reliability criterion, of an eight-storey shear frame structure is carried out. The 
numerical example elucidates the validity and applicability of the developed physical stochastic 
optimal control methodology. 

Keywords: probability density evolution method; stochastic optimal control; control criteria; 
global reliability; LQG control

challenged by nonlinear random vibration, 
despite great efforts devoted coming up with 
a variety of methods, including the stochastic 
linearization, equivalent non-linearization, 
stochastic averaging, path-integration method, 
FPK equation and the Monte Carlo simulation 
and so on (see, e.g., Zhu, 1992; Lin & Cai, 1995; 
Lutes & Sarkarni, 2004). The challenge still existed. 
On the other hand, investigations on stochastic 
structural analysis (or referred to stochastic finite 
element method by some researchers), as a critical 
component of stochastic dynamics, in which the 
randomness of structural parameters is dealt 
with, started a little later from the late 1960’s. 
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Till middle 1990’s, a serious of approaches were 
presented, among which three were dominant, 
including the Monte Carlo simulation (Shinozuka 
& Jan, 1972; Shinozuka & Deodatis, 1991), the 
random perturbation technique (Kleiber & 
Hien, 1992, Haldar & Mahadevar, 2000) and the 
orthogonal polynomial expansion (Ghanem & 
Spanos, 1991; Li, 1996). Likewise with the random 
vibration, here the analysis of nonlinear stochastic 
structures encountered huge challenges as well 
(Schenk & Schuëller, 2005). 

In the past ten years, starting with the 
thought of physical stochastic systems (Li, 2006) 
and the principle of preservation of probability 
(Li & Chen, 2008), a family of probability density 
evolution methods (PDEM) has been developed, 
in which a generalized density evolution equation 
was established. The generalized density 
evolution equation profoundly reveals the 
essential relationship between the stochastic and 
deterministic systems. It is successfully employed 
in stochastic dynamic response analysis of 
multi-degree-of-freedom systems (Li and Chen, 
2009), and therefore provides a new perspective 
towards serious problems such as the dynamic 
reliability of structures, the stochastic stability 
of dynamical systems and the stochastic optimal 
control of engineering structures. 

In this paper, the application of PDEM on 
the stochastic optimal control of structures will 
be summarised. Therefore, the fundamental 
theory of the generalized density evolution 
equation is firstly revisited. A physical approach 
to stochastic optimal control of structures is then 
presented. The optimal control criteria, including 
those based on mean and standard deviation 
of responses and those based on exceeding 
probability and global reliability of systems, are 
elaborated. The stochastic optimal control of a 
randomly base-excited single-degree-of-freedom 
system with active tendon is investigated for 
illustrative purposes. Comparative studies of 
these probabilistic criteria and the developed 
control methodology against the classical 
LQG control are carried out. The optimal 
control strategy is then further employed in the 
investigation of the stochastic optimal control of 

an eight-storey shear frame. Some concluding 
remarks are included.

2 Principle of Preservation of Probability and 
generalized density evolution equation

Principle of preservation of probability 
revisited

It is noted that the probability evolution in a 
stochastic dynamical system admits the principle 
of preservation of probability, which can be stated 
as: if the random factors involved in a stochastic 
system are retained, the probability will be 
preserved in the evolution process of the system. 
Although this principle may be faintly cognized 
quite long ago (see, e.g., Syski, 1967), the physical 
meaning has been only clarified in the past few 
years from the state description and random 
event description, respectively (Li & Chen, 2003, 
2006, 2008). The fundamental logic position of the 
principle of preservation of probability was then 
solidly established with the development of a new 
family of generalized density evolution equations 
that integrates the ever-proposed probability 
density evolution equations, including the classic 
Liouville equation, Dostupov-Pugachev equation 
and the FPK equation (Li & Chen, 2009). 

To re-visit the principle of preservation of 
probability, consider an n-dimensional stochastic 
dynamical system governed by the following 
state equation
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0 0,1 0,2 0,( , , , )nY Y YY  

denotes the corresponding initial vector; ()A  is a deterministic operator vector. Evidently, 
in the case that 0Y  is a random vector, ( )tY  will be a stochastic process vector. 

The state equation (1) essentially establishes a mapping from 0Y  to ( )tY , which can 
be expressed as 
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where (), ()tg G  are both mapping operators from 0Y to ( )tY . 

Since 0Y  denotes a random vector, 
00{ }tY  is a random event. Here 

0t
is any 

arbitrary domain in the distribution range of 0Y . According to the stochastic state equation 
(1), 0Y  will be changed to ( )tY  at time t . The domain 
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Figure 1. Dynamical system, mapping and probability evolution 

 
Since the probability is preserved in the mapping of any arbitrary element events, we 

have 
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where D() Dt  operates its arguments with denotation of total derivative.  

Eq. (5) is clearly the mathematical formulation of the principle of preservation of 
probability in a stochastic dynamical system. Since the fact of probability invariability of a 
random event is recognized here, we refer to Eq. (5) as the random event description of the 
principle of preservation of probability. The meaning of the principle of preservation of 
probability can also be clarified from the state space description. These two descriptions 
are somehow analogous to the Lagrangian and Eulerian descriptions in the continuum 
mechanics, although there also some distinctive properties particularly in whether 
overlapping is allowed. For details, refer to Li & Chen (2006a; 2008). 
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Without loss of generality, consider the equation of motion of a 
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where 
11 2( , , , )s  are the random parameters involved in the physical properties of 

the system. If the excitation is a stochastic ground accelerogram g( ) ( )t X t , for example, 

then M1 , T(1,1, ,1)1 . Here , ,X X X  are the accelerations, velocities and 
displacements of the structure relative to ground. (), (), ()M C f denote the mass, damping 
and stiffness matrices of the structural system, respectively.  

In the modelling of stochastic dynamic excitations such as earthquake ground motions, 
strong winds and sea waves, the thought of physical stochastic process can be employed 
(Li & Ai, 2006; Li, 2008; Li et al, 2011b). For general stochastic processes or random 
fields, the double stage orthogonal decomposition can be adopted such that the excitation 
could be represented by a random function (Li & Liu, 2006) 
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in which 1 2s s s  is the total number of the basic random variables involved in the 
system. Eq. (6) can thus be rewritten into 
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where g( , ) ( , )t X tF . 
 This is the equation to be resolved in which all the randomness from the initial 

conditions, excitations and system parameters is involved and exposed in a unified manner. 
Such a stochastic equation of motion can be further rewritten into a stochastic state 
equation which was firstly formulated by Dostupov & Pugachev (1957). 

If, besides the displacements and velocities, we are also interested in other physical 
quantities T

1 2( , , , )mZ Z ZZ in the system (e.g. the stress, internal forces, etc.), then the 
augmented system ( , )Z  is probability preserved because all the random factors are 
involved, thus according to Eq. (5) we have (Li & Chen, 2008) 
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Figure 1. Dynamical system, mapping and probability evolution 
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It is understood that Eq. (4) also holds at t t , which will then result in 
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where D() Dt  operates its arguments with denotation of total derivative.  

Eq. (5) is clearly the mathematical formulation of the principle of preservation of 
probability in a stochastic dynamical system. Since the fact of probability invariability of a 
random event is recognized here, we refer to Eq. (5) as the random event description of the 
principle of preservation of probability. The meaning of the principle of preservation of 
probability can also be clarified from the state space description. These two descriptions 
are somehow analogous to the Lagrangian and Eulerian descriptions in the continuum 
mechanics, although there also some distinctive properties particularly in whether 
overlapping is allowed. For details, refer to Li & Chen (2006a; 2008). 
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which is a one-dimensional partial differential equation.  

Eqs. (13) and (15) are referred to as generalized density evolution equations (GDEEs). 
They reveal the intrinsic connections between a stochastic dynamical system and its 
deterministic counterpart. It is remarkable that the dimension of a GDEE is not relevant to 
the dimension (or degree-of-freedom) of the original system; see Eq. (9). This 
distinguishes GDEEs from the traditional probability density evolution equations (e.g. 
Liouville, Dostupov-Pugachev and FPK equations), of which the dimension must be 
identical to the dimension of the original state equation (twice the degree-of-freedom).  

Clearly, Eq. (14) is mathematically equivalent to Eq. (15). But it will be seen later that 
Eq. (14) itself may provide additional insight into the problem. Particularly, if the physical 
quantity Z of interest is the displacementX of the system, Eq. (15) becomes 
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Here we can see the rule clearly revealed by 
the GDEE: in the evolution of a general dynamical 
system, the time variant rate of the joint PDF of 
displacement and source random parameters is 
proportional to the space variant rate with the 
coefficient being instantaneous velocity. In other 
words, the flow of probability is determined by 
the change of physical states. This demonstrates 
strongly that the evolution of probability density 
is not disordered, but admits a restrictive physical 
law. Clearly, this holds for the general physical 
system with underlying randomness. This rule 
could not be exposed in such an explicit way 
in the traditional probability density evolution 
equations.
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Although in principle the GDEE holds 
for any arbitrary dimension, in most cases one 
or two-dimensional GDEEs are adequate. For 
simplicity and clarity, in the following sections 
we will be focused on the one-dimensional 
GDEE. Generally, the boundary condition for 
Eq. (15) is
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where 0z is the deterministic initial value. 
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The GDEE was firstly obtained as the uncoupled version of the parametric Liouville 

equation for linear systems (Li & Chen, 2003). Then for nonlinear systems, the GDEE was 
reached when the formal solution was employed (Li & Chen, 2006b). It is from the above 
derivation that the meanings of the GDEE were thoroughly clarified and a solid physical 
foundation was laid (Li & Chen, 2008).  
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are usually easier than the original problem. 
Thus, the possibility of new approaches is implied 
but still to be explored. It is also stressed that 
such a property of independent evolution is 
not conditioned on any assumption of mutual 
independence of basic random variables.
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where 1[ ( , )] ( , ) ( )
q

q
q

E Z t Z t p d
P

 is the average of ( , )Z t  over q . In some cases, 

[ ( , )]qE Z t  might be close to ( , )qZ t  and thus Eqs. (27) and (28) coincide. 
 

Numerical procedure for the GDEE 
 

In the probability density evolution method, Eq. (9) is the physical equation while Eq. 
(15) is the GDEE with initial and boundary conditions specified by Eqs. (17) and (18). 
Hence, solving the problem needs to incorporate physical equations and the GDEE. For 
some very simple cases, a closed-form solution might be obtained, say, by the method of 
characteristics (Li & Chen, 2006b). While for most practical engineering problems, 
numerical method is needed. To this end, we start with Eq. (14) instead of Eq. (15), 
because from the standpoint of numerical solution usually an equation in the form of an 
integral may have some advantages over an equation in the form of differentiation.  

According to the discussions in the preceding section, Eqs. (23), (27) or (28) could be 
adopted as the governing equation for numerical solution. Eq. (23) is an exact equation 
equivalent to the original equations (14) and (15). In the present stage, numerical 
algorithms for Eq. (27) were extensively studied and will be outlined here. 

It is seen that Eq. (27) is a linear partial differential equation. To obtain the solution 
the coefficients should be determined first, while these coefficients are time rates of the 
physical quantity of interest as { }  and thus can be obtained through solving Eq. (9). 
Therefore, the GDEE can be solved in the following steps: 

Step 1: Select representative points (RPs for short) in the probability-assigned space 
and determine their assigned probability. Select a set of representative points in the 
distribution domain . Denote them by ,1 ,2 , pt( , , , );  1,2, ,q q q q s q n , where ptn  is 
the number of the selected points. Simultaneously, determine the assigned probability of 
each point according to Eq. (22) using the Voronoi cells (Chen et al, 2009). 

Step 2: Solve deterministic dynamical systems. For the specified
pt,  1,2, ,q q n , solve the physical equation (Eq. (9)) to obtain time rate (velocity) 

of the physical quantities ( , )qZ t . Through Steps 1 and 2, the ensemble evolution is 
replaced by point evolution as representatives. 

Step 3: Solve the GDEE (Eq. (27)) under the initial condition, as a discretized version 
of Eq. (18), 

 

0
0( , ) ( )q qt t

p z t z z P                         (29) 

 
by the finite difference method with TVD scheme to acquire the numerical solution of 

( , )qp z t .  
Step 4: Sum up all the results to obtain the probability density function of ( )Z t  via 

the Eq. (24). 
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It is seen clearly that the solving process of 
the GDEE is to incorporate a series of deterministic 
analysis (point evolution) and numerical solving 
of partial differential equations, which is just the 
essential of the basic thought that the physical 
mechanism of probability density evolution is 
the evolution of the physical system.

3 Performance evolution of controlled Systems

Extensive studies have been done on the 
structural optimal control, which serves as one of 
the most effective measures to mitigate damage 
and loss of structures induced by disastrous 
actions such as earthquake ground motions and 
strong winds (Housner et al, 1997). However, 
the randomness inherent in the dynamics of 
the system or its operational environment and 
coupled with the nonlinearity of structural 
behaviors should be taken into account so as to 
gain a precise control of structures. The reliability 
of structures, otherwise, associated with structural 
performance still cannot be guaranteed even if the 
responses are greatly reduced compared to the 
uncontrolled counterparts. Thus, the methods of 
stochastic optimal control have usually been relied 
upon to provide a rational mathematical context 
for analyzing and describing the problem.

Actually, pioneering investigations of 
stochastic optimal control by mathematician were 
dated back to semi-century ago and resulted in 
fruitful theorems and approaches (Yong & Zhou, 
1999). These advances mainly hinge on the models 
of Itô stochastic differential equations (e.g. LQG 
control). They limit themselves in application to 

white noise or filtered white noise that is quite 
different from practical engineering excitations. 
The seismic ground motion, for example, exhibits 
strongly non-stationary and non-Gaussian 
properties. In addition, stochastic optimal control 
of multi-dimensional nonlinear systems is still a 
challenging problem in open. It is clear that the 
above two challenges both stem from the classical 
framework of stochastic dynamics. Therefore, a 
revolutionary scheme through physical control 
methodology based on PDEM is developed in 
the last few years (Li & Peng, 2007; Li et al, 2008; 
2010; 2011a). 

Consider the multi-degree-of-freedom 
(MDOF) system represented by Eq. (9) is exerted 
a control action, of which the equation of motion 
is given by
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where ( , )tU is the control gain vector provided by the control action; 
sB  is a matrix 

denoting the location of controllers; 
sD  is a matrix denoting the location of excitations.  

In the state space, Eq. (30) becomes 
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where A  is a system matrix; B  is a controllers location matrix, and D  is a excitation 
location vector. 
In most cases, Eq. (30) is a well-posed equation, and relationship between the state vector 
( )tZ  and control gain ( )tU can be determined uniquely. Clearly, it is a function of  and 
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might be assumed to take the form 
 

                            ( ) ( , )t tZZ H                            (32) 
 

    ( ) ( , )t tUU H                            (33) 
 

It is seen that all the randomness involved in this system comes from , thus, the 
augmented systems of components of state and control force vectors ( ( ), )Z t , ( ( ), )U t are 
both probability preserved, and satisfy the GDEEs, respectively, as follows (Li et al, 2010) 
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( , ) 0Z Zp z t p z t
Z t

t z
                   (34) 

 

                    
( , , ) ( , , )( , ) 0U Up u t p u tU t
t u                    

(35) 

 
The corresponding instantaneous PDFs of ( )Z t  and ( )U t  can be obtained by solving the 
above partial differential equations with given initial conditions 
 

       ( , ) ( , , )dZ Zp z t p z t
                        

(36) 

 
( , ) ( , , )dU Up u t p u t

                         
(37) 

 
where  is the distribution domain of ; the joint PDFs ( , , )Zp z t  and ( , , )Up u t  
are the solutions of Eqs. (34) and (35), respectively. 

As mentioned in the previous sections, the GDEEs reveal the intrinsic relationship 
between stochastic systems and deterministic systems via the random event description of 
the principle of preservation of probability. It is thus indicated, according to the 
relationship between point evolution and ensemble evolution, that the structural stochastic 
optimal control can be implemented through a collection of representative deterministic 
optimal controls and their synthesis on evolution of probability densities. Distinguished 
from the classical stochastic optimal control scheme, the control methodology based on the 
PDEM is termed as the physical scheme of structural stochastic optimal control. 
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As mentioned in the previous sections, 
the GDEEs reveal the intrinsic relationship 
between stochastic systems and deterministic 
systems via the random event description of 
the principle of preservation of probability. It 
is thus indicated, according to the relationship 
between point evolution and ensemble evolution, 
that the structural stochastic optimal control 
can be implemented through a collection of 
representative deterministic optimal controls and 
their synthesis on evolution of probability densities. 
Distinguished from the classical stochastic optimal 
control scheme, the control methodology based 
on the PDEM is termed as the physical scheme of 
structural stochastic optimal control.

Figure 2 shows the discrepancy among the 
deterministic control (DC), the LQG control and 
the physical stochastic optimal control (PSC) 
tracing the performance evolution of optimal 
control systems. One might realize that the 
performance trajectory of the deterministic 
control is point to point, and obviously it lacks 
of ability of governing the system performance 
due to the randomness of external excitations. 
The performance trajectory of the LQG control, 
meanwhile, is circle to circle. It is remarked 
here that the classical stochastic optimal control 
is essentially to govern the system statistics to 
the general stochastic dynamical systems since 
there still lacks of efficient methods to solve the 
response process of the stochastic systems with 
strong nonlinearities in the context of classical 
random mechanics. The LQG control, therefore, 
just holds the system performance in mean-square 
sense, and cannot reach its high-order statistics. 
The performance trajectory of the PSC control, 
however, is domain to domain, which can achieve 
the accurate control of the system performance 
since the system quantities of interest all admit 
the GDEEs, Eqs. (34) and (35).

4 Probabilistic criteria of Structural 
Stochastic optimal control

The structural stochastic optimal control 
involves maximizing or minimizing the specified 
cost function, whose generalized form is typically 
the quadratic combination of displacement, 
velocity, acceleration and control force. A 
standard quadratic cost function is given by the 
following expression (Soong, 1990)
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minimum second-order statistics of the state as the 
given parameters of control policy and construct 
the corresponding control gain under Gaussian 
process assumptions. In many cases of practical 
interests, the probability distribution function 
of the state related to structural performance is 
unknown, and the control gain essentially relies 
on second-order statistics. While the cost function 
represented by Eq. (38) is a stochastic process, of 
which minimization is to make the representative 
solution of the system state globally optimized 
in case of the given parameters of control policy. 
This treatment would result in a minimum 
second-order statistics or the optimum shape of 
the PDF of system quantities of interests. It is thus 

practicable to construct a control gain relevant 
to a predetermined performance of engineering 
structures since the procedure developed in this 
paper adapts to the optimal control of general 
stochastic systems. In brief, the procedure 
involves two step optimizations; see Figure 3. 
In the first step, for each realization 
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As indicated previously, the control effectiveness of stochastic optimal control relies on 
the specified control policy related to the objective performance of the structure. The 
critical procedure of designing control system actually is the determination of parameters 
of control policy, i.e. weighting matricesQ and Rin Eq. (38). There were a couple of 
strategies regarding to the weighting matrix choice in the context of classical LQG control 
such as, system statistics assessment based on the mathematical expectation of the quantity 
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theoretical framework (Zhu et al, 2001). We are attempting to, nevertheless, develop a 
family of probabilistic criteria of weight matrices optimization in the context of the 
physical stochastic optimal control of structures. 
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(indicated in the controlled inter-story drift), system serviceability (indicated in the 
controlled inter-story velocity), system comfortability (indicated in the constrained storey 
acceleration), controller workability (indicated in the limit control force) and their 
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The objective of stochastic optimal control is 
to limit the inter-story drift such that the system 
locates the reliability state, to limit the inter-story 
velocity such that the system provides the desired 
serviceability, to limit the storey acceleration 
such that the system provides the desired 
comfortability, and to limit the control force 
such that the controller sustains its workability. 
The thresholds/constraint values of the inter-
story drift, of the inter-story velocity, of the 
storey acceleration, and of the control force are 
10 mm, 100 mm/sec, 3000 mm/sec2 and 200 kN, 
respectively.

advantages in global reliability based 
Probabilistic criterion

For the control criterion of system second-
order statistics assessment (SSSA), the inter-story 

drift is set as the constraint, and the assessment 
quantities include the inter-story drift, the 
storey acceleration, and the control force. The 
characteristic value function is defined as 
mean plus three times of standard deviation 
of equivalent extreme-value variables. For the 
control criterion of minimum of exceedance 
probability of single system quantity (MESS), 
the inter-story drift is set as the objective system 
quantity, and the constraint quantities include 
the storey acceleration and the control force. For 
the control criterion of minimum of exceedance 
probability of multiple system quantities 
(MEMS), the inter-story drift, inter-story velocity 
and control force are set as the objective system 
quantities, while the constraint quantity is the 
storey acceleration.

table 1 comparison of control policies

ext. Values SSSa:  
Q=diag {80,80}, r=10-12

MeSS:  
Q=diag{101.0,195.4}, r=10-10

MeMS:  
Q=diag{1073.6,505.0}, r=10-10

Dis-Mn 
(mm)

28.47a 28.47 28.47
1.16b 6.23 4.15

95.93%c 78.12 85.42%

Dis-Std  
(mm)

13.78 13.78 13.78
0.20 1.41 0.81

98.55% 89.77% 94.12%

Acc-Mn 
(mm/sec2)

3602.66 3602.66 3602.66
1069.79 1235.60 1141.00
70.31% 65.70% 68.33%

Acc-Std  
(mm/sec2)

1745.59 1745.59 1745.59
360.81 348.92 331.78
79.33% 80.01% 80.99%

CF-Mn (kN) 105.56 86.55 94.93
CF-Std (kN) 35.59 30.71 32.46

a indicates the uncontrolled system quantities.
b indicates the controlled system quantities.
c indicates the control efficiency defined as (a-b)/a.

The comparison between the three control 
policies is investigated. The numerical results are 
listed in Table 1. It is seen that the effectiveness of 
response control hinges on the physical meanings 
of the optimal control criteria. As indicated in 
this case, the control criterion SSSA exhibits the 

larger control force due to the inter-storey drift 
being only considered as the constraint quantity, 
which thus has lower inter-story drift. The control 
criterion MESS, however, exhibits the smaller 
control force due to the storey acceleration and 
control force being simultaneously considered 
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as the constraint quantities that result in a less 
reduction on the inter-storey drift. The control 
criterion MEMS, as seen from Table 1, achieves the 
best trade-off between control effectiveness and 
economy in that the objective system quantities 
includes the inter-storey drift, together with 
inter-storey velocity and control force. It thus has 
reason to believe that the multi-objective criterion 
in the global reliability sense is the primary 
criterion of structural performance controls.

control gains against the classical lQg

It is noted that the classical stochastic optimal 
control strategies also could be applied to a class 
of stochastic dynamical systems, and synthesize 
the moments or the PDFs of the controlled 
quantities. The class of systems is typically 
driven by independent additive Gaussian white 
noise, and usually modelled as the Itô stochastic 
differential equations. The response processes, 
meanwhile, exhibit Markov property, of which 
the transition probabilities are governed by 

the Foker-Planck-Kolmogorov equation (FPK 
equation). It remains an open challenge in the 
civil engineering system driven by non-Gaussian 
noise. The proposed physical stochastic optimal 
control methodology, however, occupies the 
validity and applicability to the civil engineering 
system. As a comparative study, Figure 6 shows 
the discrepancy of root-mean-square quantity 
vs. weight ratio, using the control criterion of 
SSSA, between the advocated method and the 
LQG control.

One could see that the LQG control would 
underestimate the desired control force when the 
coefficient ratio of weighting matrices locates at 
the lower value, and it would overestimate the 
desired control force when the coefficient ratio 
of weighting matrices locates at the higher value. 
It is thus remarked that the LQG control using 
the nominal Gaussian white noise as the input 
cannot design the rational control system for civil 
engineering structures.

18 
 

system quantities includes the inter-storey drift, together with inter-storey velocity and 
control force. It thus has reason to believe that the multi-objective criterion in the global 
reliability sense is the primary criterion of structural performance controls. 
 

Control Gains against the classical LQG 

 
It is noted that the classical stochastic optimal control strategies also could be applied 

to a class of stochastic dynamical systems, and synthesize the moments or the PDFs of the 
controlled quantities. The class of systems is typically driven by independent additive 
Gaussian white noise, and usually modelled as the Itô stochastic differential equations. The 
response processes, meanwhile, exhibit Markov property, of which the transition 
probabilities are governed by the Foker-Planck-Kolmogorov equation (FPK equation). It 
remains an open challenge in the civil engineering system driven by non-Gaussian noise. 
The proposed physical stochastic optimal control methodology, however, occupies the 
validity and applicability to the civil engineering system. As a comparative study, Figure 6 
shows the discrepancy of root-mean-square quantity vs. weight ratio, using the control 
criterion of SSSA, between the advocated method and the LQG control. 

One could see that the LQG control would underestimate the desired control force 
when the coefficient ratio of weighting matrices locates at the lower value, and it would 
overestimate the desired control force when the coefficient ratio of weighting matrices 
locates at the higher value. It is thus remarked that the LQG control using the nominal 
Gaussian white noise as the input cannot design the rational control system for civil 
engineering structures. 

 
(a) Equivalent-extreme relative displacement.  (b) Equivalent-extreme control force. 

Figure 6. Comparison of root-mean-square equivalent-extreme quantity vs. weight ratio 
between PSC and LQG. 

 
 
 
 
6 NUMERICAL EXAMPLE 
 

106 108 1010 1012 1014 10160

5

10

15

20

25

30

35

Ratio q/r

D
is

pl
ac

em
en

t (
m

m
)

LQG
GDEE Based LQR

106 108 1010 1012 1014 10160

50

100

150

200

250

300

350

Ratio q/r

C
on

tro
l F

or
ce

 (k
N

)

LQG
GDEE Based LQR

(a) Equivalent-extreme relative displacement.  (b) Equivalent-extreme control force.
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6 numerical example

An eight-storey single-span shear frame 
fully controlled by active tendons is taken as a 
numerical example, of which the properties of the 
uncontrolled structure are identified according to 
Yang et al (1987). The floor mass of each storey 
unit is m = 3.456×105 kg; the elastic stiffness of 
each storey is k = 3.404×102 kN/mm; the internal 
damping coefficient of each storey unit c = 2.937 

kN×sec/mm, which corresponds to a 2% damping 
ratio for the first vibrational mode of the entire 
building. The external damping is assumed to be 
zero. The computed natural frequencies are 5.79, 
17.18, 27.98, 37.82, 46.38, 53.36, 58.53 and 61.69 
rad/sec, respectively. The earthquake ground 
motion model is the same as that of the preceding 
SDOF system, and the peak acceleration is 0.30 
g. The control criterion MEMS is employed, and 
the thresholds/constraint values of the structural 
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inter-story drifts, inter-story velocities, storey 
acceleration, and the control forces are 15 mm, 
150 mm/sec and 2000 kN and 8000 mm/sec2, 
respectively. For simplicity, the form of the 
weighting matrices in this case takes 
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The optimization results of the numerical 
example are shown in Table 2. It is seen that 
the exceedance probability of system quantities, 
rather than the ratio of reduction of responses, is 
provided when the objective value of performance 

function reaches to the minimum, indicating 
an accurate control of structural performance 
implemented. The optimization results also show 
that the stochastic optimal control achieves a best 
trade-off between effectiveness and economy.

table 2 optimization results of example
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              (a) Without control.                  (b) With control. 
      Figure 8. Typical PDFs of the 8th storey acceleration at typical instants of time. 
 

Figure 7 shows typical PDFs of the inter-0-1-story drift of the controlled/uncontrolled 
structures at typical instants of time. One can see that the variation of the inter-story drift is 
obviously reduced. Likewise, the PDFs of the 8th storey acceleration at typical instants 
show a reduction of system response since that distribution of the storey acceleration has 
been narrowed (see Figure 8). It is indicated that the seismic performance of the structure 
is improved significantly in case that the stochastic optimal control employing the 
exceedance probability criterion is applied. 

 
7 CONCLUDING REMARKS 
 

In this paper, the fundamental theory of the generalized density evolution equation is 
firstly revisited. Then a physical scheme of structural stochastic optimal control based on 
the probability density evolution method is presented for the stochastic optimal controls of 
engineering structures excited by general non-stationary and non-Gaussian processes. It 
extends the classical stochastic optimal control approaches, such as the LQG control, of 
which the random dynamic excitations are exclusively assumed as independent white 
noises or filter white noises. A family of optimal control criteria for designing the 
controller parameter, including the criterion based on mean and standard deviation of 
responses, the criterion based on exceeding probability, and the criterion based on global 
reliability of systems, is elaborated by investigating the stochastic optimal control of a 
base-excited single-storey structure with an active tendon control system. It is indicated 
that the control effect relies upon the probabilistic criteria of which the control criterion in 
global reliability operates efficiently and gains the desirable structural performance. The 
proposed stochastic optimal control scheme, meanwhile, of structures exhibits significant 
benefits over the classical LQG control. An eight-storey shear frame controlled by active 
tendons is further investigated employing the control criterion in global reliability of the 
system quantities. It is revealed in the numerical example that the seismic performance of 
the structure is improved significantly, indicating the validity and applicability of the 
developed PDEM-based stochastic optimal control methodology for the accurate control of 
structural performance. 
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Figure 7 shows typical PDFs of the inter-
0-1-story drift of the controlled/uncontrolled 
structures at typical instants of time. One can 
see that the variation of the inter-story drift 
is obviously reduced. Likewise, the PDFs of 
the 8th storey acceleration at typical instants 
show a reduction of system response since that 
distribution of the storey acceleration has been 
narrowed (see Figure 8). It is indicated that the 
seismic performance of the structure is improved 
significantly in case that the stochastic optimal 
control employing the exceedance probability 
criterion is applied.

7 concluding remarks

In this paper, the fundamental theory of 
the generalized density evolution equation 
is firstly revisited. Then a physical scheme of 
structural stochastic optimal control based on 
the probability density evolution method is 
presented for the stochastic optimal controls 
of engineering structures excited by general 
non-stationary and non-Gaussian processes. It 
extends the classical stochastic optimal control 
approaches, such as the LQG control, of which 
the random dynamic excitations are exclusively 
assumed as independent white noises or filter 
white noises. A family of optimal control criteria 
for designing the controller parameter, including 
the criterion based on mean and standard 
deviation of responses, the criterion based on 
exceeding probability, and the criterion based 
on global reliability of systems, is elaborated by 
investigating the stochastic optimal control of 
a base-excited single-storey structure with an 
active tendon control system. It is indicated that 
the control effect relies upon the probabilistic 
criteria of which the control criterion in global 
reliability operates efficiently and gains the 
desirable structural performance. The proposed 
stochastic optimal control scheme, meanwhile, 
of structures exhibits significant benefits over 
the classical LQG control. An eight-storey shear 
frame controlled by active tendons is further 
investigated employing the control criterion 
in global reliability of the system quantities. 
It is revealed in the numerical example that 
the seismic performance of the structure is 

improved significantly, indicating the validity 
and applicability of the developed PDEM-based 
stochastic optimal control methodology for the 
accurate control of structural performance.
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introduction

In the recent past various high-power 
electromagnetic (HPEM) environments that can 
adversely affect the operation of electrical systems 
have been developed [1]. Such a concept could 
be used against civil systems in what is known 
as an Intentional Electromagnetic Interference 
(IEMI) [2] & [3]. Typically, this HPEM energy 
arrives at the system in the form of an incident 
electromagnetic field.   It can occur in the form of 
a pulsed waveform of microwave energy referred 
to as high power microwave (HPM) pulse or in 
the form of a broadband pulse of EM energy,  
referred to as an ultra wideband (UWB) pulse. 
The frequency of high power microwave (HPM) 
ranges from tens of MHz up to several GHz and 
the power of radiated HPM sources ranges from 
kilowatts up to several GHz [4].  
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abstract

Intense electro-magnetic pulse when directed on electronic and electrical systems can cause 
malfunction and failure in its components. The feasibility and possibility of high power microwave 
electromagnetic strikes on vital installations has increased due to tremendous progress in 
microwave generation technology over the past few decades .The vulnerability of electronic and 
electrical equipment to HPM threats must therefore be taken into consideration in design of 
safety-critical systems. This becomes even more relevant with increasing dependence of systems 
on electronics and growing miniaturization in solid state technologies. The effects of HPM on 
a system depend on both HPM environment parameters and system parameters and topology. 
This paper presents a study of the effect of HPM on protection systems of nuclear power plants. 
Safety critical electronic circuits of the nuclear plant protection system were identified and their 
susceptibility to failure against radiated high power microwave environments was experimentally 
assessed using a Vircator and Marx Generator based  microwave generation system.

Intentional electromagnetic environments  
can in general be radiated or conducted; a single 
pulse or a burst of many repetitions and it is now 
well established that  radiated HPEM generators 
producing sufficiently intense electromagnetic 
signals in the frequency range of 200 MHz to 5 
GHz ( operating wavelength 1.5 m to 6 cm) can 
cause electronic damage in many systems  because 
typical  apertures, slots, holes, rivet spacings and 
hatch openings  provide  inadvertent coupling 
paths in this frequency range and because system 
antennas operating in this frequency range 
could  provide  coupling path into the system[1]. 
Conducted HPM effects may be limited by cable 
and wire transfer functions which limit the 
propagation of high frequency.

Even as technologies for suitable  HPEM 
generation  are evolving, a number of susceptibility 
tests have been conducted for systems and 
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components like semiconductor NAND & 
Inverter TTL and CMOS technologies [5] &[6] 
,micro-processors[7]&[8], micro-controllers [9] 
&[10] , MOSFET devices [11], automobile circuits 
[12], computer networks [13], Analog systems like 
op amps[14], network control and measurement 
system[15], alarm systems [16] and PCs [17] 
over the last four five years. However system 
level response to HPEM among other factors is 
also based system layout, parameters, topology 
and components [18], [19] and [20].Hence the 
HPM radiation response of protection systems 
in general and  nuclear plant protection system  
in specific  would differ from other systems. 
In this study safety critical  circuits of nuclear 
plant protection systems  have been identified, 
modeled and subjected to HPM radiated 
environment for studying the effects. Analysis 
of the literature indicate that broadly there are 
two  methods being used for susceptibility tests 
- HPEM injection methods as used  in [14],[15] 
&[21] and  HPEM irradiation method as used in 
[8] ,[13],[17] &[22]. Experimental measurements 
in the latter pose more difficulty but it  is more 
realistic and suited for radiated threat tests and 
hence  has been adopted in this project. The Marx 
generator and virtual cathode oscillator (Vircator) 
based 1kJ HPM system at APPD,BARC  has been 
used for generating HPM for experiments.

II. Identification Of  Safety Critical Circuits 
of nuclear Plant Protection Systems

a. elements of nuclear plant protection system

The protection system of nuclear power  
plant [23] are designed to automatically shut 
down the reactor in an efficient manner and 
maintain it in safe shut down state on demand 
in case of any deviation from normal operation, 
anticipated abnormal situations and accident 
conditions. Reactor trip signals are generated in 
the event of any malfunction in the system. The 
main sub-systems of a reactor protection system  
are instrumentation comprising  of a  network 
of basic sensors to monitor various neutronic  
and process parameters; Protection Logic Circuit 
(PLC) which  processes the information received 
from instrumentation channels and generates the  
signal to actuate shut down devices whenever  

any neutronic or process parameter crosses its 
stipulated limits; Shut Down Devices (SDD) 
comprising of  elements like fast acting shut-off 
rods and slower but reliable back-up moderator 
dumping system  consisting of  fast acting valves 
and an Alarm Annunciation System (AAS) 
which displays the health status of all systems/
subsystems and  components.

The protection logic circuit is implemented 
using various types of electronic circuits for various 
classes of reactor trips including Absolute trips  
( ATs), comprising of those parameters which are 
essential to initiate immediate  protective action, 
irrespective of reactor power, Auxiliary absolute 
trips (XTs), for certain vital safety parameters to 
initiate back-up protection action, Conditional 
trips(CTs) which are effective above 1% of rated 
power and Emergency trips (ETs) generated on 
very high log rate or very high linear Power. In 
order to achieve a high degree of reliability both 
from the point of view of reactor safety and also 
to reduce the possi bility of spurious reactor trips, 
a 2/3 majority voting logic is usually built in the 
system. The trip signals are usually pro cessed 
in three independent but identical channels. 
Fail-safe philosophy is generally adopted to 
the maximum extent possible. Thus situa tions 
leading to failure of power supplies, breakage 
of electrical connections etc. result in a reactor 
trip. As large numbers of components are used 
in the trip logic unit, it is necessary to detect 
unsafe failure of components immediately hence 
a Testing Unit is usually incorporated such that 
any unsafe failure within the solid state logic is 
immediately annunciated.

b.  reliability of  Protection System  in  HPM 
environment 

As per definition in [24] Design Basis Threat 
comprises of  the attributes and characteristics 
of potential insider and/or external adversaries, 
who might attempt unauthorized removal of 
nuclear material or sabotage, against which 
a physical protection system is designed and 
evaluated.

In case of an HPEM risk , the plant protection 
system which is entirely based on electrical and 
electronic components, is most crucial, since it  
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must ensure the safety of the plant during and 
after the risk. In the worst case, any damage to 
the plant protection system should not result in 
an unsafe failure state.

Structural and metallic enclosures  reduce 
HPEM vulnerability of the components enclosed. 
Hence, electronic components of the protection 
system  like instrumentation  sensors and SSD 
within the protection and  structural enclosure 
of reactor building are better  protected against 
radiated HPEM risk  than the PLC and the AAS  
are  housed outside it. But from the point of view 
of criticality, PLC is most critical for the protection 
system.

c. review of PSa Study  of a reference 
Plant  in HPM context 

Though the PSA study[25] is limited to safety 
against internal initiating events (IEs) and the 
aspect of treatment to external initiating events 
like HPM has not been considered in it, the results 
of Failure Mode and Mechanisms Effect Analysis 
( FMMEA) performed in the PSA  for electronic 
circuits can be used to identify critical electronic 
components of the Protection Logic Circuit (PLC).
The aim of this analysis carried as a part of the 
PSA is to generate a list of components and 
their failure modes and its overall effect on the 
system in terms of safe and unsafe failure. From 
the review of   FMMEA  it is clear that failure of  
some components of  Protection Logic circuit  of  
nuclear plant protection system may result in an 
unsafe situation. For example  failure of some  ICs  
in  SPC and  some ICs and transistors   in  LPCPC. 
During normal operation, the failure frequency of 
these critical ICs and transistors is seen to be very 
low. Even if such a failure occurs, it is even more 
highly unlikely that it occurs simultaneously in 
more than one channel. Also, any such failures are 
deducted by the Testing Unit which constantly 
and sequentially monitors the health of each sub 
unit of the protection logic circuit once every 
few minutes and failure of a component if any is 
indicated, which can then be replaced. However, 
since HPM is a common cause risk, it can not only 
effect components in all the three channels but 
also potentially simultaneously effect the Testing 
Unit and such a situation is not only undesirable 
but  could also be unsafe. 

iii. Modelling of Protection logic circuit

The objective of the modeling was to put 
all the essential and safety critical elements 
of the protection logic circuit including its 
protection devices on one board for the purpose 
of experiments.

a. overview of the Plc 

The protection logic system is built around 
various types of functional circuits built on small 
boards. Of these  three types of functional circuits 
are most important and for ease these will be 
referred to as SCC- Signal Conditioning Circuit, 
the SPC- Signal Product Circuit and the LPCPC- 
Low Power Condition Processing Circuit. The 
simplified block diagram for a single channel of 
protection logic is as shown below in Figure 1.

 
Figure 1 : Simplified schematic of Protection Logic Circuit 

 
 

 
Figure-2 Integrated Protection Logic Circuit IPLC-1 

Figure 1 : Simplified schematic of Protection Logic Circuit

b. Working of the Plc  

The PLC receives signals for reactor shut 
down in the form of potential free contacts when 
the output of  the field instrumentation sensor 
exceeds the safe limit. The input contacts are fed 
to a set of SCCs. Each SCC can process a fixed 
number of signal contacts. For each input contact 
this circuit generates a current loop for the SPC 
and also sends a poten tial free contact to the AAS. 
The SPC processes all the loop signals from the 
corresponding SCC  and generates a logic signal 
at its output. 
(a) When all the  input contacts to a SCC  are 

closed repre senting a ‘NO TRIP’ condition, 
the output of the corres ponding SPC is logic 
‘high’ (logic ‘1’).  

(b) Whenever any of the input contacts opens 
representing a ‘TRIP’ condition, the output of 
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the corresponding SPC  becomes logic ‘low’ 
(logic ‘0’).

The output signals from one or more SPCs 
are fed to a Low Power Condition Processing 
Circuit (LPCPC)  which provides a double ended 
drive to a 12V DC relay.  The relay remains 
energised if all inputs to the LPCPC from the 
SPCs are logic ‘1’ representing a ‘NO TRIP’ 
condition. However, if any of the SPC  output 
becomes logic ‘0’, the relay is de-energised and 
results in a trip leading to a reactor shutdown. In 
the LPCPC, the CT signals are made in effective 
in low power condition. The output of the 
LPCPC  for CTs will be ‘0’ only when the trip 
occurs in  condition of normal power, unlike 
the ATs which are not dependent on power 
condition. 

c. development of  the  iPlc  

Since the protection logic circuit for all the 
channels have the same composition, the test 
circuit can be built around requirements of one 
channel alone. For each channel, the Protection 
Logic circuit processes a number of CT signals,  
AT signals, XT signals and  ET signals making 
use of  SCC, SPC and LPCPC. Hence the test 
circuit can be reduced to one that has one SCC, 
one SPC and one LPCPC. One set of SCC- SPC  
can process many field trip signals which is 
then fed to a LPCPC which drives the relay. The 
test circuit has been made  without any loss of 
functionality, composition and   logic, by putting 
all the circuit elements pertaining to one  field trip 
signal  along with their protection features from 
SCC, SPC and LPCPC  including the 12 V relay  on 
one board  called the Integrated Protection Logic 
Circuit(IPLC),which represents the protection 
logic circuit of a nuclear plant protection system. 
For the field trip signal a 18 V battery operated trip 
signal has been used. The operating voltage of the 
circuit is 12 V (VDD) supplied by another battery. 
The use of opto-isolator   isolates the 18V supply 
fed to contacts and 12V logic circuit supply.         

The IPLC was first modeled on a general 
purpose PCB using soldered wires, referred 
to as IPLC-1 and then modeled as a double 
sided industrial grade PCB with no jumpers 
or connecting wires, referred to as IPLC-2.  The 

18V and 12 V power supplies, switch connections  
for setting Normal Power/ Low Power  and the 
Relay Reset switch connection were provided 
with a one metre long wire so that these switches 
and power supply batteries could be placed at 
any suitable location during the tests. Figures 
2,3 and  4  show the  IPLC-1,IPLC-2 and its setup 
respectively. The IPLC has been used as the 
circuit under test (CUT) in the experiments.

 
Figure 1 : Simplified schematic of Protection Logic Circuit 

 
 

 
Figure-2 Integrated Protection Logic Circuit IPLC-1 

Figure-2 Integrated Protection Logic Circuit IPLC-1

 
Figure 3 –  Integrated Protection Logic Circuit IPLC-2 

Figure 3 –  Integrated Protection Logic Circuit IPLC-2

Figure 4- IPLC Set-up
 

Figure 4- IPLC Set-up 
 
 

 Figure 5 Schematic of the experimental set-up 
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iV. design and conduct of experiments

a. Selection of testing Method  

There are essentially therefore  two broad 
testing strategies:-(a) HPEM injection into the 
CUT [6],[14] &[15] and (b) HPEM irradiation 
into the CUT [8],[10],[13],[22] &[26]. For this 
project HPM irradiation test method has been 
selected since radiated tests can physically and 
realistically demonstrate the effects of HPM on 
electronic components and circuits.

B. Identification of suitable HPM generation 
system  

For HPM systems, two of the most important 
subsystems are the (a) Microwave generator/ 
radiation source  and (b) High-voltage pulse 
generator. The  high voltage generator commonly 
used is the  HPM systems is  based on a  Marx 
generator. A conventional Marx generator 
comprises of a series-parallel connected capacitor-
resistor bank. The capacitors are charged in 
parallel and discharged in series through spark 
gaps to boost the voltage. In order to reduce 
the size of the high-voltage pulse generators, 
explosive-driven systems using magnetic flux 
compression generators[27] are also being 
developed, they however have the limitation 
of being inherently single-shot. A number of 
microwave sources have been developed over 
the last few decades. The microwave sources 
can broadly be divided into the following two 
categories[28]:- (a)  Impulsive sources like the 
various UWB sources and the LC Oscillator 
(b) Linear Beam sources like Magnetrons, 
Klystrons,  Virtual  Cathode Oscil lators  
( Vircators) and Gyrotrons. Unlike HPM sources 
like Magnetrons and klystrons, Vircator source 
does not require any external magnetic fields 
(pulsed/permanent) for guiding electron beam 
propagation  in vacuum. The efficiency of vircator 
source  is typically limited to 5 to 15 % for the 
ratio of HPM power out to electrical power in, 
yet the vircator due to its relative simplicity  
overshadows  alternative complex HPM sources, 
if all factors are considered[27]. Vircator  has a 
combination of characteristics  because of which  
it is recommended  for high frequency use [29] 

and  has been the  most promising area of research 
among HPM sources[30].Feasibility of compact  
system using reflex triode vircator system and 
Marx generator is brought out in [31],[32],[33]. 
A  vircator and Marx generator based HPM 
generator is therefore appropriate for the conduct 
of HPEM risk and susceptibility tests.

The 1kJ – Marx generator – reflex triode 
vircator based HPM generator system[34] 
of APPD,BARC was used for conducting 
the experiments. It  is capable of producing 
a maximum output voltage of 300 kV into a 
matched load of 25 Ω with a pulse duration of 
300 ns FWHM. A vacuum explosive electron 
emission (EEE) diode is  used to generate an 
intense relativistic electron beam (IREB) and a 
vacuum level of the order of < 1 × 10−5 mbar  is  
maintained in the vircator chamber by a diffusion 
pump backed by a rotary pump[35].The high-
voltage pulse generated from the pulsed power 
system is applied to the anode. Electron emission 
occurs from the plasma that is formed on the 
cathode surface when a strong electric field E 
≥ 107 V/cm is applied to the AK gap.The diode 
consists of a planar cylindrical graphite cathode  
and a transparent SS wire-mesh  anode. An open 
ended waveguide is used to radiate the output 
signal into the atmosphere. The 1kJ system is 
capable generating fields of 18kV/m field at 
1.75m [35] . Higher field and power levels can be 
achieved at even closer distances. It is known that 
these field levels can temporarily or permanently 
damage electronic components like CMOS based 
ICs [5],[44 ] and [10].

c. experimental Set up         

The schematic of the experimental set-up 
is drawn in Figure 5. The experimental set up 
broadly consists of four  parts:-
(a) The 1 kJ  HPM generator system facility at 

APPD, BARC.
(b) The Circuit Under Test ie.. the IPLC 
(c) Measurement set  up.
(d) Testing  Set-up for CUT.

d.  Measurement set-up   

A resistive CuSO4 voltage divider and a 
self-integrating Rogowski coil is used to measure 

P.V. Varde et al. / Life Cycle Reliability and Safety Engineering Vol.2 Issue 2 (2012) 16-26



21 © 2012 SRESA All rights reserved

Frequency domain transform function available 
in the oscilloscope is used to get the frequency 
composition of the HPM signal. From the values 
of V(t)max and dominant frequency, fd the magnetic 
field at the location of the probe is found  [37]. The 
HPM pulse time and frequency characteristic of 
a typical shot is shown in Figure 6.

e. development of experiments  

HEMP susceptibility level of a system is 
dependent on (a) Component susceptibility 
(b) Shielding and (c) Coupling to Cables [14]. 
In order to first analyse a worst case situation, 
the experiments have been conducted without 
shielding. However in order to emphasize 
the need for shielding, a few tests have been 
conducted with shielding. 

The basic answer to the question “How does 
one know that the system will survive a given 
environment?”  is to operate the system in the 
environment and see if it survives and that while 
full operation in the environment of concern is 
the ultimate test, one would like to have some 
test which if passed, would imply survival in 
real environment[38]. In our experiments the 
IPLC in regular operation has been subjected to 
HPM irradiation from the 1 kJ HPM generator 
system and the effect on the functionality of the 
IPLC after each shot has been checked through 
a testing procedure.

In order to determine the HPM effects on 
complex systems we need to answer the question 
“What does it mean for a system to survive a 
given environment?” [38].  In case of Nuclear 
Reactor Protection Systems, if  HPM event results 
in an unscheduled trip then the failure would be a 
safe failure. However, if the failure doesn’t result 
in a trip it would be an unsafe condition since in 
that case the reactor would continue to work and 
any trip generated from the field instrumentation 
will not result in a trip unless the trip circuit is 
diagnosed and repaired. Though this failure may 
eventually be identified by the testing unit of the 
system, yet if this type of failure occurs in more 
than one channel then it was designed for. Hence 
the occurrence of unsafe failure in the trip logic 
system would indicate its inability to survive the 
risk. Therefore the following is defined:-

Figure 5 Schematic of the experimental set-up

 
Figure 4- IPLC Set-up 

 
 

 Figure 5 Schematic of the experimental set-up 
 

the Vircator diode voltage and current pulses 
respectively [35]. HPM pulse for each shot  is 
being detected, measured and recorded by 
using a B-Dot probe , a RF cable and a 6 GHz 
oscilloscope with sampling rate of 40 G samples 
per second. During experiments conducted in [36] 
the suitability of RF cable for measurements in 
the HPM environment has been established. Ultra 
Low loss flexible RF cable is being used in this 
measurement set-up. The B-Dot probe gives us 
the variation of the HPM signal in time domain. 
The peak amplitude of the signal in time domain 
V(t)max is obtained from this. The Time domain to 

 
Figure 6 – Typical HPM shot : fd  4.5GHz corresponds to 1200mV 

 Figure 6 – Typical HPM shot : fd  4.5GHz corresponds to 
1200mV
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(a) unsafe failure Permanent failure of a 
component (say an IC) of the IPLC in HPM 
environment in such a way that the failure 
doesn’t result in a trip.

(b) Safe failure Permanent failure of a component 
(say an IC) of the IPLC in HPM environment 
in such a way that the failure result in a trip 
and reset of the trip relay doesn’t restore the 
functionality of the circuit.

(c) Malfunction  Temporary failure of a 
component (say an IC) of the IPLC in HPEM 
environment in such a way that the failure 
result in trip, but reset of the trip relay, 
restores the functionality of the IPLC.

e. experiment Procedure 

HPM pulses are characterized by the 
maximum electric field strength, their duration 
and their center frequency [13]. For risk level tests 
one need to measure failure levels as a function 
of frequency, amplitude, pulse width, direction 
of incidence, and polarization [38]. Single HPM 
shot of pulse duration of approx 300 ns have been 
used in the experiments. The dominant frequency 
in each shot has been assumed to characterize 
the HPM for purpose of experimental analysis. 
Since the direction of incident radiation will have 
an effect on the coupling, this has been fixed by 
aligning the axis of the source waveguide and the 
CUT. All the ICs on the IPLC were oriented with 
their longer side horizontal. All tests have been 
conducted for the operating condition of normal 
power. Since an open wave guide has been used, 
the polarization of the shots have not been fixed 
and hence there could be a  shot to shot variation 
in the component of the electric and/ or  the 
magnetic field along the path of the wave and that 
will not contribute to the coupled energy. 

The HPEM susceptibility levels is usually 
specified in terms of electric field of the EM 
radiation  at the location of the device under 
test  that causes failure in it[5], [8]&[13]. For a 
given frequency, the HPM susceptibility level 
can be obtained as the electric field level at 
which failure/ malfunction of the circuit occurs. 
The electric field E at the CUT varies inversely 
with distance r of the CUT from the source, in 
the experiments we vary the field by bringing 

the CUT closer in steps to the source. While 
maintaining the same charging voltage and AK 
gap for a set of experiments we vary the electric 
field and power indirectly by varying distance 
of CUT from HPM source in steps of say 10 cm. 
Where ever effect was seen tests were repeated 
to check reproducibility of effects. Therefore, if 
the IPLC is kept at distances of less than 1 m from 
the 1kJ HPM source, effects are anticipated. It 
has been brought out in [38] that risk level tests 
with real environment can be done using lower 
power sources by bringing the test object closer 
to radiating source. The  Magnetic Field value B 
obtained from the B-Dot probe  has been used 
to find the electric field E at that point making 
use of the  far field relationship E = Bc, where c 
is the speed of light. Power density at a distance 
r meters from the source, where the field is Er is 
calculated using the relation Pd = Er

2/Z  W/m2. 
The far field area is related to the wavelength λ 
of the emitted radiation and is roughly taken as 
the distance beyond 2λ from the source. 

g. functionality test 

Testing of the functionality of the circuit 
is done during and after each shot and effects 
including failure type: - temporary/permanent, 
safe/unsafe if any is recorded. The operation 
worthiness of the IPLC was verified using a 
functionality test routine after each shot. In case of 
damage of ICs, the faulty ICs were identified and 
replaced, the circuit functionality was restored 
and rechecked before the circuit was subjected to 
next shot. The ICs were tested for functionality 
using the  Linear cum Digital IC Testing system 
This equipment is already fed with programs for 
testing of all ICs used in the protection  system. 

The IPLC has been electrically configured 
in its operational mode for risk tests and the 
circuit with its LED indicators  itself is then used 
to give information about  its performance . The 
advantage of this self-diagnosing scheme[38] 
is that one does not need to measure signal at  
various points of the IPLC to determine  the 
effect on it. 

Two sets of experiments were conducted, 
set 1 using  IPLC-1 and  set  2 using IPLC-2 as 
the CUT. To obtain threshold levels for IPLC , a 
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frequency-electric field  graph has been plotted 
for   set-1 and set-2 ( refer Figures 10 and 11).  The 
Highest  and smallest level susceptibilities (HL 
and SL) [8] have been determined. Malfunction, 
safe failure and unsafe failure was observed in 
CMOS based ICs of the IPLC. Shielding tests was 
also conducted with IPLC-2  first by using a  mild 
steel enclosure 1.5mm thick without vents and 
then by using the same shields with vents size 
3mm x  60mm   facing the source. Experimental 
arrangements are shown in Figures 6,7 and 8. 
Results are summarized in Tables-1 to 3.

Figure 7 -Arrangement of IPLC in front of the HPM 
system

Figure 8 -Experimental Set Up for Shielding Test: mild 
steel enclosure 1.5mm thick
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V. analysis of results

Based on analysis of 33 HPM shots, the 
susceptibility  values so obtained for the 
soldered wired version of IPLC-1 are SL- 
15.5kV/m and HL- 91.3kV/m, hence  HPM 
Electric field threshold for failure  of IPLC-1 
in the experiments is 15.5kV/m. Based on 
analysis of 15 HPM shots on PCB based IPLC-2, 
the susceptibility  values for IPLC-2 are SL- 
31.8kV/m and HL- 62.4kV/m, hence  HPM 


Figure 9 Experimental Set-Up for tests with shielding enclosure having vents 
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Figure 10 Plot for susceptibility levels of  soldered wired IPLC -1 to HPM  shots 
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Figure 10 Plot for susceptibility levels of  soldered wired IPLC -1 to HPM  shots 
 

Figure 11 Plot for susceptibility levels of  PCB IPLC -2 to 
HPM  shots

Figure 10 Plot for susceptibility levels of  soldered wired 
IPLC -1 to HPM  shots

 
Figure 11 Plot for susceptibility levels of  PCB IPLC -2 to HPM  shots 

 
 

Table-1 Summary of Results of Threshold Tests 
IPLC 
version 

Total 
No 
of 
shots 

Frequency 
Range 
(Dom) 
 
GHz 

Electric 
Field 
Range  
 
kV/m 

Mal-
function 
or 
Failure 
Total 

cases  

Malfunction   
=> TRIP 

Failure 

Total 
cases 

Thres-
hold 
Electric 
Field 
(kV/m) 

Total 
cases 

Thres-
hold 
Electric 
Field 
(kV/m) 

Safe 
Case

s=> 
TRIP 

Unsafe 
cases => 
NO TRIP 

1-
Solder 
wired 

33 1.0 to 
5.1 

5.7 to 
91.3 

12 7 19.5 5 15.5 4 1 

2- 
PCB 

15 2.5 to 
5.8 

14.7 to 
62.4 

5 1 31.8 4 47.1 3 1 

Total 48 - - 17 8 - 9 - 7 2 
 

Electric field threshold for failure  of IPLC-2  in 
the experiments is 31.8 kV/m.

Both malfunction and failure observed with 
IPLC under shielding with slots.Four CMOS 
based ICs- 4071, 74C906, 4078 and 4050 used in 
the circuit were found to fail in the shots, however 
IC-4071 has been found to be most vulnerable. A 
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table-1 Summary of results of threshold tests

iPlc 
 version

total 
no of 
shots

frequency 
range 
(dom)  
gHz

electric 
field 

range 
kV/m

Mal-
function 

or failure 
total 
cases 

Malfunction   
=> triP

failure

total 
cases

thres-
hold 

electric 
field 

(kV/m)

total 
cases

thres-
hold 

electric 
field 

(kV/m)

Safe 
cases= 
> triP

unsafe 
cases 

=> no 
triP

1-Solder 
wired

33 1.0 to 
5.1

5.7 to  
91.3

12 7 19.5 5 15.5 4 1

2- 
PCB

15 2.5 to 
5.8

14.7 to 
62.4

5 1 31.8 4 47.1 3 1

Total 48 - - 17 8 - 9 - 7 2

table-2 Summary of results of Shielding tests

iPlc  -2  
Pcb based

total 
no of 
shots

frequency 
range 

(dom) gHz

electric 
field range 

kV/m

Mal-function 
or failure 

total cases

Malfunction 
cases

failure

Safe  
cases

unsafe  
cases

Shielding 1.5mm 
thk 

6 3.3 to 4.6 5.7 to 91.3 0 0 0 0

Shielding with 
3mmx6mm vents

5 3.3 to 4.2 14.7 to 62.4  4 3 0 1

Total 11 - - 4 3 0 1

table-3 Summary of results – distance and Power density

iPlc  Maximum 
distance  at which 

Malfunction 
occurred

Minimum power 
density at which 

Malfunction 
occurred

Maximum 
distance at 

which failure 
occurred

Minimum 
power density 

at  which 
failure occurred

remarks

IPLC -1 
Solder 
Wired 

90cm 1 MW/m2  70 cm * 0.6MW/ m2  * *Corresponds 
to Threshold 

Electric 
Field for 

malfunction/ 
failure

IPLC-2 
PCB

60cm * 2.7 MW/ m2  * 40cm 5.9MW/ m2

table-4 Summary of results : failure of ics

failure type no of 
cases 

ics failure sets     for   total no of HPM shots -59

4071 alone 4071 & 74c906 4071, 
74c906 & 4078

4071,74c906, 
4078 & 4050

Safe Failures => Trip 7 3 2 1 1
Unsafe Failures => No trip 3 3 0 0 0

Total failures 10 6 2 1 1
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total of 59  HPM shots taken in this project , out of 
which 10 shots resulted in failure of ICs. Details of 
ICs that failed during these shots is summarized 
below in Table -4.

conclusion

In the context of  mission critical military 
systems and safety critical nuclear power plant 
protection system, the need to incorporate 
HPEM  hardness  considerations in the design 
philosophy of their components , their critical 
logic circuits, their protection devices and their 
shielding requires to be emphasized since the 
failure of solid state components can lead to 
unsafe failure. For nuclear plants this becomes 
even more relevant since EMP is a common 
cause phenomenon and can potentially effect  
protection logic in all channels, testing unit and 
alarm annunciation systems simultaneously.

Circuits consisting of CMOS based solid 
state logic devices are vulnerable to radiated 
HPM environments. The vulnerability of 
soldered wired circuits is more than industrial 
grade PCB based circuits. The vulnerability can 
be eliminated by providing shielding enclosures 
around the circuits. To ensure effective shielding, 
the siting of vents and apertures in the shielding 
has to take into account HPEM risk concerns.

To begin with simple steps like avoiding 
of using jumper wires in sensitive equipment, 
provision of appropriate shielding enclosure 
at  equipment and system levels, locating vents 
based on EM considerations and shielding of 
cables connected to these  system could go a 
long way to reduce susceptibility to insignificant 
levels.
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introduction
There are significant challenges for the future 

development and application of geotechnical 
engineering. Developments in research, analysis 
and practice have taken place to advance 
knowledge and practice. While the scope 

geotechnics in the 21st century, uncertainties and other 
challenges - With Particular reference to landslide Hazard and 

risk assessment

robin chowdhury1*, Phil flentje2 and gautam bhattacharya3 

1 Emeritus Professor, University of Wollongong, Australia, E-mail: robin@uow.edu.au 
(* Invited Keynote Speaker, ISEUSAM-2012 Conference,  January 2012, BESU, Shibpur, India) 

2Senior Research Fellow, University of Wollongong Australia, E-mail: pflentje@uow.edu.au 
3Professor of Civil Engg.,, Bengal Engineering & Science University, Shibpur,  

Howrah 711103, E-mail: gautam@civil.becs.ac.in

abStract
This paper addresses emerging challenges in geotechnics in the context of the significant challenges 
posed by hazards, both natural and human-induced. The tremendous importance of dealing with 
uncertainties in an organized and systematic way is highlighted. The paper includes reflections on 
responding to the need for multi-disciplinary approaches .While the concepts and ideas are pertinent 
to  diverse  applications of geotechnics or to the whole of geotechnical engineering , illustrative 
examples will be limited to  research trends in slope stability and landslide management.
From time to time researchers, academics and practicing engineers refer to the need for 
interdisciplinary approaches in geotechnical engineering. However, surveys of the relevant literature 
reveal few examples of documented research studies based within an interdisciplinary framework. 
Meanwhile there is a broad acceptance of the significant role on uncertainties in geotechnics. 
This paper includes reflections on what steps might be taken   to develop better approaches for 
analysis and improved strategies for managing emerging challenges in geotechnical engineering. 
For example, one might start with the need to highlight different types of uncertainties such as 
geotechnical, geological and hydrological. Very often, geotechnical engineers focus on variability 
of soil properties such as shear strength parameters and on systematic uncertainties.  Yet there 
may be more important factors in the state of nature which are ignored because of the lack of a 
multi-disciplinary focus.  For example the understanding of the potential for progressive failure 
within a soil mass or a slope may requires careful consideration of the geological context and of 
the history of stress and strain. The latter may be a consequence of previous seismic activity and 
fluctuations in rainfall and groundwater flow. 
The frequency and consequences of geotechnical failures involving soil and rock continue to 
increase globally. The most significant failures and disasters are often associated with major 
natural events but not exclusively so. 
It is expected that climate change will lead to even more unfavorable conditions for geotechnical 
projects and thus to increasing susceptibility and hazard of landsliding. This is primarily because 
of the expected increase in the variability of rainfall and the expected increase in sea levels. 
Responding to the effects of climate change will thus require more flexible and robust strategies 
for assessment of landslide susceptibility and to innovative engineering solutions.

of the profession and its discipline areas is 
already vast, significant extension is required 
in the areas of hazard and risk assessment and 
management. In particular, the field of natural 
disaster reduction requires the development 
of innovative approaches within a multi-
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disciplinary framework. Very useful and up-to-
date information on the occurrence frequency 
and impact of different natural disasters is 
being assessed and analyzed by a number of 
organizations around the world. However, 
geotechnical engineers have not played a 
prominent part in such activities so far. Reference 
may be made to the   research and educational 
materials developed on a regular basis by the 
Global Alliance for Disaster Reduction (GADR) 
with the aim of information dissemination and 
training for disaster reduction. Some selected 
illustrations from GADR are presented in an 
Appendix to this paper .The role of geotechnical 
engineers in implementing such goals is obvious 
from these illustrations.

The variability of soil and rock masses and 
other uncertainties have always posed unique 
challenges to geotechnical engineers. In the last 
few decades, the need to identify and quantify 
uncertainties on a systematic basis has been widely 
accepted. Methods for inclusion of such data in 
formal ways include reliability analysis within a 
probabilistic framework. Considerable progress 
has been made in complementing traditional 
deterministic methods with probabilistic studies.  
Nevertheless, the rate of consequent change to 
geotechnical practice has been relatively slow 
and sometimes half-hearted. Reviewing all 
the developments in geotechnical engineering 
which have taken place over the last thirty 
years or more would require painstaking and 
critical reviews from a team of experts over a 
considerable period of time and the subsequent 
reporting of the findings in a series of books. In 
comparison, the scope of this keynote paper is 
humble. Experienced academics who have been 
engaged in serious scholarship, research and 
consulting over several decades should be able to 
reflect on recent and continuing trends as well as 
warning signs of complacency or lack of vision. 
In this spirit, an attempt is made to highlight 
some pertinent issues and challenges for the 
assessment and management of geotechnical 
risk with particular reference to slope stability 
and landslides. 

The writers of the present paper present 
some highlights of their own research through 

case study examples. These relate to aspects of 
regional slope stability and hazard assessment 
such as a landslide inventory map, elements of 
a relational database, rainfall intensity duration 
for triggering landslides, continuous monitoring 
of landslide sites in near-real time, landslide 
susceptibility and hazard maps. The paper 
concludes with reflections on continuing and 
emerging challenges. For further details the 
reader may refer to Chowdhury & Flentje (2008), 
Flentje et al (2007, 2010) and a comprehensive 
book (Chowdhury et al, 2010). 

In order to get a sense of global trends in 
geotechnical analysis and the assessment and 
management of risk, reference may be made to 
the work of experts and professionals in different 
countries as reported in recent publications. The 
applications include the safety of foundations, 
dams and slopes against triggering events such as 
rainstorms, floods earthquakes and tsunamis. 

The following is a sample of 5 papers from 
a 2011 conference related to geotechnical risk 
assessment and management, GeoRisk- 2011. 
Despite covering a wide range of topics and 
techniques, it is interesting that GIS-based regional 
analysis for susceptibility and hazard zoning is 
not included amongst these publications. Such 
gaps are often noted and reveal that far greater 
effort is required to establish multi-disciplinary 
focus in geotechnical research. This is clearly a 
continuing challenge for geotechnics in the 21st 
century.
l A comprehensive paper on geo-hazard 

assessment and management involving the 
need for integration of hazard, vulnerability 
and consequences and the consideration of 
acceptable and tolerable risk levels (Lacasse 
and Nadim, 2011). 

l Risk assessment of Success Dam, California 
is discussed by Bowles et al (2011) with 
particular reference to the evaluation of 
operating restrictions as an interim measure 
to mitigate earthquake risk. The potential 
modes of failure related to earthquake 
events and flood events are discussed in two 
companion papers.

l The practical application of risk assessment 
in dam safety (the practice in U.S.A) is 
discussed in a paper by Scott (2011).
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l Unresolved issues in Geotechnical Risk and 
Reliability (Christian and Baecher, 2011)

l Development of a risk-based landslide 
warning system (Tang and Zhang, 2011) 

The first paper (Lacasse and Nadim, 2011) 
has a wide scope of topics and discusses the 
following six case studies: 

Hazard assessment and early warning for 
a rock slope over a fjord arm on the west coast 
of Norway – the slope is subject to frequent 
rockslides usually with volumes in the range 0.5-5 
million cubic meters.

Vulnerability assessment – Norwegian clay 
slopes in an urban area on the South coast of 
Norway Risk assessment – 2004 Tsunami in the 
Indian Ocean Risk mitigation – quick clay in the 
city of Drammen along the Drammensfjord and 
the Drammen River.

Risk mitigation – Early Warning System for 
landslide dams, Lake Sarez in the Pamir Mountain 
Range in eastern Tajikistan Risk of tailings dam 
break – probability of non-performance of a 
tailings management facility at Rosia Montana 
in Romania

uncertainties affecting geotechnics

The major challenges in geotechnical 
engineering arise from uncertainties and the 
need to incorporate them in analysis, design 
and practice. The geotechnical performance 
of a specific site, facility, system or regional 
geotechnical project may be affected by different 
types of uncertainty such as the following (with 
examples in brackets):
l	 Geological uncertainty (geological details)
l	 Geotechnical parameter uncertainty 

(variability of shear strength parameters 
and of pore water pressure)

l	 Hydrological uncertainty (aspects of 
groundwater flow)

l	 Uncertainty related to historical data 
(frequency of slides, falls or flows)

l	 Uncertainty related to natural or external 
events ( magnitude, location and timing of 
rainstorm, flood, earthquake and tsunami)

l	 Project uncertainty (construction quality, 
construction delays)

l	Uncertainty due to unknown factors (effects 
of climate change) 

On some projects, depending on the aims, 
geotechnical engineers may be justified in 
restricting their attention to uncertainties arising 
from geological, geotechnical and hydrological 
factors. For example, the limited aim may be to 
complement deterministic methods of analysis 
with probabilistic studies to account for imperfect 
knowledge of geological details and limited data 
concerning measured soil properties and pore 
water pressures. It is necessary to recognize 
that often pore pressures change over time 
and, therefore, pore pressure uncertainty has 
both spatial and temporal aspects which can be 
critically important. 

During the early development of probabilistic 
analysis methods researchers often focused on the 
variability of soil properties in order to develop 
the tools for probabilistic analysis. It was soon 
realized that natural variability of geotechnical 
parameters such as shear strength must be 
separated from systematic uncertainties such 
as measurement error and limited number of 
samples. Another advance in understanding has 
been that the variability of a parameter, measured 
by its standard deviation, is a function of the 
spatial dimension over which the variability is 
considered. In some problems, consideration of 
spatial variability on a formal basis is important 
and leads to significant insights.

An important issue relates to the choice 
of geotechnical parameters and their number 
for inclusion in an uncertainty analysis. The 
selection is often based on experience and can 
be justified by performing sensitivity studies. A 
more difficult issue is the consideration of ‘new’ 
geotechnical parameters not used in traditional 
deterministic or even in probabilistic studies. 
Thus one must think ‘outside the box’ for 
‘new’ parameters which might have significant 
influence on geotechnical reliability. Otherwise 
the utility and benefits of reliability analyses 
may not be fully realized. As an example, the 
‘residual factor’ (defined as proportion of a 
slip surface over which shear strength has 
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decreased to a residual value) is rarely used 
as a variable in geotechnical slope analysis. 
Recently, interesting results have been revealed 
from a consideration of ‘residual factor’ in slope 
stability as a random variable (Chowdhury and 
Bhattacharya 2011, Bhattacharya and Chowdhury 
2011). Ignoring the residual factor can lead to 
overestimate of reliability and thus lead to unsafe 
or unconservative practice. 

For regional studies such as zoning for 
landslide susceptibility and hazard assessment, 
historical data about previous events are very 
important. Therefore uncertainties with respect to 
historical data must be considered and analyzed 
carefully. Such regional studies are different in 
concept and implementation from traditional 
site-specific deterministic and probabilistic 
studies and often make use of different data-
sets. A successful knowledge-based approach for 
assessment of landslide susceptibility and hazard 
has been described by Flentje (2009).

If the aim of a geotechnical project is to 
evaluate geotechnical risk, it is necessary to 
consider the uncertainty related to the occurrence 
of an external event or events that may affect the 
site or the project over an appropriate period of 
time such as the life of the project. 

Consideration of project uncertainty would 
require consideration of economic, financial and 
administrative factors in addition to the relevant 
technical factors considered above. In this regard the 
reader may refer to a recent paper on georisks in the 
business environment by Brumund (2011); the paper 
also makes reference to unknown risk factors.

For projects which are very important because 
of their size, location, economic significance, or 
environmental impact, efforts must be made to 
consider uncertainty due to unknown factors. 
Suitable experts may be co-opted by the project 
team for such an exercise.

Slope analysis Methods

limit equilibrium and Stress deformation 
approaches

Deterministic methods can be categorized as 
limit equilibrium methods and stress-deformation 

methods. Starting from simple and approximate 
limit equilibrium methods based on simplifying 
assumptions, several advanced and relatively 
rigorous methods have been developed. 

The use of advanced numerical methods for 
stress-deformation analysis is essential when the 
estimation of strains and deformations within a 
slope is required. In most cases, two-dimensional 
(2D) stress-deformation analyses would suffice. 
However, there are significant problems which 
need to be modeled and analyzed in three-
dimensions. Methods appropriate for 3D stress-
deformation analysis have been developed and 
used successfully. Advanced stress-deformation 
approaches include the finite-difference method, 
the finite-element method, the boundary element 
method, the distinct element method, and the 
discontinuous deformation analysis method. 

Progressive failure

Progressive failure of natural slopes, 
embankment dams and excavated slopes is 
a consequence of non-uniform stress and 
strain distribution and the strain-softening 
behavior of earth masses. Thus shear strength 
of a soil element, or the shear resistance along 
a discontinuity within a soil or rock mass, may 
decrease from a peak to a residual value with 
increasing strain or increasing deformation. 
Analysis and simulation of progressive failure 
requires that strain-softening behavior be 
taken into consideration within the context of 
changing stress or strain fields. This may be 
done by using advanced methods such as an 
initial stress approach or a sophisticated stress-
deformation approach. Of the many historical 
landslides in which progressive failure is known 
to have played an important part, perhaps the 
most widely studied is the catastrophic Vaiont 
slide which occurred in Italy in 1964. The causes 
and mechanisms have not been fully explained 
by any one study and there are still uncertainties 
concerning both the statics and dynamics of 
the slide. For further details and a list of some 
relevant references, the reader may refer to 
Chowdhury et al (2010).  
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Probabilistic approaches and simulation of 
progressive failure

A probabilistic approach should not be seen 
simply as the replacement of a calculated ‘factor 
of safety’ as a performance index by a calculated 
‘probability of failure’. It is important to consider 
the broader perspective and greater insight 
offered by adopting a probabilistic framework. It 
enables a better analysis of observational data and 
enables the modeling of the reliability of a system. 
Updating of reliability on the basis of observation 
becomes feasible and innovative approaches can 
be used for the modeling of progressive failure 
probability and for back-analysis of failed slopes. 
Other innovative applications of a probabilistic 
approach with pertinent details and references 
are discussed by Chowdhury et al (2010).

An interesting approach for probabilistic 
seismic landslide analysis which incorporates the 
traditional infinite slope limit equilibrium model 
as well as the rigid-block displacement model has 
been demonstrated by Jibson et al (2000). 

A probabilistic approach also facilitates 
the communication of uncertainties concerning 
hazard assessment and slope performance to 
a wide range of end-users including planners, 
owners, clients and the general public.

Geotechnical Slope Analysis in a regional 
context 

Understanding geology, geomorphology 
and groundwater flow is of key importance. 
Therefore, judicious use must be made of 
advanced methods of modeling in order to 
gain the best possible understanding of the 
geological framework and to minimize the role of 
uncertainties on the outcome of analyses (Marker, 
2009; Rees et al, 2009).

Variability of ground conditions, spatial 
and temporal, is important in both regional 
and site-specific analysis. Consequently, 
probability concepts are very useful in both 
cases although they may be applied in quite 
different ways. 

Spatial and temporal variability of triggering 
factors such as rainfall have a marked influence 
on the occurrence and distribution of landslides 

in a region (Chowdhury et al, 2010, Murray, 
2001)

This context is important for understanding 
the uncertainties in the development of critical 
pore-water pressures. Consequently, it helps 
in the estimation of rainfall threshold for on-
set of landsliding. Regional and local factors 
both would have a strong influence on the 
combinations of rainfall magnitude and duration 
leading to critical conditions.

Since earthquakes trigger many landslides 
which can have a devastating impact, it is 
important to understand the causative and 
influencing factors. The occurrence, reach, 
volume and distribution of earthquake-induced 
landslides are related to earthquake magnitude 
and other regional factors. For further details and 
a list of some relevant references, the reader may 
refer to Chowdhury et al (2010). 

regional Slope Stability assessments

basic requirements

Regional slope stability studies are 
often carried out within the framework of a 
Geographical Information System (GIS) and are 
facilitated by the preparation of relevant data-
sets relating to the main influencing factors such 
as geology, topography, drainage characteristics 
and by developing a comprehensive inventory of 
existing landslides. The development of a digital 
elevation model (DEM) facilitates GIS based 
modeling of landslide susceptibility, hazard 
and risk within a GIS framework. Regional 
slope stability and hazard studies facilitate 
the development of effective landslide risk 
management strategies in an urban area. The 
next section of this paper is devoted to a brief 
discussion of GIS as a versatile and powerful 
system for spatial and even temporal analysis. 
This is followed by a section providing a brief 
overview of sources and methods for obtaining 
accurate spatial data. The data may relate to 
areas ranging from relatively limited zones to 
very large regions. Some of these resources and 
methods have a global reach and applicability. 
Such data are very valuable for developing digital 
elevation models (DEMs) of increasing accuracy. 
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A small segment for the Wollongong 
Landslide Inventory for the Wollongong Regional 
Study is shown as Figure 1. The elements of a 
Landslide Relational Database are shown as 
Figure 2. Some details of the same are shown 
in Figures 3 and 4. A successful knowledge-
based approach for assessment of landslide 
susceptibility and hazard has been described by 
Flentje (2009) and is covered in some detail in a 
separate section of this paper.

For regional analysis, a DEM is, of course, a very 
important and powerful tool.

landslide inventory

The development of comprehensive 
databases including a landslide inventory is 
most desirable if not essential especially for the 
assessment of slope stability in a regional context. 
It is important to study the occurrence and spatial 
distribution of first-time slope failures as well as 
reactivated landslides. 

Identifying the location of existing 
landslides is just the beginning of a systematic 
and sustained process with the aim of developing 
a comprehensive landslide inventory. Among 
other features, it should include the nature, 
size, mechanism, triggering factors and date of 
occurrence of existing landslides. While some old 
landslide areas may be dormant, others may be 
reactivated by one or more regional triggering 
factors such as heavy rainfall and earthquakes.

One comprehensive study of this type has 
been discussed in some detail in Chapter 11 of 
Chowdhury et al (2010). This study was made 
for the Greater Wollongong region, New South 
Wales, Australia by the University of Wollongong 
(UOW) Landslide Research Team (LRT). In 
this paper this study is also referred to as the 
WOLLONGONG REGIONAL STUDY.
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Fig. 1: Segment of the University of Wollongong Landslide Inventory. 
 Fig. 1: Segment of the University of Wollongong 

Landslide Inventory.
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Fig. 2: Elements of a Landslide Relational Database. 
 

 
 

Fig. 3: Details of main tables of Relational Database shown above. 
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Fig. 4: Details of selected tables of Relational Database shown above.
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role of geographical information 
Systems (giS) 

GIS enables  the  co l lec t ion , 
organization, processing, managing 
and updating of spatial and temporal 
information concerning geological, 
geotechnical, topographical, and other 
key parameters. The information can 
be accessed and applied by a range 
of professionals such as geotechnical 
engineers, engineering geologists, civil 
engineers and planners for assessing 
hazard of landsliding as well as for 
risk management. Traditional slope 
analysis must, therefore, be used within 
the context of a modern framework 
which includes GIS. Amongst the other 
advantages of GIS are the ability to deal 
with multiple hazards, the joining of 
disparate data and the ability to include 
decision support and warning systems 
(Gibson and Chowdhury, 2009).

Papers concerning the application 
of basic, widely available, GIS systems 
as well as about the development of 
advanced GIS systems continue to be 
published. For instance, Reeves and West 
(2009), covering a conference session on 
‘Geodata for the urban environment’, 
found that 11 out of 30 papers were 
about the ‘Development of Geographic 
Information Systems’ while Gibson and 
Chowdhury (2009) pointed out that the 
input of engineering geologists (and, 
by implication, geotechnical engineers) 
to urban geohazards management is 
increasingly through the medium of 
GIS. 

Consequently, 3D geological models 
have been discussed by a number of 
authors such as Rees et al (2009) who 
envisage that such models should be the 
basis for 4D process modeling in which 
temporal changes and factors can be 
taken into consideration. They refer, in 
particular, to time-series data concerning 
precipitation, groundwater, sea level and 
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temperature. Such data, if and when available, 
can be integrated with 3D spatial modeling. 

Sources of accurate Spatial data relevant to 
the development of digital elevation Models

Over the last decade, Airborne Laser Scan 
(ALS) or Light Detection and Ranging (LiDAR) 
techniques are increasingly being applied across 
Australia to collect high resolution terrain point 
datasets. When processed and used to develop 
Geographic Information System (GIS) Digital 
Elevation Models (DEMs), the data provides 
high resolution contemporary terrain models 
that form fundamental GIS datasets. Prior to the 
advent of this technology, DEMs were typically 
derived from 10 to 50 year old photogrammetric 
contour datasets. When processed, ALS datasets 
can comprise point clouds of many millions of 
ground reflected points covering large areas 
up to hundreds of square kilometers, with 
average point densities exceeding one point 
per square meter. Collection, processing and 
delivery of these data types are being enhanced 
and formalized over time. Increasingly, this 
data is also being collected in tandem with high 
resolution geo-referenced imagery.

Airborne and Satellite derived Synthetic 
Aperture Radar (SAR) techniques are also 
being increasingly developed and applied 
internationally to develop terrain models, and 
specifically differential models between return 
visits over the same area in order to highlight 
the changes in ground surfaces with time. This 
is being used to monitor landslide movement, 
ground subsidence and other environmental 
change.

NASA and the Japan Aerospace Exploration 
Society have just recently (mid-October 2011) 
and freely released via the internet the Advanced 
Space-borne Thermal Emission and Reflection 
Radiometer (ASTER) Global Digital Elevation 
Model (GDEM) - ASTER GDEM v2 global 30m 
Digital Elevation Model as an update to the year 
2000 vintage NASA SRTM Global DEM at 90m 
and 30m pixel resolutions. This global data release 
means moderately high resolution global Digital 
Elevation Model data are available to all.

The development of ALS terrain models and 
the free release of the global ASTER GDEM v2 
have important implications for the development 
of high resolution Landslide Inventories and 
Zoning Maps world wide. These datasets mean 
one of the main barriers in the development of 
this work has been eliminated.

observational approach – Monitoring and 
alert Systems

Geotechnical analysis should not be 
considered in isolation since a good understanding 
of site conditions and field performance is 
essential. This is particularly important for site-
specific as well as regional studies of slopes and 
landslides. Observation and monitoring of slopes 
are very important for understanding all aspects 
of performance; from increases in pore-water 
pressures to the evidence of excessive stress and 
strain, from the development of tension cracks 
and small shear movements to initiation of 
progressive failure, and from the development 
of a complete landslide to the post-failure 
displacement of the landslide mass.

Observation and monitoring also facilitate 
an understanding of the occurrence of multiple 
slope failures or widespread landsliding within a 
region after a significant triggering event such as 
rainfall of high magnitude and intensity (Flentje et 
al, 2007; Flentje, 2009). Observational approaches 
facilitate accurate back-analyses of slope failures 
and landslides. Moreover, geotechnical analysis 
and the assessment of hazard and risk can be 
updated with the availability of additional 
observational data on different parameters 
such as pore-water pressure and shear strength. 
The availability of continuous monitoring data 
obtained in near-real time will also contribute to 
more accurate assessments and back-analyses. 
Consequently, such continuous monitoring will 
lead to further advancement in the understanding 
of slope behavior. 

One part of the Wollongong Regional Study 
is the development of rainfall intensity - duration 
curves for the triggering of landslides overlaid 
with historical rainfall average recurrence 
interval (ARI) curves as shown in Figure 5. From 
the very beginning of this research, the potential 
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Fig. 5: Interpreted threshold curves for landsliding in Wollongong, 
superimposed on Annual Recurrence Interval curves for a selected 

rainfall station.

Fig. 6: Hourly logged continuously recorded rainfall, pore water 
pressure, landslide displacement and rate of displacement data for a 

43,000m3 urban landslide site in Wollongong.

use of such curves for alert and warning systems 
was recognized. In fact, this research facilitated 
risk management in the Wollongong Study Area 
during intense rainfalls of August 1998 when 
widespread landsliding occurred.

More recent improvement and extension 
of this work involves the use of data from 
our growing network of continuous real-
time monitoring stations where we are also 
introducing the magnitude of displacement as 
an additional parameter. Aspects of this research 
are shown in Figure.5 and, as more data become 
available from continuous monitoring, additional 

displacement (magnitude)-based curves can be 
added to such a plot. 

Two examples of continuous landslide 
performance monitoring are shown in Figures 6 
and 7. Figure 6 relates to a coastal urban landslide 
site (43,000m3) with limited trench drains 
installed. The relationship between rainfall, 
pore water pressure rise and displacement is 
clearly evident at two different time intervals in 
this figure. Figure 7 shows data from a complex 
translational landslide system (720,000m3) which 
is located on a major highway in NSW Australia. 
In the 1970’s landsliding severed this artery in 

several locations resulting in road 
closures and significant losses arising 
from damage to infrastructure and 
from traffic disruptions.

A f t e r  c o m p r e h e n s i v e 
investigations, remedial measures 
were installed. At this site, a dewatering 
pump system was installed, which 
continues to operate to this day. 
However, this drainage system has 
been reviewed and upgraded from 
time to time. Since 2004, this site has 
been connected to the Continuous 
Monitoring Network of the University 
of Wollongong Landslide Research 
Team. Interpretation of the monitoring 
data shows that movement has been 
limited to less than 10 mm since the 
continuous monitoring commenced as 
shown in Figure 7 (Flentje et al 2010). 
However, the occurrence of events of 
this small movement was considered 
unacceptable by the authorities. 
Hence, pump and monitoring system 
upgrades commenced in 2006 and 
have been completed in 2011.

Susceptibility and Hazard 
assessment (Wollongong regional 
Study)

The susceptibility model area and 
the data-sets

The area chosen within the 
Wollongong Region for modeling 
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Fig. 7: Hourly logged, continuously recorded rainfall, groundwater pump volumes, pore water pressure, landslide 
displacement and rate of displacement data for a 720,000m3 landslide affecting a major transport artery in Wollongong.

 

 
Fig. 7: Hourly logged, continuously recorded rainfall, groundwater pump volumes,
pressure, landslide displacement and rate of displacement data for a 720,000m
affecting a major transport artery in Wollongong.
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Hourly logged, continuously recorded rainfall, groundwater pump volumes, pore water 
pressure, landslide displacement and rate of displacement data for a 720,000m3 landslide 

landslide susceptibility (Susceptibility Model Area) 
is 188 square km in extent and contains 426 Slide 
category landslides. 

The  data  se ts  used for  th is  s tudy 
include: 
l	 Geology (mapped geological formations, 21 

variables) 
l	 Vegetation (mapped vegetation categories, 

15 variables)
l	 Slope inclination (continuous floating point 

distribution)
l	 Slope aspect (continuous floating point 

distribution)
l	 Terrain units (buffered water courses, spur 

lines and other intermediate slopes)
l	 Curvature (continuous floating point 

distribution)
l	 Profile curvature (continuous floating point 

distribution)
l	 Plan curvature (continuous floating point 

distribution)
l	 Flow accumulation (continuous integer), and 
l	 Wetness index (continuous floating point 

distribution)

Landslide inventory

The landslide inventory for this study has 
been developed over a fifteen year period and 
comprises a relational MS Access and ESRI 
ArcGIS Geodatabase with 75 available fields of 
information for each landslide site. It contains 
information on a total of 614 landslides (Falls, 
Flows and Slides) including 480 slides. Amongst 
the 426 landslides within the Susceptibility Model 
Area, landslide volumes have been calculated for 
378 of these sites. The average volume is 21800 m3 
and the maximum volume is 720,000 m3.

Knowledge-based approach based on Data 
Mining model

The specific knowledge-based approach 
used for analysis and synthesis of the data sets 
for this study is the Data Mining (DM) process or 
model. The DM learning process is facilitated by 
the software “See 5” which is a fully developed 
application of “C4.5” (Quinlan, 1993). The DM 
learning process helps extract patterns from the 
databases related to the study. Known landslide 
areas are used for one half of the model training, 
the other half comprising randomly selected 
points from within the model area but outside 
the known landslide boundaries. Several rules are 
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Fig. 9: Segment of Landslide Hazard Zoning Map from the 
bottom left corner of Fig.8, Wollongong Local Government 
Area, New South Wales, Australia. Landslide label shows 
four important particulars of each landslide stacked vertically. 
These are (1) Site Reference Code,(2) landslide volume,(3) 
annual frequency of reactivation derived  from inventory 
and(4)landslide  profile angle. Hazard zoning in legend shows 
relative annual likelihood as explained in the text.

generated during the process of modeling. Rules 
which indicate potential landsliding are assigned 
positive confidence values and those which 
indicate potential stability (no-landsliding) are 
assigned negative confidence values. The rule set 
is then re-applied within the GIS software using 
the ESRI Model Builder extension to produce 
the susceptibility grid. The complete process of 
susceptibility and hazard zoning is described in 
Flentje (2009) and in Chapter 11 of Chowdhury 
et al (2010).

Susceptibility and Hazard zones

On the basis of the analysis and synthesis 
using the knowledge-based approach, it has been 
possible to demarcate zones of susceptibility and 
hazard into four categories: 
1. Very Low Susceptibility (or Hazard) of 

landsliding (VL)
2. Low Susceptibility (or Hazard) of landsliding 

(L)
3. Moderate Susceptibility (or Hazard) of 

landsliding (M), and 
4. High Susceptibility (or Hazard) of landsliding 

(H)

A segment of the landslide Susceptibility 
map is shown in Figure 8 below. A segment of 
the landslide hazard map, an enlarged portion 
from the bottom left of Figure 8, is reproduced 
as Figure 9. Relative likelihoods of failure in 
different zones, estimated from the proportion of 
total landslides which occurred in each zone over 
a period of 126 years, are presented in columns 1 
and 2 of Table 1 below. This information is only 
a part of the full table presented as Table 11.3 in 
Chowdhury et al (2010). 

table 1: failure likelihood and reliability 
index for each Hazard zone  

(after chowdhury et al, 2010)

Hazard zone 
description

failure 
likelihood

reliability 
index

Very Low 7.36 × 10-3 2.44
Low 6.46 × 10-2 1.51

Moderate 3.12 × 10-1 0.49
High 6.16 × 10-1 -0.30
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estimated reliability indices and factors of 
Safety  

An innovative concept has been proposed 
by Chowdhury & Flentje (2011) for quantifying 
failure susceptibility from zoning maps developed 
on the basis of detailed knowledge-based methods 
and techniques within a GIS framework. The 
procedure was illustrated with reference to the 
results of the Wollongong Regional Study and the 
relevant Tables are reproduced here. Assuming 
that the factor of safety has a normal distribution, 
the reliability index was calculated for each zone 
based on the associated failure likelihood which 
is assumed to represent the probability of failure. 
These results are presented in the third or last 
column of Table 1.

table 2: typical Mean value of factor of 
Safety (f) for each Hazard zone considering 

coefficient of variation to be 10 %.(after                     
chowdhury& flentje, 2011)

Hazard zone 
description

reliability 
index

Mean of factor 
of Safety, f  
(Vf = 10%)

Very Low 2.44 1.32
Low 1.51 1.18

Moderate 0.49 1.05
High -0.3 0.97

Assuming that the coefficient of variation of 
the factor of safety is 10%, the typical values of 
mean factor of safety for each zone are shown in 
Table 2. The results were also obtained for other 
values of the coefficient of variation of the factor 
of safety (5%, 10%, 15% and 20%). These results 
are shown in Table 3.

table 3: typical Mean values of factor of 
Safety for different values of coefficient of 
variation (after chowdhury& flentje, 2011)

Vf%
Mean of f for different Hazard zones
Very low low Moderate High

5 1.14 1.08 1.02 0.98
10 1.32 1.18 1.05 0.97
15 1.57 1.29 1.08 0.96
20 1.95 1.43 1.11 0.94

Most of the landslides have occurred during 
very high rainfall events. It is assumed here, in 
the first instance, that most failures are associated 
with a pore water pressure ratio of about 0.5 
(full seepage condition in a natural slope). 
Furthermore, assuming that the ‘infinite slope’ 
model applies to most natural slopes and that 
cohesion intercept is close to zero, the values of 
factor of safety can be calculated for other values 
of the pore pressure ratio (0.2, 0.3 and 0.4) for 
any assumed value of the slope inclination. The 
results shown below in Table 4 are for a slope 
with an inclination of 12 degrees for pore pressure 
ratios in the range 0.2 - 0.5.

table 4: typical Mean factor of Safety 
with different values of pore pressure ratio 
(slope inclination i = 12˚, Vf = 10%). (after 

chowdhury & flentje, 2011)

Pore water  
pressure ratio

Mean of f for different 
Hazard zones

Very 
low low Moderate High

0.5 1.32 1.18 1.05 0.97
0.4 1.61 1.44 1.28 1.18
0.3 1.90 1.70 1.51 1.40
0.2 2.19 1.95 1.74 1.61

discussion on the proposed concept and 
procedure 

The above results were obtained as a typical 
F value or a set of F values referring to each 
hazard zone. However, taking into consideration 
the spatial variation of slope angle, shear strength 
and other factors, this approach may facilitate 
the calculation F at individual locations. Well-
documented case studies of site-specific analysis 
would be required for such an extension of the 
procedure. Other possibilities include estimation 
of the variation of local probability of failure. The 
approach may also be used for scenario modeling 
relating to the effects of climate change. If reliable 
data concerning pore pressure changes become 
available, failure susceptibility under those 
conditions can be modeled and the likelihood and 
impact of potential catastrophic slope failures can 
be investigated.
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appendix i — Selected figures from Power Point Slide Set entitled “understanding risk and 
risk reduction” (Hays 2011)

Fig. A-1: Elements of Risk Assessment and Management for Natural Disasters courtesy of Walter Hays, 2011.

Fig. A-2: Components of Risk courtesy of Walter Hays, 2011.
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Fig. A-3: Common Agenda for Natural Disaster Resilience, courtesy of Walter Hays, 2011.

Fig. A-4: The overall context for Innovation in Disaster Management and Reduction, courtesy of Walter Hays, 2011
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Fig. A-5: Some causes of risk for landslides, courtesy of Walter Hays, 2011

Discussion, Specific Lessons Or Challenges

The focus of this paper has been on hazard 
and risk assessment in geotechnical engineering. 
Advancing geotechnical engineering requires 
the development and use of knowledge which 
facilitates increasingly reliable assessments 
even when the budgets are relatively limited. 
Because of a variety of uncertainties, progress 
requires an astute combination of site-specific 
and regional assessments. For some projects, 
qualitative assessments within the framework 
of a regional study may be sufficient. In other 
projects quantitative assessments, deterministic 
and probabilistic, may be essential. 

In this paper, different cases have been 
discussed in relation to the Wollongong Regional 
Study. Firstly reference was made to the basis of 
an alert and warning system for rainfall-induced 
landsliding based on rainfall-intensity-duration 
plots supplemented by continuous monitoring. 
The challenges here are obvious. How do we 

use the continuous pore pressure data from 
monitoring to greater advantage? How do we 
integrate all the continuous monitoring data to 
provide better alert and warning systems? This 
research has applications in geotechnical projects 
generally well beyond slopes and landslides.

The examples concerning continuous 
monitoring of two case studies discussed in this 
paper illustrate the potential of such research for 
assessing remedial and preventive measures. The 
lesson from the case studies is that, depending on 
the importance of a project, even very low hazard 
levels may be unacceptable. As emphasized 
earlier, the decision to upgrade subsurface 
drainage at the cost of hundreds of thousands 
of dollars over several years was taken and 
implemented despite the shear movements being 
far below disruptive magnitudes as revealed by 
continuous monitoring. The challenge in such 
problems is to consolidate this experience for 
future applications so that costs and benefits can 
be rationalized further.
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The last example from the Wollongong 
Regional Study concerned the preparation of 
zoning maps for landslide susceptibility and 
hazard. Reference was made to an innovative 
approach for quantitative interpretation of 
such maps in terms of well known performance 
indicators such as ‘factor of safety’ under a variety 
of pore pressure conditions. The challenge here is 
to develop this methodology further to take into 
consideration the spatial and temporal variability 
within the study region.

challenges due to external factors

Beyond the scope of this paper, what are the 
broad challenges in geotechnical hazard and risk 
assessment? How do we deal with the increasing 
numbers of geotechnical failures occurring 
globally including many disasters and how do we 
mitigate the increasingly adverse consequences 
of such events? What strategies, preventive, 
remedial and other, are necessary? 

Often catastrophic landslides are caused 
by high magnitude natural events such as 
rainstorms and earthquakes. It is also important 
to consider the contribution of human activities 
such as indiscriminate deforestation and rapid 
urbanization to landslide hazard. There is an 
increasing realization that poor planning of land 
and infrastructure development has increased the 
potential for slope instability in many regions of 
the world.

Issues concerned with increasing hazard 
and vulnerability are very complex and cannot be 
tackled by geotechnical engineers alone. Therefore, 
the importance of working in interdisciplinary 
teams must again be emphasized. Reference 
has already been made to the use of geological 
modeling (2D, 3D and potentially 4D) and to 
powerful tools such as GIS which can be used in 
combination with geotechnical and geological 
models.

At the level of analysis methods and 
techniques, one of the important challenges for 
the future is to use slope deformation (or slip 
movement) as a performance indicator rather 
than the conventional factor of safety. Also, at 
the level of analysis, attention needs to be given 

to better description of uncertainties related to 
construction of slopes including the quality of 
supervision.

Research into the effects of climate change 
and, in particular, its implications for geotechnical 
engineering is urgently needed (Rees et al 2009; 
Nathanail and Banks, 2009). The variability of 
influencing factors such as rainfall and pore-
water pressure can be expected to increase. 
However, there will be significant uncertainties 
associated with estimates of variability in 
geotechnical parameters and other temporal 
and spatial factors. Consequently geotechnical 
engineers need to be equipped with better tools 
for dealing with variability and uncertainty. 
There may also be other changes in the rate at 
which natural processes like weathering and 
erosion occur. Sea level rise is another important 
projected consequence of global warming and 
climate change and it would have adverse effects 
on the stability of coastal slopes.

concluding remarks 

A wide range of methods, from the simplest 
to the most sophisticated, are available for the 
geotechnical analysis of slopes. This includes both 
static and dynamic conditions and a variety of 
conditions relating to the infiltration, seepage and 
drainage of water. Considering regional slope 
stability, comprehensive databases and powerful 
geological models can be combined within a GIS 
framework to assess and use information and 
data relevant to the analysis of slopes and the 
assessment of the hazard of landsliding. The use 
of knowledge-based systems for assessment of 
failure susceptibility, hazard, or performance can 
be facilitated by these powerful tools. However, 
this must all be based on a thorough field work 
ethic.

It is important to understand the changes in 
geohazards with time. In particular, geotechnical 
engineers and engineering geologists will face 
long-term challenges due to climate change. 
Research is required to learn about the effects of 
climate change in greater detail so that methods 
of analysis and interpretation can be improved 
and extended. Exploration of such issues will be 
facilitated by a proper understanding of the basic 
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concepts of geotechnical slope analysis and the 
fundamental principles on which the available 
methods of analysis are based.
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abstract

Modeling is a strong tool to plan the steps in development of a system. A model explains the 
system at different levels of abstraction. And in software reliability a most important tool that 
can evaluate the software quantitatively, develops test status, schedules status and monitors the 
changes in reliability performance is Software Reliability Growth Model (SRGM). During the last 
three decades, a large number of SRGMs have been proposed in literature. However, almost all of 
the SRGMs are developed under the assumption that software reliability growth process depends 
only on testing-time. Later some testing resource dependent SRGMs were also developed. Also, 
there exists testing coverage based SRGMs in the literature. But all these models do not take into 
account the simultaneous effect of time and resources or fails to consider the concurrent effect of 
time and coverage on cumulative number of faults removed from software. Therefore such models 
can be termed as one-dimensional software reliability growth models. And in order to capture 
the mutual effect of testing time and resources or simultaneous effect of testing time and coverage 
two dimensional software reliability growth models (2-D SRGM) are needed. In this paper we 
develop three different 2-D SRGMs, two of which take into consideration the simultaneous effect 
of testing time and resources and the third one is developed for concurrent effect of testing time 
and coverage. Further, this paper also focuses on optimal allocation decisions at unit testing 
level. Optimization problems which simultaneously allocate testing time and resource are also 
formulated and solved using Genetic Algorithm.

  Life Cycle Reliability and Safety Engineering 
Vol. 2 Issue 2 (2012) 44-60

introduction

21st century demands sky-scraping 
hardware performance and high quality software 
programming in order to accomplish new 
breakthrough in quality and productivity. 
Because of the integrating prospective of 
software, designers can bring revolutionary 
innovations. However the multidisciplinary 
scope of software has increased the overall 
complexities of many systems. As a result, with 
the increased dependency on software use, the 
likelihood of crisis from computer failures has 
also increased. 

The major role for the success or failure 
of software depends on the condition of its 
testing process. The testing phase of software 
development life cycle is an utmost essential 

phenomenon for developing highly reliable 
software system. Software development firms 
that fail to execute quality control standards 
and effectively define the range of tests for an 
application can wipe out brand credibility, 
disrupt the overall project and generate a cost 
blowout. Various incidents have been stated in 
history where inefficiency of software testing 
resulted in social problems and financial losses. 
For example: 
l	 News reports in December of 2007 indicated 

that significant software problems were 
continuing to occur in a new ERP payroll 
system for a large urban school system. It 
was believed that more than one third of 
employees had received incorrect paychecks 
at various times since the new system 
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went live the preceding January, resulting 
in overpayments of $53 million, as well 
as underpayments. An employees’ union 
brought a lawsuit against the school system, 
the cost of the ERP system was expected to 
rise by 40%, and the non-payroll part of the 
ERP system was delayed. Inadequate testing 
reportedly contributed to the problems. 

l	 A September 2006 news report indicated 
problems with software utilized in a state 
government’s primary election, resulting 
in periodic unexpected rebooting of voter 
checking machines, which were separate 
from the electronic voting machines, and 
resulted in confusion and delays at voting 
sites. The problem was reportedly due to 
insufficient testing [5].

Hence, for optimizing software use, it 
becomes obligatory to concentrate on matters 
such as the reliability of the software products. 
To model software reliability models, various 
probabilistic and statistical approaches have been 
developed. By means of these tools/techniques/
methods, software developers can design 
numerous testing programs or automate testing 
tools to meet the client’s technical requirements, 
schedule and budget. These techniques can 
make it easier to test and correct software, detect 
more bugs, save more time and reduce expenses 
significantly [6]. 

There has been much effort expended in 
quantifying the reliability of a software system 
through the development of models [32]. These 
models are collectively called Software Reliability 
Growth Models (SRGMs). The main goal of these 
models is to fit a theoretical distribution to time 
between- failure data, to estimate the time-to-
failure based on software test data, to estimate 
software system’s reliability and to design a rule 
for determining the appropriate time to terminate 
testing.

During the last three decades, a large number 
of SRGMs have been proposed in the literature 
[3,19,20,21,23,26]. However, almost all of the 
SRGMs are developed under the conjecture that 
software reliability growth process depends only 
on testing-time as the software reliability growth 

factor essentially. An alternative approach based 
on the NHPP was proposed by Yamada et al. 
[34], [35], Huang and Kuo [9]. They developed 
some testing resource dependent SRGMs. 
Also, in the literature of software reliability 
modeling the impact of testing coverage behind 
the growth development during testing phase 
is also considered. A testing coverage based 
SRGM was proposed by Malaiya [37]. Inoue 
and Yamada [13] also developed SRGM with 
coverage which used a testing-coverage function 
to describe a time-dependent behavior or of 
a testing-coverage attainment process with 
the testing-skill of test-case designer. But all 
the above models do not take into account the 
simultaneous effect of time and resources or 
concurrent effect of time and coverage. Therefore 
such models can be termed as one-dimensional 
software reliability growth models. In order 
to capture the mutual effect of testing time 
and resources or simultaneous effect of testing 
time and coverage, two dimensional software 
reliability growth model (2-D SRGM) is needed. 
In this paper we develop three different 2-D 
SRGMs, two of which takes into consideration the 
simultaneous effect of testing time and resources 
and the third is developed for concurrent effect 
of testing time and coverage. Further, this paper 
also focuses on optimal allocation decisions at 
unit testing level. Optimization problems which 
simultaneously allocate testing time and resource 
are also formulated and solved using Genetic 
Algorithm.

1.1 testing resources in Software reliability 
Modeling

In today’s world the two foremost 
possessions after which every company, every 
organization and every individual is struggling 
for optimization are Time and Resources. The 
rationale being, both of them are limited and 
precious too. And during the testing of software 
these resources are one of the major factors that 
have an influence on determining cumulative 
number of faults removed from the software. It 
is infact a vital aspect which makes testing phase 
important because it is this phase only which 
consumes a chief portion of the total resources 
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available for the software development. Basically, 
testing activities account for 30 to 90 percent of 
labor expended to produce a working program 
[1]. Therefore, it is necessary to capture the 
effect of resources along with time in modeling 
software reliability growth models. 

1.2 testing coverage in Software reliability 
Modeling

The level of testing required usually depends 
on the potential consequences of undetected 
bugs. For evaluating the coverage of code being 
tested for identifying the errors a significant 
measure of Testing Coverage is used by software 
developers as it helps in evaluating the quality of 
the tested software. Testing Coverage determines 
how much additional effort is needed to improve 
the reliability of the software besides providing 
customers with a quantitative confidence criterion 
while planning to use a software product. Testing 
Coverage is a structural testing technique in 
which the software performance is judged with 
respect to specification of the source code and the 
extent or the degree to which software is executed 
by the test cases [12, 13]. Technically, it is defined 
as the ratio of the number of potential fault-sites 
sensitized by the test divided by the total number 
of potential fault-sites under consideration. 
And as mentioned above, in literature software 
reliability growth models relating testing coverage 
to software reliability have been proposed, but 
they fail to incorporate the concurrent effect of 
time and Testing Coverage in determining the 
cumulative number of faults removed. 

There have been plenty of coverage measures 
proposed in literature, such as function coverage, 
statement coverage, branch coverage,  data 
flow coverage, and so on. Different measures 
have their advantages and disadvantages when 
analyzing coverage [29, 22]. However, in this 
paper we have restricted ourselves to statement 
coverage only.  Statement coverage (also known 
as line coverage and basic block coverage) tells 
about each execution. It reports the total number 
of statements (blocks) that have been executed 
by the test data. Its great advantage is that it is 
insensitive to some control structures.

2. two dimensional Modeling framework

It is important to understand that the testing 
time as the only metric cannot give the complete 
picture of the reliability of the product. Therefore, 
in this section, we develop a two-dimensional 
modeling framework which incorporates the 
combined effect of testing time and resources/
coverage to remove the faults lying dormant in 
the software. In recent years, Ishii and Dohi[14] 
proposed a two dimensional software reliability 
growth model and its applications. They 
investigated the dependence of test-execution 
time as a testing effort on the software reliability 
assessment, and validate quantitatively the 
software reliability models with two-time 
scales. Inoue and Yamada[11] also proposed 
two dimensional software reliability growth 
model. However their modeling framework was 
not a direct representative of using mean value 
functions to represent of fault removal process. 
They discussed software reliability assessment 
method by using two dimensional Weibull-type 
SRGM.

The models developed in the paper are based 
on the Cobb Douglas production function. The 
Cobb–Douglas functional form [12] of production 
functions is extensively used to characterize the 
rapport of an output to inputs. It was proposed 
by Knut Wicksell (1851–1926), and tested 
against statistical evidence by Charles Cobb 
and Paul Douglas in 1900–1928. The function 
of Cobb-Douglas presents a simplified outlook 
of the economy in which production output is 
obtained by the amount of labor occupied and the 
amount of capital invested. While there are many 
factors influencing economic performance, their 
model demonstrated remarkable accuracy. The 
mathematical form of the production function is 
specified as:

Y = ALvK1-v

where: Y = total production (the monetary value 
of all goods produced in a year)

L = labor input

K = capital input

A = total factor productivity
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v is elasticity of labor. This value is constant 
and is determined by available technology. Figure 
2.1 shows graphically how the total production 
is influenced due to change in the proportion of 
labor and capital.

3.2 Model assumptions and Model 
development

The basic assumptions of the model are as 
follows:
1. Failure /fault removal phenomenon is 

modeled by NHPP.
2. Software is subject to failures during 

execution caused by faults remaining in the 
software.

3. Failure rate is equally affected by all the faults 
remaining in the software.

4. On a failure, the fault causing that failure is 
immediately removed and no new faults are 
introduced.

5. To cater for the combined effect of testing 
time and resources, we use Cobb-Douglas 
production function of the following  form:  

The basic assumptions of the model are as follows: 
1. Failure /fault removal phenomenon is modeled by NHPP. 
2. Software is subject to failures during execution caused by faults remaining in the software. 
3. Failure rate is equally affected by all the faults remaining in the software. 
4. On a failure, the fault causing that failure is immediately removed and no new faults are 

introduced. 
5. To cater for the combined effect of testing time and resources, we use Cobb-Douglas 

production function of the following  form:   
1 0 1s u

α ατ α−≅ ≤ ≤             (3.1) 

 
Under the above assumptions the differential equation representing the rate of change of 
cumulative number of faults detected w.r.t. to time and resources is given as: 

( )( ) ( )m b a mτ τ= −′              (3.2) 
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3. Time and Resource Dependent Two Dimensional Exponential SRGM 

 
3.1 Model Notations 

a Initial number of faults. 

b Fault detection rate per remaining fault. 

s Testing time. 

u Resources. 

 Resource Elasticity to Testing Time 

m (s, u) Cumulative number of faults removed by time s and with the usage of 
resources u 

 
3.2 Model Assumptions and Model Development 

3. time and resource dependent two 
dimensional exponential SrgM

3.1 Model notations

a Initial number of faults.
b Fault detection rate per remaining fault.
s Testing time.
u Resources.
α Resource Elasticity to Testing Time
m  

(s, u)
Cumulative number of faults removed by 
time s and with the usage of resources u
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faults were removed. The estimation results for 
both data sets are given in Table 3.1. To check 
the performance of the model estimates we have 
compared the results with the traditional time 
dependent GO model [3]. The goodness of fit 

measures used are Mean Square Error (MSE) 
and Coefficient of multiple determination (R2). 
The results are tabulated in table 3.2. Goodness 
of fit curves is shown in Figure 3.1 and  
Figure 3.2.

table 3.1:  Parameter estimates

a b α
DS-1
Proposed Two dimensional  model (eqn. 3.3) 2700 0.006892 0.342473
One dimensional GO model [3] 2733 0.049432 -
dS-2
Proposed Two dimensional model (eqn. 3.3) 132 0.011457 0.687663
One dimensional GO model[3] 131 0.083166

table 3.2:  goodness of fit Measures

R2 MSE
DS-1
Proposed Two dimensional  model (eqn. 3.3) 0.989 1655.75
One dimensional GO model [3] 0.983 2717.90
DS-2
Proposed Two dimensional  model (eqn. 3.3) 0.990 9.01
One dimensional GO model [3] 0.986 11.83

Figure 3.1: Goodness of Fit Curve (DS-1)      Figure 3.2: Goodness of Fit Curve (DS-2)

4. time and resource dependent two-dimensional Model for faults of different Severity

4.1 notations

a
1,     a2      ,a3

Constants, representing number of simple, hard, complex  faults lying dormant 
in the software at the beginning of testing phase  .
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a Constant, representing number total faults lying dormant in the software at the 
beginning of testing phase(=a1+a2+a3)

b
1
,     b

2
      ,b

3
Fault detection rate for simple, hard and complex fault.

p Proportion of simple faults lying in the software
q Proportion of hard faults lying in the software

s/t Testing time.
u Resources.
α Time Elasticity to fault removal.

m(t) Cumulative Number of Faults Removed by time t.

m (s, u) Cumulative number of faults removed by time s and with the usage of  
resources u.

4.2 time dependent Model with faults of 
different Severity [19]: a review

These SRGMs take into consideration the 
modeling framework only with respect to time. 
The assumption that governs these models is, 
‘the software failure occurs at random times 
during testing caused by faults lying dormant 
in software.’  And, for modeling the software 
fault detection phenomenon, counting process   
{N (t); ≥ 0} is defined which represents the 
cumulative number of software faults detected 
by testing time t. The SRGM based on NHPP is 
formulated as:
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Where m (t) is the mean value function of 
the counting process N (t).

Modeling Simple faults

Simple faults are the faults which can be 
removed instantly as soon as they are observed. 
Hence Fault removal is modeled as one-stage 
process:
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4.3 time and resource dependent Model with 
fault Severity: assumptions and development

Apart from the postulation of NHPP, the 
other assumptions of the time and resource 
dependent two dimensional model are:
1. The faults existing in the software are of three 

types: simple, hard and complex. 
2. Fault removal process is prefect and failure 

observation/fault isolation/fault removal 
rate is constant.

3. Each time a failure occurs, an immediate 
(delayed) effort takes place to decide the 
cause of the failure in order to remove it. The 
time delay and more resource usage between 
the failure observation and its subsequent 
fault removal is assumed to represent the 
severity of the faults. 

4. To cater for the combined effect of testing 
time and resources we use Cobb-Douglas 
production function of the following form: 
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4.4 Model Validation 
To measure the performance of the proposed model we have carried out the parameter estimation 
on the data set (DS-3) cited from Brooks and Motley [2]. The fault data set is for a radar system 
of size 124 KLOC (kilo lines of code) tested for 35 months in which 1301 faults were identified 
and resources of 1846 were consumed. The estimation result for the data set is given in Table 4.1. 
To check the performance of the model estimates we have compared the results with the 
traditional time dependent model with fault severity [19]. The goodness of fit measures used are 
Mean Square Error (MSE) and Coefficient of multiple determination (R2). Based on the 
comparison results (large R2, and small MSE) it is observed that the proposed model is better than 
its counterpart in one dimension (Table 4.2). This is due to the fact that the estimates are 
simultaneously based on testing time and manpower resources. The 3-D graph of goodness of fit 
depicting the cumulative number of faults with respect to time and resources for the data is shown 
in figure 4.1. 

 
Table 4.1:  Parameter Estimates for DS-3 

 a b1 b2 b3 p q  
Time Dependent 
SRGM for faults of 
different severity  
(eqn. 4.10) 

2416 0.001 0.06383 0.16664 0.41504 0.001  

Time And Resource 
Dependent SRGM for 
faults of different 
severity (eqn. 4.19) 

1366 0.12457 0.01680 0.02471 0.09578 0.12402 0.48494 

.  
Table 4.2:  Goodness of Fit Measures for DS-3 

 R2 MSE 
Time Dependent SRGM for faults of different severity  
(eqn. 4.10) 0.994 43.28571 

Time And Resource Dependent SRGM for faults of different 
severity (eqn. 4.19) 0.997 
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4.4 Model Validation

To measure the performance of the proposed 
model we have carried out the parameter 
estimation on the data set (DS-3) cited from 

Brooks and Motley [2]. The fault data set is for a 
radar system of size 124 KLOC (kilo lines of code) 
tested for 35 months in which 1301 faults were 
identified and resources of 1846 were consumed. 
The estimation result for the data set is given in 
Table 4.1. To check the performance of the model 
estimates we have compared the results with 
the traditional time dependent model with fault 
severity [19]. The goodness of fit measures used 
are Mean Square Error (MSE) and Coefficient 
of multiple determination (R2). Based on the 
comparison results (large R2, and small MSE) 
it is observed that the proposed model is better 
than its counterpart in one dimension (Table 
4.2). This is due to the fact that the estimates 
are simultaneously based on testing time and 
manpower resources. The 3-D graph of goodness 
of fit depicting the cumulative number of faults 
with respect to time and resources for the data is 
shown in figure 4.1.

table 4.1:  Parameter estimates for dS-3

a b1 b2 b3 p q Α
Time Dependent SRGM for faults of 
different severity (eqn. 4.10) 2416 0.001 0.06383 0.16664 0.41504 0.001

Time And Resource Dependent SRGM for 
faults of different severity (eqn. 4.19) 1366 0.12457 0.01680 0.02471 0.09578 0.12402 0.48494

table 4.2:  goodness of fit Measures for dS-3

r2 MSe
Time Dependent SRGM for faults of different severity (eqn. 4.10) 0.994 43.28571
Time And Resource Dependent SRGM for faults of different severity (eqn. 4.19) 0.997 20.05714

Figure 4.1 Goodness of Fit Curve for DS-3
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5. time and coverage dependent two-
dimensional Model with change Point

5.1 change Point in Software reliability 
Modeling

One of the most important factors while 
modeling SRGMs is the fault detection rate (FDR). 
FDR helps in measuring the effectiveness of fault 
detection by test techniques and test cases. Many 
SRGMs assume that this detection rate remains 
same throughout the testing phase. However, 
in practical situations it is dubious that the 
stability of the factor can be guaranteed during 
the whole process of software testing. Indeed, the 
characteristic of the software failure-occurrence 
or the fault-detection phenomenon is notably 
changed. When this change occurs that point 
is termed as change point. This would result 
in a software failure intensity function either 
increasing or decreasing monotonically [7]. The 
position of the Change Point can be judged by 
the graph of actual failure data. The work in this 
area started with Zhao [39] who introduced the 
Change Point analysis in Hardware and Software 
reliability. Shyur [27], Huang [7], Wang [28] also 
made their contributions in this area.

In this section we develop a two-dimensional 
model which measures the concurrent effect of 
time and testing coverage to remove the faults 
lying dormant in the software in which the FDR 
is changed at change point.

5.2 notations

a Initial number of faults in software
s Testing time.
u Testing Coverage.
α Time Elasticity to fault removal
m  
(s, u)

Cumulative number of faults removed 
by time s and with coverage u

λ
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b1
Fault detection rate per remaining fault 
before change point.

b2
Fault detection rate per remaining fault 
after change point.

β1 Constant before change point
β2 Constant after change point

5.3 Model assumptions
1. On a failure, the fault causing that failure is 

immediately removed and no new faults are 
introduced.

2. Fault detection rate changes at λ0.
3. To cater the combined effect of testing 

time and coverage, we use Cobb-Douglas 
production function of the following form:   

b2 Fault detection rate per remaining fault after change point. 

1 Constant before change point 

2 Constant after change point 
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5.5 Model Validation 
We have carried out the parameter estimation on two data sets. First data set (DS-4) is cited in 
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Data set with 796 test cases and 9 cumulative 
numbers of faults removed with block coverage 
as 95.99%. Second data set (DS-5) is also from 
Malaiya et al [37]. The overage data set consists 
of 9 cumulative faults removal with 1196 test case 
covering 95.97% of the block coverage. To check 
the performance of the model estimates we have 
compared the results with the traditional time 
dependent flexible SRGM by Kapur and Garg[15]. 
The goodness of fit measures used are Mean 
Square Error (MSE), and Coefficient of multiple 
determination (R2). 

dS-4

The Change point for DS-4 is obtained at (44, 
87) (see figure 5.1).

The parameter estimates results for DS-4 
is tabulated in Table 5.1. The comparison result 
for the data is shown in Table 5.2. The 3-D 
graph of goodness of fit depicting the estimated 
cumulative number of faults with respect to time 
and coverage is shown in figure 5.2 

Figure 5.1: Actual Failure Data Set (DS-4)

Figure 5.2: Goodness of Fit Curve(DS-4)

dS-5

The Change point for DS-1 is obtained at (20, 
70.5) (see figure 5.3).

table 5.1: Parameter estimates for dS-4

Proposed two 
dimensional 

Model (eqn. 5.6)

one dimensional 
Kg Model [15]

a 10 9
b1/b 0.031884 0.052937
b2 0.02248 -

β1/ β 1.028487 0.001

β2 0.001 -
α 0.523349 -

table 5.2: goodness of fit Measures for dS-4

Proposed two 
dimensional 

Model (eqn.5.6)

one dimensional 
Kg Model[15]

r 2 0.991 0.922

MSe 0.06847 0.5823
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The parameter estimates results and 
goodness of fit measures for DS-5 is tabulated 
in Table 5.3 and 5.4 respectively. The 3-D graph 
of goodness of fit depicting the estimated 
cumulative number of faults with respect to time 
and coverage is shown in figure 5.4.

Figure 5.3: Actual Failure Data Set (DS-5)

table 5.3: Parameter estimates for dS-5

 
Proposed two 
dimensional 

Model (eqn.5.6)

one 
dimensional Kg 

Model [15]
a 10 9

b1/b 0.016475 0.018364
b2 0.022992 -

β1/ β 1.576795 0.001
β2 2.074583 -
α 0.288297 -

table 5.4: goodness of fit Measures for dS-5

 
Proposed two 

dimensional Model 
(eqn.5.6)

one 
dimensional 

Kg Model [15]
r 2 0.973 0.947

MSe 0.2094714 0.4177143

Based on the comparison results (large R2, 
large adjusted R2, small bias and small MSE) it is 
observed that the proposed model is better than 
its counterpart in one dimension. This is due to 
the fact that the estimates are concurrently based 
on testing time and testing coverage.

6. Simultaneous optimal allocation of time 
and resources for Modular Software

Allocation decisions are critical for the 
software systems. Moreover, the objective behind 
such critical decisions can vary from firms to 
firms. The motive of the firm can be maximization 
of software reliability or maximization of number 
of faults to be removed from each module or it can 
be minimization of number of faults remaining 
in the software or minimization of software 
development cost. Taking into consideration these 
different aims, various authors have investigated 
the optimal time or optimal resource allocation 
problems. Xie and Yang [31] studied problem 
of optimal testing-time allocation for modular 
software systems with the aim to maximize 
the operational reliability of a simple software 
system. Ohetera  and Yamada [24] developed 
and solved two resource allocation problems for 
modular software, minimizing the mean number 
of remaining faults in the software modules 
when the amount of available testing resources 
is previously specified and vice versa. Yamada 
et al. [33] further studied the allocation problem 
minimizing the mean number of remaining 
faults in the software modules with a reliability 
aspiration and budget constraint. Huo et al. [10] 
determined the optimal amount of resources 
needed for software module testing using the 
hyper-geometric software reliability growth 
model. Kapur et al. [16] discussed the testing 
resource allocation problem to maximize the total 
fault removal from software consisting of several 
independent components. And for the resulting 
optimization problem, they defined marginal 
testing effort function (MTEF), where the testing 
resource consumption was represented in terms 
of fault removal. Further, Kapur et al.[17, 18] 
studied various resource allocation problems 
maximizing the number of faults removed form 
each module under constraint on budget and 

Figure 5.4: Goodness of Fit Curve (DS-5)
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management aspirations on reliability using 
exponential and S-shaped SRGMs [3, 19]. They 
have discussed dynamic, mathematical and goal 
programming approaches to yield solutions of 
such class of optimization problems. Huang et 
al. [8] investigated an optimal resource allocation 
problem in modular software systems where the 
failure phenomenon of each of the modules was 
described by an exponential curve during testing 
phase. The main purpose was to minimize the 
cost of software development when the number 
of remaining faults and a desired reliability 
objective are given.

The above mentioned literature takes into 
consideration only one aspect of real life situation 
problems-either time or resource. However, 
for a software development firm it would be 
more advantageous if they could concurrently 
allocate time and resources optimally to modular 
software product. Our proposed mathematical 
optimization problem offers this advantage to 
the development organizations. In this paper 
we investigate two dimensional optimization 
problems which assigns testing time and 
manpower resources among the modules 
simultaneously.

The resulting problems are solved using 
genetic algorithm. Genetic Algorithms (GA) 
stand up a powerful tool for solving search and 
optimization problems. GA always considers 
a population of solutions that offers a lot of 
advantages. GA has been used to solve many 
difficult engineering problems and is particularly 
effective for combinatorial optimization problems 
with large, complex search spaces Zaki et.al 
[38]. The GA has been applied to the reliability 
allocation problem of a typical pressurized water 
reactor in nuclear power plants in Yang et.al [36] 
and has also been used in system reliability by 
Painton and Campbell [25].

6.1. genetic algorithm

Genetic algorithms are described by the 
natural process of evolution, which is a rapidly 
growing field of artificial intelligence. GA is 
inspired by the theory of Charles Darwin about 
the natural evolution in the origin of species.  
Goldberg [4] gave the introduction of GA. 

For implementing the GA in solving the two 
dimensional simultaneous time and resource 
allocation problems, the following steps are 
considered.

Step 1: chromosome representation

Genetic  Algorithm starts  with the 
initial population of solutions represented as 
chromosomes. A chromosome consists of genes 
where each gene represents a specific attribute of 
the solution. In our problem each chromosome of 
length 2N is taken (Figure 5.1). It is divided into 
two parts. First N genes corresponds to testing 
time (si, i=1,2,…N) and last N to resources(ui, 
i=1,2,…N). 

Figure 6.1: Chromosome Representation for two 
dimensional problem 

Step 2: initial Population

For a given total testing time S and total 
manpower resources U, GA generates the initial 
population randomly. It initialize to random 
values within the limits of each variable. Here, we 
for the first N variables the limit is with respect to 
testing time and for the last N variables the limit 
is with respect to manpower resources

Step 3: fitness of a chromosome

The fitness is a measure of the quality of 
the solution it represents in terms of various 
optimization parameters of the solution. A fit 
chromosome suggests a better solution. In the 
allocation problem (P1), the fitness function is the 
objective of optimization problem along with the 
penalties of the constraints that are not met. 

Step 4: Selection

Selection is the process of choosing two 
parents from the population for crossover. The 
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higher the fitness function, the more chance 
an individual has to be selected. The selection 
pressure drives the GA to improve the population 
fitness over the successive generations. Selection 
has to be balanced with variation form crossover 
and mutation. Too strong selection means sub 
optimal highly fit individuals, will take over the 
population, reducing the diversity needed for 
change and progress; too weak selection will 
result in too slow evolution. We use Tournament 
selection without replacement here.

Step 5: crossover

Crossover is the process of taking two 
parent solutions and producing two similar 
chromosomes by swapping sets of genes, 
hoping that at least one child will have genes 
that improve its fitness. In our two dimensional 
problem the first N genes of a chromosome 
are crossed over with the first N genes of other 
selected chromosome. The crossover of the last 
N genes of the same chromosome takes place 
with the last N genes of other selected same 
chromosome.

Step 6: Mutation

Mutation prevents the algorithm to be 
trapped in a local minimum. Mutation plays the 
role of recovering the lost genetic materials as well 
as for randomly disturbing genetic information. 
Mutation in our case is done for first N testing 
time genes and then of the last N genes but on 
the same selected chromosome.

The steps 3 to 6 are then repeated till the 
stopping criteria of maximum generation number 
is reached. 

6.2 Simultaneous time resource allocation 
formulation for Modular Software

In this sub section we formulate two 
allocation problems for modular software 
systems. The first allocation problem uses time 
and resource dependent exponential SRGM 
developed in section 3. The second optimization 
problem optimally allocates time and resources 
when severity of faults is also taken into 
consideration. 

6.2.1 concurrent time and allocation 
-Problem 1

This optimization problem aims at 
minimization of the software development cost 
under the constraints of limited total testing time 
available and restricted manpower resources 
in the hands of the software development firm. 
Further, it is aspired that at least a pre-defined 
proportion of faults from each module should be 
removed during module testing phase.

Modeling the cost function

The cost function modeled in this research 
includes the following cost:
(i) The cost of removing a fault during testing 

phase (C1).
(ii) The cost of removing a fault after during 

operational phase (C2).
(iii) The unit cost of testing (C3).

Using (i)-(iii) the cost expression for the 
modular software system is modeled as:
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The mean value function of fault removal 
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N independent modules with the objective of 
minimizing the total expected software cost given 
by Eq. (6.3), such that at least pi proportion of 
the faults are removed from each module with 
S to be the total testing time and U to be total 
manpower resources expenditure available is 
formulated as:
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6.3.1 Numerical example of the Simultaneous Allocation of Testing Time and Manpower 
Resources for Allocation Problem 1 
Consider modular software system having three modules; each is modeled under the modeling 
framework given in section 3. The parameters of each module are assumed to be estimated.  

6.3 numerical illustration

6.3.1 numerical example of the Simultaneous 
allocation of testing time and Manpower 
resources for allocation Problem 1

Consider modular software system having 
three modules; each is modeled under the 
modeling framework given in section 3. The 
parameters of each module are assumed to be 
estimated.  These estimates are given in table 
6.1. The total testing time is assumed to be 1000 
hours. The total resources available are assumed 
to be 60000. The cost parameters for each module 
is taken to be same only for the sake of numerical 
example, i.e. C1i=C1=5; C2i=C2=10 and C3=2, 
i=1,2,3. Also, it is desired that at least 90% of the 
faults are to be removed from each module.

table 6.1: Parameter estimates used in 
Simultaneous allocation of testing time and 

resources Problem

Module a b α
M1 218 0.000647 0.479
M2 105 0.001055 0.443
M3 361 0.000574 0.398

total number 
of faults: 684

The problem is solved using genetic 
algorithm proposed using Microsoft Visual C++ 
6.0 programming software. The parameters used 
in GA evaluation are: 

Population Size: 250

number of generations: 100

Selection Method: Tournament Selection without 
Replacement

crossover: Simulated Binary Crossover (SBX) 
with crossover probability as 0.9.

Mutation: Polynomial mutation with probability 
of mutation as 0.1.

The optimal allocation of testing time and 
resources among the modules based upon the 
above information is shown in Table 6.2. The 
total testing time spent during module testing 
came to be 998.24 hours and the total resources 
allocated were obtained as 59464.55. The optimal 
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(minimum) cost of testing for the numerical 
illustration of (P1) came out to be 23308.08. The 
number of faults removed and remaining and 
the proportion of the faults removed from each 
module within the available time and resources 
is given in Table 6.3

table. 6.2: optimal allocation of testing time 
and resources for modules

Module testing time Manpower resources
M1 457.28 23553.58
M2 284.98 11035.67
M3 255.98 24875.30

table 6.3: number of faults removed and 
remaining and the proportion of the faults 

removed from each module

Module a m a-m Proportion of 
faults removed

M1 218 197 21 0.90367
M2 105 95 10 0.904762
M3 361 325 36 0.900277

total 684 617

6.3.2 numerical example of the Simultaneous 
allocation of testing time and Manpower 
resources for allocation Problem 2

Consider modular software system having 
three modules; each is modeled under the 

table 6.4: Parameter estimates used in Simultaneous allocation of testing time and resources 
Problem

Module a b1 b2 b3 p Q α
M1 266 0.001245 0.001680 0.002471 0.09578 0.02402 0.4879
M2 105 0.001450 0.001055 0.003432 0.07175 0.05431 0.5143
M3 200 0.002171 0.008055 0.001547 0.02934 0.05908 0.3298

total number of faults: 571

modeling framework given in section 4. The 
parameters of each module are assumed to be 
estimated.  These estimates are given in Table 
6.4. The total testing time is assumed to be 
2000 hours. The total resources available are 
assumed to be 75000. Also, it is desired that at 
least 90% of the faults are to be removed from 
each module.

The parameters used in GA evaluation 
are: 

Population Size: 250

number of generations: 120

Selection Method: Tournament Selection without 
Replacement

crossover: Simulated Binary Crossover (SBX) 
with crossover probability as 0.95.

Mutation: Polynomial mutation with probability 
of mutation as 0.1.

The optimal allocation of testing time 
and resources among the modules based upon 
the above information is shown in Table 6.5. 
The total testing time spent during module 
testing came to be 1999.068 hours and the 
total resources allocated were obtained as 
74812.293.

table 6.5: optimal Simultaneous allocation of testing time and resources 

Module time resource
Simple 
faults  

removed

Hard 
faults  

removed

complex
faults  

removed

total 
faults  

removed

Proportion of 
 faults  

removed
M1 974.9669 27325.142 25 6 234 265 0.99
M2 806.7409 33603.24 7 5 91 103 0.98
M3 217.3606 13883.91 5 11 165 181 0.91

1999.068 74812.293 549
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7. conclusion and future Scope

This paper proposes three two dimensional 
software reliability growth models two of which 
cater the simultaneous effect of testing time 
and resources and the third one is developed 
under the assumption that the fault removal 
rate is dependent concurrently on testing time 
and testing coverage. All the models proved 
to be better when compared with their one 
dimensional testing time dependent models. Two 
simultaneous allocation problems of testing time 
and resources have also been formulated and 
solved in the paper. For solving the complex non 
linear two dimensional optimization problems 
meta heuristic technique of Genetic Algorithm 
has been employed. 

In this paper it is assumed that the model 
is developed under the perfect debugging 
environment. The overcoming of this limitation 
in modeling forms a scope of future research. 
We have focused only on two dimensional 
frameworks in this work. In future we can explore 
the possibility of including multi dimensional 
software reliability growth modeling so as to  
take care the effect of not only testing coverage 
but also other testing factors like testing effort, 
testing time/number of test cases on the fault 
removal process simultaneously. One of the 
functional forms that can be used for this purpose 
is the multi dimension extension of Cobb Douglas 
function given by: 
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1. introduction:

The focus of this research work is on 
the reliability studies of mechanical systems, 
with special emphasis on rotary systems. 
Mechanical systems can be classified as stationary, 
reciprocating, sliding and rotational. The type of 
forces and the failure mechanisms acting on these 
systems are also of different nature. Therefore, 
reliability studies on mechanical system require 
different approaches depending on the system.

In this paper a mathematical model based on 
the simulation methodology has been developed 
for the assessment of reliability of a low pressure 
turbine shaft made of alloy steel 2.5 Ni-Cr-Mo-V. 
This section provides a brief literature review on 
the failure mechanisms of mechanical systems, 
failure models, stress-strength models, reliability 
and imbalance in rotary systems.

1.1 reliability of Mechanical Systems

The approaches for modeling mechanical 
system reliability have been discussed by several 
authors. Carter [1] opined that the mechanical 
system reliability mostly relies on the factor of 
safety or safety margins based on the empirical 
methods and experience, rather than on the 
scientific and statistical approach. Yoshikawa 
[3] also has pointed out that due to complexities 
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of mechanical systems; conventional reliability 
theory is not adequate. Carter [4, 5] did extensive 
research on the reliability of the components 
under fatigue and wear-out (degradation) failures 
and shown that due to degradation in strength 
the failure rate steadily increases. The author has 
shown that a modified Weibull distribution can 
be used to represent the early life failure patterns 
in mechanical systems. 

Application of stress-strength interference 
technique using moments and Monte-Carlo 
simulation by Keceoglu [2], mechanical reliability 
review by Martin et al [6], a method to evaluate 
the reliability of the components by vibration 
testing by Chegdaev and Samsonov [7], a multi-
state fault tree method by Charlesworth and Rao 
[8], a model based on the Esscher method  by 
Radhakrishna [9], a system-reliability model for 
mechanical systems based on the graph theory 
and Boolean function by Tang [10],  a method 
to implement the reliability analysis at the 
conceptual design phase by Avontuur and Weff 
[11], a digraph method to find the reliability of 
the interacting tribo pair by Sharma and Gandhi 
[12] are several recent approaches for modeling 
mechanical systems reliability. 

Modelling of degradation failure mechanisms 
using stress-strength technique by Srinath [36], 
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Dasgupta and Pecht [37], modelling of fatigue, 
diffusion, inter-diffusion, creep, corrosion, wear, 
Radiation damage, large elastic deformation, 
yield, buckling, fracture by Dasgupta and Pecht 
[37, 38], inter-diffusion and creep failures by Li 
and Dasgupta [39, 40], wear modeling by Engel 
[41], large elastic deformation by Dasgupta and 
Hu [42], buckling problem by Dasgupta and 
Haslach [43] fracture processes by Dasgupta and 
Hu [44] are significant contributions in modeling 
of mechanical failure mechanisms. Dasgupta and 
Pecht [37] have classified the failure mechanisms 
into four types of failure models such as Stress 
– Strength interference (SSI) models, Damage – 
Endurance models, Challenge – Response model, 
Tolerance – Requirement models. They have 
presented several examples for these models. 

From the afore discussed research works 
of Dasgupta and other authors [36 – 44], it is 
identified that while listing the conceptual models 
for failure states they stated that the Stress–
Strength interference (SSI) model is suitable for 
the failure analysis of mechanical systems and 
components where strength and stress applied 
are often treated as the random variables. A 
critical analysis of the above literature shows 
that technical issues arising out of the several 
dynamic problems of mechanical systems are 
not considered for reliability modeling studies. 
The literature on imbalance in rotary systems is 
presented in the next sub-section.

1.2 rotating systems

Othman et al [13] have stated that rotating 
machinery are vulnerable to varieties of problems 
originating from rotating shafts, gears, pumps 
etc. and a little defect such as a crack or chip 
interference could lead to a major disaster. The 
authors stress that the mass imbalance, shaft 
misalignment, and the improper surface finish 
need to be addressed to avoid disasters. The 
mass imbalance in the rotating machines causes 
vibrations which in turn lead to unwanted motion 
of the rotors. Rotor-to-stator rub is one such 
problem arises due to the vibration in rotating 
machinery. Muszynska [14, 15], Goldman and 
Muszynska [16], Chu and Lu [17], Jiang et al [18] 
studied about rotor-to-stator rub and published 

their research findings. Collacot [19] has correctly 
stated that the forces generated due to the 
imbalance of rotor can be very large especially 
at high rpm of rotor. The author also suggested 
the need of further studies on this.

Lum et al [20], Zhou and Shi [21], Hredzak 
and Guo [22], Lee et al [23] and many other 
authors such as DeSmidt [24], Oladejo et al [25],   
Horvarth et al [26], Ohtomi et al [27], Bansal et al 
[28], Lum et al [29 – 32], Manchala et al [33, 34], 
Kang [35] have done extensive work on balancing 
of rotors and published their research findings 
regarding the balancing of rotating systems. 
A critical review of this literature reveals that 
most of the works carried in this area are of two 
types. The first one is on effect of rotor-to stator- 
rub due to imbalance, and the second one is on 
balancing the rotary systems. No publication is 
found on reliability modelling of rotary systems 
with mass imbalance. However several authors 
have suggested the need of such work. The 
authors of the present paper felt that SSI models 
can help to develop such models. Therefore, the 
literature on stress-strength models is reviewed 
in the next section.

1.3 Stress – Strength interference models

  As mentioned by Kotz et al. [45] the germ 
of the stress-strength inference theory was 
introduced by Birnbaum [46]. The theory is 
further developed by Birnbaum and McCarty 
[47]. Owen et al [48] constructed confidence 
limits for P(X<Y), when X and Y are dependent 
or independent normally distributed random 
variables. Many authors such as Kapur and 
Lamberson [49], Dhillon [50], Chung [51], Reiser 
and Guttman [52, 53], Dargahi-Nourbary [54], 
Murty and Naikan [55, 56], Murthy and Verma 
[57], Wang and Liu [58, 59], English et al. [60], 
Aminzadeh [61], Alam and Roohi [62], Khan and 
Islam [63], Zong-wen et al [64] have discussed 
and published their research findings about SSI 
models and their applications. 

On the application side of SSI models, 
Boehm and Lewis [65] applied the SSI approach 
to the reliability analysis of the ceramics, where 
the fracture caused by volume embedded cracks. 
Miller and Freivalds [66] used the SSI model to 
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study the incident rate of Carpal Tunnel Syndrome. 
A critical analysis of the literature shows that the 
principles of stress-strength interference are 
currently used for modeling failure mechanisms 
of mechanical systems. However, finding out 
the joint probability distributions of stresses 
acting due to several failure mechanisms and 
the associated difficulties in solving complicated 
problems are the challenges. Simulation seems 
to be a possible tool for simplifying the solution 
procedures.

Based on the survey of literature on 
mechanical systems reliability with emphasis 
on rotary systems, it is observed that the research 
work on mechanical systems reliability have 
been the focus of several researches in recent 
times. Rotor balancing has been researched well 
by several authors, but no research is done to 
establish the relationship between reliability and 
imbalance. In the view of these research gaps, an 
attempt has been made in this paper to close the 
gap by presenting a reliability model for the rotary 
systems with imbalance. The effect of imbalance 
is included the SSI model for reliability studies. 
Due to the complexity of finding analytical closed 
form solution, simulation approach is used. 

The remaining part of the paper is organized 
as follows: Section 2 presents the rotary system 
and their failures with specific emphasis on 
imbalance, section 3 presents the details of 
the proposed model, section 4 illustrates the 
proposed methodology with a case study on low 
pressure turbine shaft and section 5 presents the 
conclusions with scope of future work. The paper 
ends with references and notations are listed in 
the appendix.

2 rotor imbalance:

If the center of rotation of the rotor is not 
coinciding with the axis of the rotation of the shaft, 
the rotor becomes unbalanced. This generates 
large forces when the system rotates, especially 
at higher speeds. The quantity of the unbalanced 
force depends both on the unbalanced mass, its 
distance from the center of rotational axis and the 
rotational speed [19].

 The force due to imbalance is given by

Fim = mr w 2 (1) 

It can be seen that even a little imbalance in 
the rotor generates huge force resulting in 
considerable stress. All the rotary systems 
are vulnerable to imbalances. Steam and gas 
turbines, rotary compressors, electrical motors, 
industrial draft fans and several other systems are 
examples. There are also other rotary systems for 
transferring power or torque. These systems will 
have components such as gears, pulleys, rollers, 
blades etc. mounted on the shaft. Over a period 
of operation, these are likely to create imbalance 
of the system. An attempt is made to model the 
effect of imbalance on rotor reliability.

Literature shows several theories for 
designing the shafts. Important amoung these 
are Rankine theory, Tresca or Guest’s theory, 
Saint Venant theory, Haigh’s theory, and Von 
Mises theory [67]. During the transmission of 
power as stand alone transmitter or with the 
help of mounted gears, pulleys etc., the shaft is 
subjected to both twisting moment and bending 
moment. Therefore, when the shaft is designed, 
both moments are considered simultaneously, to 
compensate the elastic failures due to combined 
stresses. The Rankine’s (maximum normal stress 
theory) and Guest’s (maximum shear stress 
theory) theories are widely used [67].

The Maximum shear stress in the shaft, 
according to Guest theory [67] is given by,
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whether the load acting on the component is steady load, live (dynamic) load or shock 

load [64]. Some times for dynamic loads, the factor of safety will be as high as 12 to 15 
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The equations (4 and 5) give total stress acting on the shaft, including the stress produced 

due to force of imbalance.  
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The computed dimensions are then 
multiplied with factor of safety (FS) based on 
whether the load acting on the component is 
steady load, live (dynamic) load or shock load 
[64]. Some times for dynamic loads, the factor of 
safety will be as high as 12 to 15 depending on the 
material used and the application. These FS are 
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empirical assessment based on the observations 
and experience, and not the exact one [1]. The ill 
effects of FS are large dimensions, space, weight 
and cost.

 The stress caused by the imbalance force 
will produce considerable bending moment and 
a negligible amount of torque in the shaft [68]. 
The bending moment due to force caused by mass 
imbalance together with the bending moment of 
the rotor due to usual operational forces, act on 
the shaft. The combined effect of these stresses 
when exceeds the ultimate strength the rotor 
shaft, it fails.

Effective stress on the shaft:

To find the effective stress, the bending 
moment due to the force of imbalance bending 
moment and torque due to imbalance force 
should be added to the actual bending moment 
and actual torque respectively, in the Maximum 
stress equations (2 and 3) given by Rankine and 
Guest theories. Therefore the Effective maximum 
shear stress is given by, 
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The equations (4 and 5) give total stress acting on the shaft, including the stress produced 

due to force of imbalance.  
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Similar methods can be applied for other distributions also. For more details Kapoor and 

Lamberson [49] may be referred. 
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the effective stress (equation 4 and 5) will also 
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a probabilistic distribution. We need to find 
the distribution of the effective stress from the 
distributions of the variables. Due to the complex 
nature of these equations analytical methods 
can not be used for finding the probability 
distribution of these stresses. Therefore we 
propose to use simulation method for developing 
the probability distribution of the effective stress 
distribution, given the probability distribution of 
the constituent variables.

The ultimate material strength of the shaft 
will also have stochastic nature due to variations 
in raw material quality, manufacturing process, 
heat treatment, surface defects, and several other 
causes. Therefore we also propose to generate 
the ultimate stress values using the simulation 
method. Thereafter the two distributions 
(stress and strength) are combined using the 
well known time independent Stress-Strength 
interference (SSI) technique to compute the 
reliability using equation (6). In several literatures 
(for example Murthy and Naikan [55, 56]) this 
reliability is termed as reliability strength or static 
reliability.

For example, if both effective shear stress 
and ultimate shear strength values obtained 
by simulation follow normal distributions, 
following equation (7) can be used to compute 
the reliability.

R = 1 - F (z)                                                   (7)
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where, z is given by
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flow chart of the proposed model:

In this sub-section we presented the 
proposed model in the form of flow chart for 
better clarity.

The proposed method is illustrated by 

discussed model. The steel is heat treated for 
a temperature of 950°, for one hour and oil 
quenched. The steel is having an ultimate tensile 
strength of 700MPa [70, 71].

table 1: chemical composition of 2.5  
Ni-Cr-Mo-V steel (weight %)

c Si Mn cr ni Mo V S P
0.24 0.24 0.34 0.40 2.60 0.28 0.10 0.01 0.01

The turbine shaft which is considered for 
this case study is of diameter 0.064 m. This shaft 
is attached with an inlet fan assembly at end A, 
which exerts a vertical force of 7200 N and the 
shaft is supported by a bearing at B. Figure 2 
gives all the dimensional details. 

In this case study, on the basis of experimental 

Figure 1: Flow chart for Reliability and imbalance modeling.

numerical examples in the following section.

4. case study

In this case study, we have taken a low 
pressure turbine shaft made of 2.5 Ni-Cr-Mo-V 
steel for its reliability assessment through afore 

Figure 2: Shaft and four blade fan assembly with 
imbalance mass

results an attempt has been made to establish 
the ranges of speed safer for the system and 
imbalance mass for a given target reliability. 
The effective total stress is computed using the 
proposed model discussed in afore discussed 
section, and the reliability of the shaft is computed 
by simulation technique.

 In this illustration, the simulation is 
first done starting with a unbalance mass of 0.1 
kg (and for different imbalance masses up to 
1 kg) and for the various speeds. The effective 
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shear and tensile stresses are computed by the 
equations (4 and 5). These effective stress values 
are fitted to various distributions and it is found 
that the data can be best fitted by a normal 
distribution. The ultimate strength is assumed to 
be following normal distribution. The reliability 
is then computed using equation (7).          

The simulation cycles are replicated for 
50000 times. The results are presented below.

results:

The results for the above example are 
presented in the figure 3 in graphical form. 
Variations of reliability with respect to imbalance 
mass and the rotational speed are shown in this 
figure. 

The ranges of safer and critical rotational 
speeds are presented in the table 2.

table 2: Safe and critical rPM of rotor

imbalance 
mass (Kg)

Safe 
rPM  

(R ≥ 0.99)

unsafe rPM  
(0.95 ≤ R ≤ 

0.99)

critical 
rPM  

(r < 0.95)
0.1 ≤ 4502 4502 – 4525 > 4525
0.2 ≤ 3150 3150 – 3205 > 3205
0.3 ≤ 2605 2605– 2615 > 2615
0.4 ≤ 2255 2255 – 2265 > 2265
0.5 ≤ 2010 2010 – 2025 > 2025
0.6 ≤ 1843 1843– 1847 > 1847
0.7 ≤ 1702 1702 – 1712 > 1712
0.8 ≤ 1592 1592 - 1602 > 1602
1 ≤ 1423 1423 – 1431 > 1431

The analysis and discussion of experimental 
results for the illustration of the 2.5 Ni-Cr-Mo-V 
low pressure turbine alloy steel shows that for 
the given dimensions, the imbalance mass is 
having negligible impact on the reliability up to 
the speed of around 1420 rpm. If the rotor system 
with imbalance mass used for higher speed 
applications its reliability decreases sharply. If the 
imbalance can be limited by regular monitoring 
and correction, then the system can be highly 
reliable and safe to operate at higher speeds. 
Therefore it is suggested that this system needs 
periodic monitoring and balancing.

Figure 3: Reliability of the shaft at different rotational 
speeds (RPM).

5. conclusions:

The rotary systems which are subjected to 
imbalance produce enormous dynamic forces 
especially at higher rotational speeds. These 
forces may be several times higher than actual 
static load or force acting on the system. Because 
of these huge forces produced, it is required to 
develop models to study and analyze the effect 
of imbalance in rotary system reliability. These 
models can also help us to find the safe, unsafe 
and critical levels of speed for a known imbalance 
mass. It can also help us to take necessary actions, 
including maintenance and balancing, to keep the 
imbalance mass within the threshold limit for a 
given or required rotational speed for the safety 
of the rotary system.

In this paper, a reliability model for the 
generalized rotary system subjected to imbalance 
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Figure 3: Reliability of the shaft at different rotational speeds (RPM). (Continued…)
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is presented and a case study for turbine alloy 
steel 2.5 Ni-Cr-Mo-V is presented. The model 
can be effectively used along with simulation 
methodology to predict the operational reliability 
of a rotor system given the imbalance present 
and its rotational speed. If the reliability target 
is specified, safe ranges of operational speed and 
allowable imbalance mass (imbalance tolerance) 
can be established using this model.

The discussed model considered only the 
effect of static imbalance on rotary system. There 
is a scope for improvement of the model by 
considering other types of dynamic forces on the 
rotor system which includes dynamic imbalance. 
Furthermore, models for the other problems such 
as oil whirl, misalignment, and wear effects, 
which are also the source of dynamic forces can 
be developed and integrated with this model for 
the complete reliability analysis of the system.
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Appendix I: 

Notation: 
d   diameter of the shaft 

    force due to imbalance 

    density function of ultimate shear strength 

 density function of effective maximum shear stress 

              bending moment 

               bending moment due to imbalance force 

m  imbalance mass 

R  reliability 

RPM  rotations per minute 

r  distance between center of rotational axis and imbalance mass 

T  torque 

                     ultimate shear strength 

  mean of the normally distributed ultimate shear strength 

                mean of the normally distributed effective maximum shear strength 

  standard deviation of the normally distributed shear strength 

 standard deviation of the normally distributed effective maximum shear strength 

  maximum normal stress 

  effective maximum normal stress 

  maximum shear stress 

  effective maximum shear stress 

z  standardized normal variate 

  angular velocity 

(z)  standard normal cumulative probability value of z 
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introduction

Uncertainties are one of the most challenging 
problems in safety related environmental studies 
of complex systems [1-3]. They are present in 
any environmental parameters due to either 
randomness (inherent variability) or lack of 
information (subjectivity). Generally uncertainty 
analysis consists of modeling the uncertainty of the 
uncertain parameters and propagating parameter 
uncertainties to the output of the model. Efficient 
and accurate uncertainty quantification can 
provide an assessment of risk or confidence in 
the design and is essential for safety analysts to 
obtain a real safe and optimal solution. 

Uncertainty can be classified into two 
subtypes: (a) aleatory and (b) epistemic 
uncertainty. Aleatory uncertainty is also called 
irreducible and inherent uncertainty. It is the 
inherent variation associated with the physical 
system or the environment under consideration 
[4]. Epistemic uncertainty is subjective and 
reducible because it arises from lack of knowledge 
or data. It represents uncertainty of the outcome 
due to lack of knowledge or information in any 
phase or activity of the modeling process [4]. 

Uncertainty Quantification of Contaminant Transport Model  Using 
dempster-Shafer evidence theory

d. datta 
Health Physics Division, Bhabha Atomic Research Centre, Mumbai – 400085 

Email: ddatta@barc.gov.in

abstract

Uncertainty is an attribute of information. It is particularly crucial in safety studies where 
misleading representations of uncertainties can lead to incautious and potentially hazardous 
decisions. Uncertainty associated with environmental parameters is of epistemic in nature 
due to their insufficient measurements and hence imprecise probabilistic approach is applied 
for quantification of the uncertainty. The present approach of quantifying uncertainty is 
based on Dempster-Shafer evidence theory. Evidence theory based various measures of 
uncertainty such as belief, plausibility, expectation value, 5th and 95th percentile, dissonance 
and non-specificity is computed. Overall computation strategy is illustrated using a standard 
one dimensional imprecise probability based model of contaminant transport. Expert’s 
opinions are adopted to figure out the evidences of the uncertain parameters of the model. 
Keywords:  Uncertainty, Dempster-Shafer, Percentile, Belief, Plausibility, Expert’s opinion

Classical framework of probability theory 
for uncertainty quantification has been performed 
in many engineering disciplines for decades. 
The probabilistic analysis for uncertainty 
quantification uses probabilistic method to 
represent sources of uncertainty and then 
propagates the uncertainty through a model 
(response function) by Monte Carlo simulation 
(sampling technique) [5-7]. In general, probability 
theory is very effective if sufficient data are 
available to characterize the parameters by specific 
probability distribution. But, if the available data 
are not sufficient probability theory will fail to 
quantify the uncertainty. For this reason, even 
though the probability theory is reasonably well 
founded conceptual framework for uncertainty 
management, a number of alternative theories 
have also found to carry out the uncertainty 
especially for that variety where information is 
insufficient.  These theories include possibility 
theory and the so-called Dempster-Shafer (D-S) 
theory of belief functions, or Evidence theory. 

The evidence theory (D-S theory) is an 
especially interesting methodology because 
of its applicability in areas where information 
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(evidence) must be combined and can be 
considered as generalization of classical 
probability theory and also as a generalization 
of possibility theory. Possibility theory [8], first 
introduced by Zadeh [9] is usually chosen to 
handle epistemic uncertainty. Possibility theory 
uses fuzzy measures to describe the possibility 
or membership grade by which a certain event 
can be plausible or believable. Contrary to the 
classical probability theory, possibility theory 
is usually used to quantify only epistemic 
uncertainty. Besides possibility theory, interval 
analysis can be applied when the information is 
available in the form of an interval (lower bound, 
upper bound). 

The D-S theory (evidence theory) is more 
general than probability and possibility theories. 
It uses plausibility and belief to measure the 
likelihood of event, without making additional 
assumptions. When the belief and plausibility 
measures are equal, the general evidence theory 
reduces to the classical probability theory. 
Therefore, the classical probability theory is 
special case of evidence theory. Moreover, 
evidence theory can combine empirical evidence 
from different experts to construct coherent 
picture of reality. The D-S theory has several 
interpretations such as the Transferable Belief 
Model (TBM) [9]. The TBM is completely 
dissociated from any model based on probability 
functions. The possibility theory is usually 
employed to quantify only epistemic uncertainty. 
Hence, in this work epistemic uncertainty 
associated with the transport of contaminant for 
assessing the safety issues is quantified using 
Dempster-Shafer theory [9]. 

These new theoretical developments have 
been motivated by the growing recognition that all 
forms of partial information are not easily amenable 
to representation in the probabilistic framework. 
This applies, for instance, to vague linguistic 
statements often used by experts to express their 
knowledge, such as “if x is small, then y is very 
likely to be large”. An extreme situation is that of 
complete ignorance: a quantity “x” of interest may 
be totally unknown, and the representation of this 
lack of information by a probability distribution 
(even a uniform one) may be shown to lead to 

paradoxes. Among existing tools for uncertainty 
representation, belief functions appear to play a 
pivotal role as they generalize both probability 
and possibility distributions. 

The uncertainty analysis of a model (such as 
a computer code used for accident management 
procedures in nuclear industry) is usually 
performed in four steps depicted below:

a. Identification of uncertain parameters

All important factors affecting the model 
results must be identified. These factors are 
generally referred to as the “uncertainty sources” 
or as the “uncertain parameters”.

b. Quantification of the knowledge about 
uncertain parameters

The available information about uncertain 
parameters is formalized. The uncertainty of each 
uncertain parameter is quantified. If dependencies 
are known between uncertain parameters and 
judged to be potentially important, they also need 
to be specified.

c. Propagation of uncertainties through the 
computer code

The propagation requires, except for very 
simple computer codes, a coupling between the 
code and statistical software.

d. treatment and interpretation of the code 
responses

The paper presents a short description of 
Dempster-Shafer theory and its implementation 
towards the quantification of epistemic 
uncertainty. Evidence of the parameters of the 
model under investigation is collected from 
expert’s knowledge. Uncertainty bounds are 
expressed in terms of belief and plausibility. 
Computations of various measures of imprecision 
such as expectation value, 5th percentile, 95th 
percentile, dissonance, non-specificity and 
aggregated uncertainty are presented in this 
paper.  Expectation value, 5th and 95th percentiles 
are expressed in terms of corresponding coherent 
lower and upper bounds, whereas dissonance, 
non-specificity and aggregated uncertainty are 
profiled for various downstream distances.
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2.0 evidence theory (dempster-Shafer 
theory)

Evidence theory is based on two dual 
semi continuous non additive measures (fuzzy 
measures): belief measure and plausibility 
measure. It is a theory of evidence because it deals 
with weights of evidence and numerical degrees of 
support based upon evidence. Further, it contains 
a viewpoint on the representation of uncertainty 
and ignorance. It is also a theory of plausible 
reasoning because it focuses on the fundamental 
operation of plausible reasoning, namely the 
combination of evidences. Alternatively, evidence 
theory also is known as Dempster-Shafer theory. 
The Dempster-Shafer theory is based on the idea 
of placing a number between zero and one to 
indicate the degree of evidence for a proposition. 
The theory also includes reasoning based on the 
rule of combination of degrees of belief according 
to different evidences. The addition axiom P(A) 
+ P(not A) = 1 for any proposition A in classical 
Bayesian theory does not necessarily correspond 
to the description of the real world because 
ignorance was not taken into account. Therefore, 
without enough evidences for proposition A, it 
is appropriate to assume that the sum of both 
degrees of belief are not equal to one, i.e., P(A) 
+ P(not A) < 1.

2.1 basic Probability assignment

One of the basic concepts of the Dempster-
Shafer theory is that of basic probability 
assignment, that is to assign a function m: 2θ 
→[0,1], such that
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The number m(A) is called basic probability 
assignment of A. The equation (1) states that 
no belief is committed to the empty set and the 
equation (2) states that the total belief is equal 
to one.

2.2 formulation of the representation of 
evidence

Evidence theory is based on two dual 
nonadditive measures: belief measure and 

plausibility measure. Given a universal set X, 
assumed here to be finite, a belief measure is a 
function, bel:P(X)→ [0,1] such that bel(φ) = 0 and 
bel(X) = 1. Let 6 be a set of propositions about 
the exclusive and exhaustive possibilities in a 
domain. For example, if we are rolling a die, G 
contains the six propositions of the form ‘the 
number showing is ‘k’, where 1 < k < 6. The θ is 
called the frame of discernment and 2θ is the set 
of all subsets of θ. Elements of 2θ are the class of 
general propositions in the domain; for example, 
the proposition the number showing is even 
corresponds to the set of the three elements of G 
that assert the die shows either a 2,4, or 6.

The following are the key assumptions of 
the evidence theory approach: 
1. If some of the evidence is imprecise we can 

quantify uncertainty about an event by the 
maximum and minimum probabilities of 
that event. Maximum (minimum) probability 
of an event is the maximum (minimum) of 
all probabilities that are consistent with the 
available evidence. 

2. The process of asking an expert about an 
uncertain variable is a random experiment 
whose outcome can be precise or imprecise. 
There is randomness because every time we 
ask a different expert about the variable we 
get a different answer. The expert can be 
precise and give a single value or imprecise 
and provide an interval. Therefore, if the 
information about uncertainty consists of 
intervals from multiple experts, then we 
have uncertainty due to both imprecision 
and randomness. 

If all experts are precise they give us pieces of 
evidence pointing precisely to specific values. In 
this case, we can build a probability distribution of 
the variable. But if the experts provide intervals, 
we cannot build such a probability distribution 
because we do not know what specific values 
of the random variables each piece of evidence 
supports. In this case, we can use second order 
probability, or we can calculate the maximum 
and minimum values of the probabilities of 
events. The latter approach does not require any 
additional information beyond what is already 
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available. However, if experts provide intervals 
as well as the knowledge of the probability 
distribution of the uncertain parameters, then we 
can build the Dempster-Shafer structure using an 
inverse sampling technique. 

2.2.1 belief and Plausibility function

Let m be a given basic probability assignment. 
A function bel: 2θ → [0, 1] is called a belief function 
over θ if and only if
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2.2.3 uncertainty Measures of evidence theory

Evidence theory provides two types 
of uncertainty measures. One is due to the 
imprecision in the evidence; the other is due to 
the conflict. Non-specificity and Strife measure 
the uncertainty due to imprecision and conflict, 
respectively. Both measures are expressed in bits 
of information. Only non-specificity measure is 
presented in this paper. A detailed presentation 
of non-specificity and strife can be found 
elsewhere in [10]. The larger the focal elements 
of a body of evidence, the more imprecise are the 
evidence and, consequently, the higher is Non-
specificity. When the evidence is precise (all of 
the focal elements consist of a single member), 
Non-specificity is zero. Strife measures the degree 
to which pieces of evidence contradict each other. 
Consonant (nested) focal elements imply little or 
no conflict. Disjoint elements imply high conflict 
in the evidence.

2.2.4 entropy Measures of evidence theory

2.2.4.1 Measure of dissonance

Dissonance is a state of contradiction 
between claims, beliefs, or interests [11]. The 
measure of dissonance, D, can be defined based 
on evidence theory as follows:
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where m(Ai) > 0; {A1, A2, …., An} = a family 
of subsets, i.e., focal points, that contains some 
or all elements of the universal set X; m(Ai) = a 
basic assignment that is interpreted as the degree 
of evidence supporting the claim that a specific 
element belongs to the subset, Ai, but not any 
special subset of Ai. Thus dissonance measures 
the information that has no overlap with the set 
A.

2.2.4.2 Measure of confusion

The measure of confusion characterizes 
the multitude of subsets supported by evidence 
as well as the uniformity of the distribution of 
strength of evidence among the subsets. The 
greater the number of subsets involved and 
the more uniform the distribution, the more 
confusing the presentation of evidence. The 
measure of confusion, C, is defined as 
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where Pbel is the set of all probability 
distributions (px) defined over X that satisfy the 
following two constraints:

                                                                    

2.2.4.2 Measure of Confusion 

The measure of confusion characterizes the multitude of subsets supported by evidence as well 

as the uniformity of the distribution of strength of evidence among the subsets. The greater the 

number of subsets involved and the more uniform the distribution, the more confusing the 

presentation of evidence. The measure of confusion, C, is defined as  

     ))((log)()( 2
1

i
n

i
i AbelAmmC 

=
−=    (12) 

Where bel(Ai) = belief measure, which represents the total evidence or belief that the element of 

concern belongs to the subset Ai as well as to the various special subsets of Ai. confusion 

measures the information that has some elements outside of the set A. 

2.2.5 Aggregate Uncertainty in Evidence Theory 

An aggregate uncertainty (AU) in evidence theory measures the combined non-specificity and 

conflict provided by a given body of evidence. The function AU is defined as a mapping from 

the set of all belief measures (B) to the nonnegative real line (R+) as follows: 

      +→ RBAU :      (13) 

The measure is given by    

     )](log[)( 2max x
Xx

x
P

ppbelAU
bel


∈

−=    (14) 

where Pbel is the set of all probability distributions (px) defined over X that satisfy the following 

two constraints: 

    1  and   allfor    ]1,0[ =∈∈ 
∈Xx

xx pXxp    (15) 

    XAAbelpAbel
Xx

x ⊆−≤≤ 
∈

  allfor    )(1)(    (16) 

 
(15)

(16)

3.0 Methodology of uncertainty 
Quantification 

Evidence theory has been applied to 
quantify the epistemic uncertainty associated 
with any model. Basically when information on 
model parameters is insufficient or vague and 
not able to characterize their uncertainty using 
traditional probability theory, one can apply this 
evidence theory to characterize their uncertainty. 
Generally, evidences on the uncertainty of 
the representative parameters of a model are 
collected using expert’s opinion. The domain 
expert knows the range value (interval) of the 
uncertain parameter and its continuity character 
within that defined range. Hence, domain expert 
discretize the complete range into small sub 
intervals and assigns a basic probability (basic 
mass assignment) to each sub intervals. These 
sub intervals are known as focal element and 
the complete structure {Focal element, Basic 
probability mass} is called as Dempster-Shafer 
(D-S) structure. On the basis of this D-S structure 
created from the knowledge of domain expert and 
the probabilistic behavior (e.g., Normal, Uniform, 
Lognormal, Weibull, etc) of the model parameter, 
uncertainty of the parameter is simulated using 
standard Monte Carlo simulation. Simulated 
results are nothing but the belief (lower bound) 
and plausibility (upper bound) of the parameter 
of interest. Finally, propagation of uncertainty 
is carried out using the model of interest.  Final 
result also comes out as Dempster-Shafer 
structure constituting the belief and plausibility. 
Therefore, uncertainty of the model is expressed 
as the range of belief and plausibility. 

4.0 case Study – contaminant transport Model  

One dimensional solute transport in 
saturated porous media is considered for 
assessing the uncertainty analysis using evidence 
theory. The model computes the concentration 
of a dissolved chemical species (contaminant) 
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in an aquifer at any time and at any specified 
distance from the point of release of the chemical. 
Measured parameters associated with the 
present model are flow velocity (u m/day) 
and longitudinal dispersivity (∈L m) and these 
parameters are considered as uncertain due to 
the insufficient measurement. Uncertainty of 
both these parameters is addressed using the 
knowledge of domain expert. The governing 
equation of one dimension solute transport in 
saturated porous media [12] is given by 
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where C represents the concentration of the chemical species (solute) in mg/l, u is the flow 
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distances ranging from 100 m to 1500 m with a step size of 50 m are taken into consideration for 

computation. Uncertain parameters of the model are chosen as flow velocity, u m/day and 

longitudinal dispersivity, ∈L (m).  
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Epistemic uncertainty of concentration 
is quantified at a fixed time of observation for 
various downstream distances (100 m -1500 m). 
The initial concentration, C0 = 100 mg/l and fixed 

time of observation, t = 400 days are used for 
computation.  Downstream distances ranging 
from 100 m to 1500 m with a step size of 50 m are 
taken into consideration for computation. 
Uncertain parameters of the model are chosen as 
flow velocity, u m/day and longitudinal 
dispersivity, ∈L (m). 

4.1 results and discussions

Uncertain parameters for the problem 
chosen for illustration of the evidence theory 
based uncertainty quantification are groundwater 
velocity (u m/day) and longitudinal dispersivity 
(∈ m). Evidence related to uncertainty for these 
parameters are collected from expert’s knowledge 
and are expressed in terms of an interval (focal 
element) and corresponding basic probability 
assignment (BPA). The table 1 presents this D-S 
or BPA structure. It is also known from both 
the experts that the uncertain parameters are 
continuous and their uncertainty follows the 
uniform distribution. This knowledge helps 
for sampling the uncertainty of the parameter 
of interest. An inverse sampling technique of 
uniform distribution is applied on this BPA 
structure of each expert to generate the belief 
and plausibility of each uncertain parameter.  
Evidences come from more than one expert can 
be aggregated either by using weight mixing or 
Dempster rule of combination. In the present 
paper, Dempster rule of combination is applied to 
aggregate the evidence of uncertainty of a specific 
parameter from more than one expert. The 
present model contains the uncertain parameter 
as ground water velocity and longitudinal 
dispersivity. The belief and plausibility plot 

table 1: bPa Structure of input uncertain parameters

Para-
meter

Expert 1 Expert 2 Expert 3
LB Mass UB Mass LB Mass UB Mass LB Mass UB Mass

V 
(m/d)

[1.6, 1.8]

[1.7, 1.9]

[1.8,2.0]

0.3

0.3

0.4

[2.9, 3.0]

[3.0, 3.2]

[3.1,3.2]

0.4

0.4

0.2

[1.6, 1.7]

[1.7, 1.9]

[1.8,2.0]

0.3

0.4

0.3

[2.9, 3.1]

[3.0, 3.2]

[3.1,3.2]

0.5

0.3

0.2

[1.6,1.8]

[1.7,2.0]

[1.8,2.0]

0.4

0.5

0.1

[2.9,3.1]

[3.0,3.2]

[3.1,3.2]

0.5

0.3

0.2
a (m) [8.0,9.0]

[8.5,9.5]

[8.5,10]

0.4

0.3

0.3

[19,20]

[19, 20]

[19,21]

0.5

0.4

0.1

[8,9]

[8.5,9.5]

[9,10]

0.3

0.5

0.2

[118,20]

[19, 21]

[20,21]

0.4

0.4

0.2

[8,8.5]

[8,9]

[8.5,9.5]

0.3

0.5

0.2

[18,18.5]

[18,19]

[18.5,20]

0.3

0.3

0.4
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Figure 1 Belief and Plausibility of  groundwater velocity 

 
 
 

Figure 2 Belief and Plausibility of longitudinal dispersivity 
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Figure 2 Belief and Plausibility of longitudinal 
dispersivity

 
Figure 3 Belief and Plausibility of Concentration profile at x = 1220 m and at t = 400 days 

 
   

                
 

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Concentration (mg/l)

C
um

ul
at

iv
e 

P
ro

ba
b

ili
ty

(B
el

ei
f a

n
d 

P
la

u
si

bi
lit

y)

 

 

Pl
Bel

Figure 3 Belief and Plausibility of Concentration profile 
at x = 1220 m and at t = 400 days

 
Figure 4 Plot of the concentration   profile with uncertainty  
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Figure 4 Plot of the concentration   profile with 
uncertainty

 
Figure 5 Uncertainty of expected concentration     
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Figure 5 Uncertainty of expected concentration

 
 

Figure 6 Uncertainty of 5th percentile of concentration     
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Figure 6 Uncertainty of 5th percentile of concentration   
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Figure 7 Uncertainty of 95th percentile of concentration     
 
 
 

0 500 1000 1500
0

10

20

30

40

50

60

70

80

90

100

Downstream Distance (m)

95
th

 p
er

ce
nt

ile
s 

of
 c

on
ce

tr
at

io
n(

Lo
w

er
 a

nd
 u

pp
er

 b
ou

nd
s)

Figure 7 Uncertainty of 95th percentile of concentration    

 
 

Figure 8 Lower bound of expected concentration with lower bounds of 5th and 95th percentiles   
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lower bounds of 5th and 95th percentiles  

 
 

Figure 9 Upper bound of expected concentration with lower bounds of 5th and 95th percentiles   
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Figure 9 Upper bound of expected concentration with 
lower bounds of 5th and 95th percentiles  

 
 

Figure 10 Dissonance measure of uncertainty of concentration profile   
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Figure 10 Dissonance measure of uncertainty of 
concentration profile  

 
 

Figure 11 Non-specificity measure of uncertainty of concentration profile   
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Figure 11 Non-specificity measure of uncertainty of 
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Figure 12 Aggregate measure of uncertainty of concentration profile   
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Figure 12 Aggregate measure of uncertainty of 
concentration profile  
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of groundwater velocity and longitudinal 
dispersivity are as shown in figures 1 and 2.  In 
order to compute the belief and plausibility of 
concentration of contaminant, time of observation 
is kept fixed at t = 400 days and downstream 
distances are varied from 100 m to 1500 from 
the point of discharge of the contaminant with 
a step size of 20 m. Figure 3 presents the plot 
of belief and plausibility of the concentration of 
contaminant at downstream distance, x = 1220 
m at time t = 400 days. The belief of estimated 
concentration 10.71mg/l at x = 1220 m and at t = 
400 days is seen from figure 3 as 0.5760 whereas 
the plausibility is computed as 0.6420. Therefore, 
the uncertainty of estimated concentration 10.71 
mg/l is expressed as   [bel = 0.5760, pls = 0.6420]. 
Computation of various other uncertainty 
measures of concentration of the contaminant 
such as expectation value, 5th percentile and 95th 
percentile at each downstream location and at the 
same time, t = 400 days are carried out. Figure 
4 presents the mean concentration profile with 
mean 5th and 95th percentiles. Mean concentration 
here is signified as the average value of the lower 
and upper bound of the concentration and the 
same is true for mean 5th and 95th percentiles also. 
Figures 5, 6 and 7 show the lower and upper 
bound of expectation of concentration profile 
and the corresponding profiles of 5th and 95th 
percentiles. Interpretation of these figures can be 
framed in this way that the average width of the 

bounds of each individual quantity (expectation, 
5th and 95th percentiles) is very narrow signifying 
further that the spread at each level of measures is 
not very significant. The separate profiles of lower 
and upper bound of the expectation value, 5th and 
95th percentile of concentration of contaminant 
for various downstream distances are as shown 
in figures 8 and 9. It can be easily notified from 
figure 8 and 9 that, at downstream distance of 
700 m, the lower and upper bound of the mean 
value of concentration of the contaminant is 
[88.19, 90.51] mg/l, that of 5th percentile is [65.42, 
73.29] mg/l and the same of 95th percentile is 
[98.94, 99.08] mg/l.  Computation of dissonance, 
non-specificity and aggregated uncertainty of 
concentration of contaminant at time t = 400 
days for same downstream distances are also 
carried out using evidence theory. Results of 
these computations are presented in figures 
10, 11 and 12. It can be interpreted from figure 
10 that dissonance measure of uncertainty of 
concentration over downstream distances (100 m 
– 1500 m) decays exponentially with the increase 
of downstream distance. Therefore, at minimum 
dissonance, information on overlap attains nil.  
The non-specificity measure also follows the same 
philosophy. Aggregated uncertainty (AU = Non-
specificity + Conflict) provides the estimation of 
the conflict by subtracting it from the measured 
non-specificity. Measures of non-specificity 
and aggregated uncertainty of concentration of 
contaminant at downstream location, x= 960 m at 
time 400 days from figures 11 and 12 are 2.419 and 
2.086 respectively. Therefore, conflict is computed 
as -0.33, signifying that there is no conflict on the 
evidence obtained from the experts. In order to 
prove the fact that probability of occurrence of 
the value of random variable lies between belief 
and plausibility, computation of the contaminant 
transport problem is carried out further by taking 
into account the model parameters as uniformly 
distributed (probabilistic feature). Cumulative 
probability distribution plot of the concentration 
profile for the same location and at the same 
time is as shown in figure 13. The probability of 
occurrence of mean concentration of 10.71 mg/l 
can be easily observed from figure 13 as 0.59. 
Therefore, it is proved that the probability always 

Figure 13 Cumulative probability plot of concentration 
profile at (x = 1220m, t = 400 days) 
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lies within the interval of belief and plausibility. All 
the computations are carried out using in-house 
software RAUDSET (Risk Analysis Using Dempster 
Shafer Evidence Theory) developed using Visual 
Basic and C++ (Microsoft Visual Studio). 

5.0 conclusions

Impreciseness of data or knowledge leads 
to uncertainty known as epistemic uncertainty. 
Epistemic uncertainty can be modeled using 
evidence theory.  Evidences are collected using 
expert’s knowledge. The procedures of modeling 
and propagation of epistemic uncertainty using 
Dempster-Shafer evidence theory is illustrated 
through contaminant transport model. Evidence 
theory shows promising to handle epistemic 
uncertainty. Uncertainty of this variety is 
expressed in terms of belief and plausibility.  
Computation of various other measures such 
as aggregated uncertainty, dissonance, non-
specificity, expectation value, 5th percentile 
and 95th percentile of the model output proves 
the power of evidence theory.  However, if the 
model is complex (multi-component), it requires 
extensive computational effort to evaluate belief 
and plausibility of each component and joined 
them using a suitable network. So, the future 
work will focus to develop an algorithm to 
compute belief networks.  
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introduction

For an equipment or a machinery, there are 
only two kinds of maintenance actions: Preventive 
maintenance and Corrective maintenance. 
Preventive maintenance can either be time based 
or condition based. A time based maintenance is 
understood to be a maintenance action where in, 
no condition monitoring is undertaken, instead 
the equipment is replaced or maintained at 
periodic (or fixed time or age) time intervals. 
Condition based maintenance on the other 
hand involves monitoring of the condition 
of the equipment. When a specified level of 
deterioration or wear of the subject equipment 
is surpassed, the equipment may be replaced 
or repaired. There will always be a chance of 
breakdown of machinery under both the above 
preventive maintenance policies that will give 
rise to a corrective maintenance incurring high 
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abstract

Preventive maintenance of equipment is generally chosen over the corrective maintenance 
policy in order to preclude the chances of sudden failure that incurs high opportunity and repair 
costs. However, the choice between a time based preventive maintenance and a condition based 
preventive maintenance is generally carried out under an assumption that the probability of 
detection of the deteriorating condition of the equipment is 1. This assumption may be far 
fetched, as most of the condition monitoring techniques have a probability of correct detection 
of equipment condition less than 1. In some other cases, even the deteriorating condition that is 
being measured may not have a perfect correlation with the equipment state. The uncertainties 
involved in use of a condition monitoring system may result in making an improper choice of the 
PM policy resulting in sub-optimal use of resources. This paper presents a method of selection of a 
suitable preventive maintenance policy under the uncertainty involved in correct detection of the 
deteriorating condition of a equipment. A non-stationary Gamma wear process has been used to 
model the deteriorating condition of the equipment and the wear thresholds for alarm and time for 
monitoring the condition have been included as decision variables for deciding the optimal CBPM. 
Key words : Gamma wear process, TBPM, CBPM

cost of repair and opportunity and at times this 
may have some safety implications too. The 
optimal choice of the preventive maintenance 
policy will therefore be guided by the degree to 
which the chance of corrective maintenance is 
minimized. 

From Barlow and Hunter [1] in 1960, till 
date, there have been many models and case 
studies on preventive maintenance policies. 
References from [1] to [5] are few such examples. 
Wang[6] provided a thorough review of time 
based preventive maintenance approaches in the 
literature. The author has discussed age dependent 
preventive maintenance policies, periodic 
preventive maintenance policies, failure rate 
limit policies, sequential preventive maintenance 
policies, repair limit polices, opportunistic 
maintenance polices and optimization approaches 
for maintenance policies. Blischke and Murthy[7] 
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have also provided a broader view of many of  the 
maintenance policies available in practice. Mann 
et al [8] provided a review of time based PM 
models and condition based models. Endrenyi 
et al [9] proposed use of RCM (Reliability Centre 
Maintenance) to determine the most cost effective 
maintenance policy for a given system. Whereas 
Saranga[10] proposed a structured approach 
method called the RCP or Relevant Condition 
Parameter which selects the maintenance 
significant items according to a risk priority 
number. Condition based maintenance has been 
explored by many researchers such as Grall et 
al [11], Fouadirad et al[12] and Barata et al [13] 
and many others. Grall et al [11] has proposed 
a varying time based monitoring interval based 
on the extent of deterioration. The other authors 
have considered continuous monitoring and 
few others have considered joint effect of shock 
and deterioration as the failure process of 
the equipment. In what follows, we consider 
the comparison between time based PM and 
condition based PM with the choice of monitoring 
time intervals, wear threshold and probability of 
detection.

tbPM or cbPM

Time based maintenance are generally 
proposed as an effective strategy for less critical 
systems which also have a comparatively 
smaller degree of variability in the failure time 
distributions.  Condition based maintenance 
techniques on the other hand are justified for 
highly critical systems that require effective 
maintenance planning and execution. However, 
before a CBPM based policy can even be 
applied on a equipment, availability of a 
particular parameter that can accurately detect 
the deteriorating condition of a particular failure 
mode of the equipment need to be analyzed. For a 
CBPM policy to be applied on an equipment, it is 
important that the wear or deterioration progress 
with respect to time be completely defined in 
terms of a continuous stochastic process. The 
process can then be used to define two different 
levels of deterioration, one the alarm level and the 
other the failure level. The time for the equipment 
deterioration to reach the failure level from the 
alarm level becomes an important consideration 

in deciding whether enough time is available for 
the maintainers to act before the equipment fails 
catastrophically. 

The question, therefore, that would often 
arise during a condition based maintenance 
decision making is that what should be the 
interval of monitoring of the equipment condition 
? or at what probability of detection of the 
equipment condition, should one consider the 
CBPM to be economically viable ? or given a 
probability of detection if one has to shift away 
from the optimal time interval of monitoring to 
another time schedule, would the CBPM sill be 
advantageous over the time based maintenance? 
In the above arguments we have safely assumed 
that the corrective maintenance actions are the 
most cost and safety prohibitive and therefore 
need not be considered.

Modeling of Wear/deterioration of 
equipment condition using gamma Process

The gamma process was applied in a series 
of papers in the fifties to model water flow into a 
dam, Moran [14,15,16]. However, it was proposed 
to model deterioration occurring random in time 
only in 1975.   Since then it has been satisfactorily 
fitted to data on creep of concrete Cinlar et 
al[17], fatigue crack growth Lawless  et al[18], 
corroded steel gates Frangpool et al[19], thinning 
due to corrosion Kallenet al [20] etc. A method 
for estimating a gamma process by means of 
expert judgment is proposed in Nicolai et al[21].  
Gamma wear process which is non-stationary 
has been shown as the most suitable process in 
Pandey et al [22] that can take care of the temporal 
variability of the wear process. In this process the 
system failure behavior might be described by a 
damage accumulation model or shock model. The 
system state at any time ‘t’ can be summarized 
by a random ageing variable/deterioration Wt. 
In the absence of repair or replacement actions, 
Wt is an increasing stochastic process, with 
W0=0. The system will fail when the ageing 
variable or deterioration exceeds a predetermine 
threshold level Wf. The gamma process is also a 
reasonable extension of a deterioration process 
with exponential jumps. The gamma process is 
parameterized by α and β which can be estimated 
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from the deterioration data . If Wt (deteriorating 
state) is  a gamma process then for all 0 < = s < 
t the random variable Wt – Ws (increments of 
deterioration between s and t) has a gamma pdf 
with shape parameter α(t-s) and a scale parameter 
β, given by :
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Consider the process of wear or deterioration of a equipment shown in figure 1 

below (Grall [23]). As time progresses, the equipment deteriorates. The equipment is 

monitored at regular intervals for its deterioration or wear. There are two wear levels 

which are of some consequence. A wear threshold level is an alarm level. If on an 

inspection it is observed that the wear of deterioration of the equipment has crossed 

the threshold level, it is preventively replaced with a new one or maintained so that its 

condition becomes as good as new. If however, the wear crosses the ‘wear limit’, it is 

considered to have failed and the equipment needs to be correctively replaced.  A 

gamma wear process helps include the wear levels of alarm and failure into the model 

calculations.
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Consider the process of wear or deterioration 
of a equipment shown in figure 1 below (Grall [23]). 
As time progresses, the equipment deteriorates. 
The equipment is monitored at regular intervals 
for its deterioration or wear. There are two 
wear levels which are of some consequence. 
A wear threshold level is an alarm level. If on 
an inspection it is observed that the wear of 
deterioration of the equipment has crossed the 
threshold level, it is preventively replaced with 
a new one or maintained so that its condition 
becomes as good as new. If however, the wear 
crosses the ‘wear limit’, it is considered to have 

failed and the equipment needs to be correctively 
replaced.  A gamma wear process helps include 
the wear levels of alarm and failure into the model 
calculations.

choice between tbPM and cbPM using an 
example

Using a renewal cycle method we show 
evaluation of an optimal preventive maintenance 
policy based on time based PM schedule and a 
condition based, probability of detection based 
and monitoring time interval based CBPM. We 
consider two main probabilities of maintenance 
: a probability of carrying out preventive 
maintenance (which can be either time based 
or a condition based) and a probability of 
corrective maintenance. When the TBPM is in 
force, a corrective maintenance is possible only 
when the equipment fails before the scheduled 
time ‘T’ for PM is clocked. When the CBPM is in 
force, a corrective maintenance is possible only 
when the wear reaches the alarm level ‘Wth’ and 
the failure level ‘Wlim’ between two consecutive 
monitoring time schedules. It can also take place 
when the alarm threshold level is present during 
a monitoring time however the correct detection 
does not take place during the monitoring. 

Using a non-stationary gamma wear process 
to map the wear or deterioration we evaluate the 
costrate of maintenance of a equipment under 
consideration. The model is placed at Appendix 
‘A’

assumptions

The following assumptions are being made 
in the model being discussed
l	 The equipment is preventively replaced 

when the condition being monitored reaches 
a wear threshold level. When following the 
time based PM, the equipment is replaced at 
regular time based intervals

l	 If the probability of detecting the correct 
condition of the equipment is ‘P’, there is 
0.5*(1-P) chance of making a wrong detection 
on the safer side. That is raising an alarm, 
when the condition is still normal

l	 Though ‘P’ is the probability of correct 
detection of the condition of the equipment, 
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there is a perfect correlation between the 
parameter being monitored and the actual 
condition of the equipment

l	 The equipment follows a non-stationary 
gamma wear process with shape parameter 
‘α.tζ’ and scale parameter ‘β’ where α = 
0.02278; β =1.2; ζ=1 . The wear threshold for 
failure is a non-dimensional number = 10

l	 Cost of setting up a comprehensive condition 
monitoring system has not been included in 
the example

results

Cost rate drawn up for various wear 
threshold levels have been shown in figure 
2. Similarly the probability of carrying out 
PM or preventive maintenance under various 
probabilities of detection is shown in figure 4 . 
Figure 2 has been drawn up with probability of 
detection of 1 and replacement at monitoring 
time interval or ‘T’.  Figure 3 shows a similar plot 
for a time based PM with renewal cycle= T; the 
time for maintenance interval. The plots in figure 
2  display the optimal wear threshold level and 
the optimal time for monitoring the condition 
of a given equipment. The plots also display 
the alternatives available with the maintenance 
engineer in deciding the wear threshold level he 
would like to choose for his equipment. Since 
the time between the wear threshold level and 
the wear limit level is crucial in making the 
logistics arrangement ready for the upcoming 

maintenance actions, a maintenance engineer 
may like to choose the wear threshold level 
that may not be an optimal solution. The time 
available to the maintenance engineer, once the 
wear threshold level has been reached can be 
given in accordance with the approximation 
formula Rana et al [24] 
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The maintenance engineer may also not be able to provide regular monitoring at every 

optimum time interval because of various constraints, instead he can choose the time 

interval suitable to him and know the consequences in terms of cost rate as per the 

plots displayed in figure 2. It may be noted in figure 2 that as the wear threshold level 

rises from 5.0 to 9.0 the optimal time interval in that particular wear threshold moves 

to the left. This is because the time available for the equipment to reach the wear limit 

for failure (assumed to be 10 in this case) becomes shorter and therefore the 

monitoring becomes more frequent.  

  

 Going by the solutions in figure 2 and 3, one can see that the CBPM is a better 

preventive maintenance policy than the TBPM, when the wear alarm threshold level is 

maintained at 8 and the monitoring is carried out every 12 days. However, if the 

logistics time delay (time in arranging resources for replacement of the equipment) 

does not allow for this wear alarm threshold, and if this threshold has to be maintained 

at 5, the TBPM seems to be a better PM policy. It may be noted that these results are 

drawn up for probability of detection of 1. For values less than 1 a different set of 

graphs will need to be drawn up. The effect of the probability of detection on the 

probability of PM has been clearly shown at figure 4. 

  

 

 

 

 

 

 

 

 

 

 

Fig.2  Cost rate for various wear threshold levels and condition monitoring intervals 
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The maintenance engineer may also not 
be able to provide regular monitoring at every 
optimum time interval because of various 
constraints, instead he can choose the time interval 
suitable to him and know the consequences in 
terms of cost rate as per the plots displayed in 
figure 2. It may be noted in figure 2 that as the 
wear threshold level rises from 5.0 to 9.0 the 
optimal time interval in that particular wear 
threshold moves to the left. This is because the 
time available for the equipment to reach the wear 
limit for failure (assumed to be 10 in this case) 
becomes shorter and therefore the monitoring 
becomes more frequent. 

Going by the solutions in figure 2 and 3, 
one can see that the CBPM is a better preventive 
maintenance policy than the TBPM, when 
the wear alarm threshold level is maintained 
at 8 and the monitoring is carried out every 
12 days. However, if the logistics time delay 
(time in arranging resources for replacement 
of the equipment) does not allow for this wear 

Fig.2  Cost rate for various wear threshold levels and condition monitoring intervals
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Fig. 3  Cost rate for time based PM

Figure 4  Probability of carrying out PM for various probabilities of detection and monitoring interval 
α=0.02278;β=1.2;ζ=1;wear threshold =7; wear limit=10
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alarm threshold, and if this threshold has to be 
maintained at 5, the TBPM seems to be a better 
PM policy. It may be noted that these results are 
drawn up for probability of detection of 1. For 
values less than 1 a different set of graphs will 
need to be drawn up. The effect of the probability 

of detection on the probability of PM has been 
clearly shown at figure 4.
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introduction: 

Multi-agent based control schemes has been 
proposed by many researchers for exercising the 
robust control for large scale industrial system 
like power plants, power distribution systems, 
cement industry, ship board automation systems 
and accelerator control systems [ 1-5 ]. The 
existing multi-agent based control architectures 
for accelerator control [5- 12] could not be used 
directly for exercising the intelligent agent 
for controlling Microtron like accelerators, 
which exhibits dynamic nonlinear input-output 
behavior. Agent architecture for such systems 
requires augmenting functionality for adaptive 
feedback controller, dynamic and static model 
identifiers, and system state predictors based on 
historical data along with the supervisory level 
optimisation, communication, coordination and 
planning functionalities.  

 For controlling dynamic nonlinear 
systems using multi-agent based approach 

a Multi-agent based control scheme for accelerator pre-injector 
and transport line for enhancement of accelerator operations

r. P. yadav, P. fatnani, RRCAT, Indore, India, P. V. Varde, BARC, Mumbai, India, 
P.S.V. nataraj, IIT, Mumbai, India

abstract:

Reliable accelerator operation requires control system with higher level of automation, flexibility, 
robustness, and optimisation.  In this paper a multi-agent system based control scheme is presented 
for optimal control of accelerator system that improves the plant performance in wide-range of 
operations. The multi-agent based control schemes for accelerators have been reported in literature. 
But the scheme proposed in this paper differs significantly form the existing schemes.  In this work 
the agent architecture is formulated based on the control requirements of pre-injector accelerator 
subsystem (Microtron in particular) and transport line of synchrotron radiation sources. The 
scheme consists of two software agents at supervisory level that work in an autonomous manner 
for the optimized control of dynamic system. The Microtron agent architecture augments model 
assisted adaptive controller for realizing feedback control action at lower layer and goal based 
logic controller with pre-structure model identifier along with the pattern recognizer at supervisory 
layer. The TL-1 agent has a model-based, goal-based modular architecture and optimizes the 
TL-1 control using differential evolution based algorithm. The simulation results of applying this 
scheme to model of Microtron and Transport Line-1 of INDUS complex shows that this approach 
is very effective in optimizing the Microtron and TL-1 tuning.   

researchers have proposed different single 
agent architectures and organisation for 
multiple agents. J. D, Head et.al. [13] and S. Jin. 
et.al. [14] has proposed a three level based agent 
organisation with high level agents provide 
the man-machine-interface functionalities, 
at middle level the data base handling, task 
delegation and monitoring functionalities are 
handled, the lover most level implements the 
feedback and feedforward controllers with PI 
gain optimizer. The gain optimizer considers 
the current output of the plant and simulates 
the plant’s response to feedback controllers 
using candidate gain values. Based on the 
response of the plant model, new candidate 
gain values are generated and tested. This 
process continues until the current set of 
candidate gain values meet all criteria deemed 
necessary in order to be considered acceptable. 
Once a set of optimal gains has been found, they 
are sent to the Feedback agent for immediate 
implementation.  For generating the model of 
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subsystems neural network based off-line and 
on-line identifiers are proposed. 

S. Kamalasadan [15, 16] has shown that the 
multi-agent based approach can be effectively 
used for controlling the dynamic systems 
showing multiple modes and drastic parametric 
jumps. Single link flexible robotic manipulator 
was controlled using three agents. The first agent 
is a heuristic based multiple fuzzy reference 
model generator that moves the reference model, 
mapping the system auxiliary state when it shows 
multi modality. This agent generates suitable 
reference model structure at every time instant. 
The second agent is a radial basis function neural 
network based controller that is used to augment 
the traditional model reference adaptive control 
in the presence of system functional uncertainty. 
Main emphasis was given to the use of neural 
network to approximate inverse dynamics of the 
plant working in parallel with a linear adaptive 
control law. The third agent is the traditional 
model reference adaptive controller which 
adaptively controls the system, linearises the 
parameters over a specific domain and forces 
the output or other plant variables to a suitable 
reference model structure. 

Ben Nasr et.al.[17] proposed a model 
predictive control of a non liner fast dynamic 
system based on the multi-agent concept.  The 
global system was first decomposed into sub-
systems independent of one another. For each 
sub-system a model predictive control unit was 
made constituting the agent controller. Based 
on the analytical solution corresponding to 
the solution of the local receding horizon sub-
problems, a logic unit was designed which by 
switching tries to find the best sequence of actions 
sent to the nonlinear system that gives the desired 
trajectory. In this way the sequences of actions 
were identified that bring the global system in a 
desired trajectory avoid any violation constraints 
on actions. A fuzzy controller was also made with 
an objective to handle the results of the actions 
on the global system and monitor the closed-loop 
system.

Agent-based control offers the ability to 
learn the patterns in system dynamics and use 

this information in determining the optimal, or 
near optimal control schema. Further to this by 
propagating this information among different 
agents in a multi-agent environment the global 
goals and global constraints could be easily 
handled. Such learning capabilities have not 
been sufficiently addressed in the literature. 
The current approach limits the learning ability 
more or less to online and offline system model 
identification only.  Further to this almost all of 
the strategies rely upon using the neural network 
based models for modeling the nonlinear 
system.  This requires a large amount of data 
set to be generated for offline identification 
and validation there by increasing the offline 
identification time. This can degrade the 
system performance in case such identification 
is needed more often for example for dynamic 
systems where the system model is needed to 
predict the faraway operating points. A less data 
driven approach could be the use of predefined 
model structure in the static model identification 
block where the best suited predefined model 
structure can be found according to the problem 
domain separately.

 This paper presents an agent-based 
methodology for controlling the pre-injector and 
transport line operations. The agents learn the 
patterns observed in the system dynamics for 
both short-term and long-term basis and optimize 
there individual operations as well as there 
joint goals based on the learned patterns.  The 
Microtron agent architecture augments model 
assisted adaptive controller for realizing feedback 
control action at lower layer and goal based logic 
controller with pre-structure model identifier 
along with the pattern recognizer at supervisory 
layer. The TL-1 agent has a model-based, goal-
based modular architecture and optimizes the 
TL-1 control using differential evolution based 
algorithm. The rest of the paper is organized as 
follows. Section 2 describes the framework for 
proposed multi-agent based accelerator control. 
Section 3 describes the coordination scenario 
under normal conditions and section 4 gives 
the coordination scenario under constrain on 
actuator scenario. Section 5 gives the simulation 
results followed by conclusion.     
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 the accelerator System

The accelerator system comprises of three 
main parts; Microtron: it is a small accelerator 
which accelerates the electron beam upto 20MeV. 
It acts as pre-injector to synchrotron accelerator 
named Booster; Booster: it is another accelerator 
which accelerates the electron beam from 
20MeV to 450MeV and 550MeV for injection to 
INDUS-1 and INDUS-2 respectively;  TL-1: It is 
the transport line between Microtron and Booster 
accelerators which transfers the electron beam 
from one accelerator to other accelerator and 
serves the purpose of matching the parameters 
of beam available from Microtron to that of beam 
acceptance parameters at the Booster injection 
septum. The flow of beam between three parts 
is first beam is produced by the Microtron 
accelerator it then enters to the TL-1 which 
transports it to the Booster injection point.    

the Microtron Model

The model of Microtron currently used 
in the development of the multi-agent system 
is based on the experimental identification of 
interdependence between different parameters. It 
is modeled as a four-input five-output nonlinear 
Simulink model shown in figure 1. The inputs 
into the system are Cathode current (Ica in A) 
that controls the temperature of LaB6  cathode 
inside Microtron RF cavity,  RF frequency (frf  in 
GHz) that provides the basic RF signal which is 
amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric 
field in the cavity, acceleration start point in terms 
of Ica (ASPIca in A) which defines the system state 
and depends of various factors, Cavity resonant 
frequency (fcav in GHz) it is the resonant frequency 
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coordination scenario under constrain on actuator scenario. Section 5 gives the simulation 
results followed by conclusion.      
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Figure 1. Simulink block diagram for Microtron model 
 
 

emission level in cavity. The outputs of the model 
are Emission (E in V) which gives the measure 
of electrons emitted from cathode, Fast current 
transformer signal (FCT in V) which gives the 
measure of electrons actually accelerated to 
20MeV level, beam position (X and Y in mm) 
at the extraction point, reflected power signal 
(RP in V) that gives the measure of power 
reflected by the cavity. The Eq. 1 to 9 gives the 
interdependence between different parameters 
used for Microtron modeling.  

 

A. The Microtron Model 
 
The model of Microtron currently used in the development of the multi-agent system is 
based on the experimental identification of interdependence between different 
parameters. It is modeled as a four-input five-output nonlinear Simulink model shown in 
figure 1. The inputs into the system are Cathode current (Ica in A) that controls the 
temperature of LaB6  cathode inside Microtron RF cavity,  RF frequency (frf  in GHz) that 
provides the basic RF signal which is amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric field in the cavity, acceleration start 
point in terms of Ica (ASPIca in A) which defines the system state and depends of various 
factors, Cavity resonant frequency (fcav in GHz) it is the resonant frequency of the cavity 
at the particular time and depends primarily of the cavity temperature and electron 
emission level in cavity. The outputs of the model are Emission (E in V) which gives the 
measure of electrons emitted from cathode, Fast current transformer signal (FCT in V) 
which gives the measure of electrons actually accelerated to 20MeV level, beam position 
(X and Y in mm) at the extraction point, reflected power signal (RP in V) that gives the 
measure of power reflected by the cavity. The Eq. 1 to 9 gives the interdependence 
between different parameters used for Microtron modeling.   
 





>−
≤−

=
cacaca

cacaca

ASPIII

ASPIII
E

for      11.35324.1

for        6.12635.4
                                                        (1) 

 
 











>
<
>−+−

≤

=

4.7for                                                 .10
1.3for                                                   0

for      036.3389.11318.0

for                                                .20
2

E

E

ASPIIEE

ASPII

FCT caca

caca

E                            (2) 

 
 









<
<<++−+−−

>−<

=
0for                                                                             0

 6.0   0.6-for      3415.03748.003362.0889.2007.5

6.0r    6.0for                                                                         .010
2345

FCT

fFCTfffff

fof

FCT E δδδδδδ
δδ

                                                                                                                          (3) 
 





>
≤

=
caca

caca
E ASPIIE .

ASPIIE.
X

for                                      29350

for                                     089350
                                (4) 

 





>
≤

=
caca

caca
E ASPIIE 

ASPIIE
Y

for                                      571.4

for                                       391.1
                                   (5) 

 

      (1)

 

A. The Microtron Model 
 
The model of Microtron currently used in the development of the multi-agent system is 
based on the experimental identification of interdependence between different 
parameters. It is modeled as a four-input five-output nonlinear Simulink model shown in 
figure 1. The inputs into the system are Cathode current (Ica in A) that controls the 
temperature of LaB6  cathode inside Microtron RF cavity,  RF frequency (frf  in GHz) that 
provides the basic RF signal which is amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric field in the cavity, acceleration start 
point in terms of Ica (ASPIca in A) which defines the system state and depends of various 
factors, Cavity resonant frequency (fcav in GHz) it is the resonant frequency of the cavity 
at the particular time and depends primarily of the cavity temperature and electron 
emission level in cavity. The outputs of the model are Emission (E in V) which gives the 
measure of electrons emitted from cathode, Fast current transformer signal (FCT in V) 
which gives the measure of electrons actually accelerated to 20MeV level, beam position 
(X and Y in mm) at the extraction point, reflected power signal (RP in V) that gives the 
measure of power reflected by the cavity. The Eq. 1 to 9 gives the interdependence 
between different parameters used for Microtron modeling.   
 





>−
≤−

=
cacaca

cacaca

ASPIII

ASPIII
E

for      11.35324.1

for        6.12635.4
                                                        (1) 

 
 











>
<
>−+−

≤

=

4.7for                                                 .10
1.3for                                                   0

for      036.3389.11318.0

for                                                .20
2

E

E

ASPIIEE

ASPII

FCT caca

caca

E                            (2) 

 
 









<
<<++−+−−

>−<

=
0for                                                                             0

 6.0   0.6-for      3415.03748.003362.0889.2007.5

6.0r    6.0for                                                                         .010
2345

FCT

fFCTfffff

fof

FCT E δδδδδδ
δδ

                                                                                                                          (3) 
 





>
≤

=
caca

caca
E ASPIIE .

ASPIIE.
X

for                                      29350

for                                     089350
                                (4) 

 





>
≤

=
caca

caca
E ASPIIE 

ASPIIE
Y

for                                      571.4

for                                       391.1
                                   (5) 

 

 
            

                                                                       (2)

 

  RRCAT et al. / Life Cycle Reliability and Safety Engineering Vol. 2 Issue 2 (2012) 88-96



91 © 2012 SRESA All rights reserved

A. The Microtron Model 
 
The model of Microtron currently used in the development of the multi-agent system is 
based on the experimental identification of interdependence between different 
parameters. It is modeled as a four-input five-output nonlinear Simulink model shown in 
figure 1. The inputs into the system are Cathode current (Ica in A) that controls the 
temperature of LaB6  cathode inside Microtron RF cavity,  RF frequency (frf  in GHz) that 
provides the basic RF signal which is amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric field in the cavity, acceleration start 
point in terms of Ica (ASPIca in A) which defines the system state and depends of various 
factors, Cavity resonant frequency (fcav in GHz) it is the resonant frequency of the cavity 
at the particular time and depends primarily of the cavity temperature and electron 
emission level in cavity. The outputs of the model are Emission (E in V) which gives the 
measure of electrons emitted from cathode, Fast current transformer signal (FCT in V) 
which gives the measure of electrons actually accelerated to 20MeV level, beam position 
(X and Y in mm) at the extraction point, reflected power signal (RP in V) that gives the 
measure of power reflected by the cavity. The Eq. 1 to 9 gives the interdependence 
between different parameters used for Microtron modeling.   
 





>−
≤−

=
cacaca

cacaca

ASPIII

ASPIII
E

for      11.35324.1

for        6.12635.4
                                                        (1) 

 
 











>
<
>−+−

≤

=

4.7for                                                 .10
1.3for                                                   0

for      036.3389.11318.0

for                                                .20
2

E

E

ASPIIEE

ASPII

FCT caca

caca

E                            (2) 

 
 









<
<<++−+−−

>−<

=
0for                                                                             0

 6.0   0.6-for      3415.03748.003362.0889.2007.5

6.0r    6.0for                                                                         .010
2345

FCT

fFCTfffff

fof

FCT E δδδδδδ
δδ

                                                                                                                          (3) 
 





>
≤

=
caca

caca
E ASPIIE .

ASPIIE.
X

for                                      29350

for                                     089350
                                (4) 

 





>
≤

=
caca

caca
E ASPIIE 

ASPIIE
Y

for                                      571.4

for                                       391.1
                                   (5) 

 

A. The Microtron Model 
 
The model of Microtron currently used in the development of the multi-agent system is 
based on the experimental identification of interdependence between different 
parameters. It is modeled as a four-input five-output nonlinear Simulink model shown in 
figure 1. The inputs into the system are Cathode current (Ica in A) that controls the 
temperature of LaB6  cathode inside Microtron RF cavity,  RF frequency (frf  in GHz) that 
provides the basic RF signal which is amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric field in the cavity, acceleration start 
point in terms of Ica (ASPIca in A) which defines the system state and depends of various 
factors, Cavity resonant frequency (fcav in GHz) it is the resonant frequency of the cavity 
at the particular time and depends primarily of the cavity temperature and electron 
emission level in cavity. The outputs of the model are Emission (E in V) which gives the 
measure of electrons emitted from cathode, Fast current transformer signal (FCT in V) 
which gives the measure of electrons actually accelerated to 20MeV level, beam position 
(X and Y in mm) at the extraction point, reflected power signal (RP in V) that gives the 
measure of power reflected by the cavity. The Eq. 1 to 9 gives the interdependence 
between different parameters used for Microtron modeling.   
 





>−
≤−

=
cacaca

cacaca

ASPIII

ASPIII
E

for      11.35324.1

for        6.12635.4
                                                        (1) 

 
 











>
<
>−+−

≤

=

4.7for                                                 .10
1.3for                                                   0

for      036.3389.11318.0

for                                                .20
2

E

E

ASPIIEE

ASPII

FCT caca

caca

E                            (2) 

 
 









<
<<++−+−−

>−<

=
0for                                                                             0

 6.0   0.6-for      3415.03748.003362.0889.2007.5

6.0r    6.0for                                                                         .010
2345

FCT

fFCTfffff

fof

FCT E δδδδδδ
δδ

                                                                                                                          (3) 
 





>
≤

=
caca

caca
E ASPIIE .

ASPIIE.
X

for                                      29350

for                                     089350
                                (4) 

 





>
≤

=
caca

caca
E ASPIIE 

ASPIIE
Y

for                                      571.4

for                                       391.1
                                   (5) 

 

 
    

A. The Microtron Model 
 
The model of Microtron currently used in the development of the multi-agent system is 
based on the experimental identification of interdependence between different 
parameters. It is modeled as a four-input five-output nonlinear Simulink model shown in 
figure 1. The inputs into the system are Cathode current (Ica in A) that controls the 
temperature of LaB6  cathode inside Microtron RF cavity,  RF frequency (frf  in GHz) that 
provides the basic RF signal which is amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric field in the cavity, acceleration start 
point in terms of Ica (ASPIca in A) which defines the system state and depends of various 
factors, Cavity resonant frequency (fcav in GHz) it is the resonant frequency of the cavity 
at the particular time and depends primarily of the cavity temperature and electron 
emission level in cavity. The outputs of the model are Emission (E in V) which gives the 
measure of electrons emitted from cathode, Fast current transformer signal (FCT in V) 
which gives the measure of electrons actually accelerated to 20MeV level, beam position 
(X and Y in mm) at the extraction point, reflected power signal (RP in V) that gives the 
measure of power reflected by the cavity. The Eq. 1 to 9 gives the interdependence 
between different parameters used for Microtron modeling.   
 





>−
≤−

=
cacaca

cacaca

ASPIII

ASPIII
E

for      11.35324.1

for        6.12635.4
                                                        (1) 

 
 











>
<
>−+−

≤

=

4.7for                                                 .10
1.3for                                                   0

for      036.3389.11318.0

for                                                .20
2

E

E

ASPIIEE

ASPII

FCT caca

caca

E                            (2) 

 
 









<
<<++−+−−

>−<

=
0for                                                                             0

 6.0   0.6-for      3415.03748.003362.0889.2007.5

6.0r    6.0for                                                                         .010
2345

FCT

fFCTfffff

fof

FCT E δδδδδδ
δδ

                                                                                                                          (3) 
 





>
≤

=
caca

caca
E ASPIIE .

ASPIIE.
X

for                                      29350

for                                     089350
                                (4) 

 





>
≤

=
caca

caca
E ASPIIE 

ASPIIE
Y

for                                      571.4

for                                       391.1
                                   (5) 

 

A. The Microtron Model 
 
The model of Microtron currently used in the development of the multi-agent system is 
based on the experimental identification of interdependence between different 
parameters. It is modeled as a four-input five-output nonlinear Simulink model shown in 
figure 1. The inputs into the system are Cathode current (Ica in A) that controls the 
temperature of LaB6  cathode inside Microtron RF cavity,  RF frequency (frf  in GHz) that 
provides the basic RF signal which is amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric field in the cavity, acceleration start 
point in terms of Ica (ASPIca in A) which defines the system state and depends of various 
factors, Cavity resonant frequency (fcav in GHz) it is the resonant frequency of the cavity 
at the particular time and depends primarily of the cavity temperature and electron 
emission level in cavity. The outputs of the model are Emission (E in V) which gives the 
measure of electrons emitted from cathode, Fast current transformer signal (FCT in V) 
which gives the measure of electrons actually accelerated to 20MeV level, beam position 
(X and Y in mm) at the extraction point, reflected power signal (RP in V) that gives the 
measure of power reflected by the cavity. The Eq. 1 to 9 gives the interdependence 
between different parameters used for Microtron modeling.   
 





>−
≤−

=
cacaca

cacaca

ASPIII

ASPIII
E

for      11.35324.1

for        6.12635.4
                                                        (1) 

 
 











>
<
>−+−

≤

=

4.7for                                                 .10
1.3for                                                   0

for      036.3389.11318.0

for                                                .20
2

E

E

ASPIIEE

ASPII

FCT caca

caca

E                            (2) 

 
 









<
<<++−+−−

>−<

=
0for                                                                             0

 6.0   0.6-for      3415.03748.003362.0889.2007.5

6.0r    6.0for                                                                         .010
2345

FCT

fFCTfffff

fof

FCT E δδδδδδ
δδ

                                                                                                                          (3) 
 





>
≤

=
caca

caca
E ASPIIE .

ASPIIE.
X

for                                      29350

for                                     089350
                                (4) 

 





>
≤

=
caca

caca
E ASPIIE 

ASPIIE
Y

for                                      571.4

for                                       391.1
                                   (5) 

 

           (4)        

 
 

A. The Microtron Model 
 
The model of Microtron currently used in the development of the multi-agent system is 
based on the experimental identification of interdependence between different 
parameters. It is modeled as a four-input five-output nonlinear Simulink model shown in 
figure 1. The inputs into the system are Cathode current (Ica in A) that controls the 
temperature of LaB6  cathode inside Microtron RF cavity,  RF frequency (frf  in GHz) that 
provides the basic RF signal which is amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric field in the cavity, acceleration start 
point in terms of Ica (ASPIca in A) which defines the system state and depends of various 
factors, Cavity resonant frequency (fcav in GHz) it is the resonant frequency of the cavity 
at the particular time and depends primarily of the cavity temperature and electron 
emission level in cavity. The outputs of the model are Emission (E in V) which gives the 
measure of electrons emitted from cathode, Fast current transformer signal (FCT in V) 
which gives the measure of electrons actually accelerated to 20MeV level, beam position 
(X and Y in mm) at the extraction point, reflected power signal (RP in V) that gives the 
measure of power reflected by the cavity. The Eq. 1 to 9 gives the interdependence 
between different parameters used for Microtron modeling.   
 





>−
≤−

=
cacaca

cacaca

ASPIII

ASPIII
E

for      11.35324.1

for        6.12635.4
                                                        (1) 

 
 











>
<
>−+−

≤

=

4.7for                                                 .10
1.3for                                                   0

for      036.3389.11318.0

for                                                .20
2

E

E

ASPIIEE

ASPII

FCT caca

caca

E                            (2) 

 
 









<
<<++−+−−

>−<

=
0for                                                                             0

 6.0   0.6-for      3415.03748.003362.0889.2007.5

6.0r    6.0for                                                                         .010
2345

FCT

fFCTfffff

fof

FCT E δδδδδδ
δδ

                                                                                                                          (3) 
 





>
≤

=
caca

caca
E ASPIIE .

ASPIIE.
X

for                                      29350

for                                     089350
                                (4) 

 





>
≤

=
caca

caca
E ASPIIE 

ASPIIE
Y

for                                      571.4

for                                       391.1
                                   (5) 

 

A. The Microtron Model 
 
The model of Microtron currently used in the development of the multi-agent system is 
based on the experimental identification of interdependence between different 
parameters. It is modeled as a four-input five-output nonlinear Simulink model shown in 
figure 1. The inputs into the system are Cathode current (Ica in A) that controls the 
temperature of LaB6  cathode inside Microtron RF cavity,  RF frequency (frf  in GHz) that 
provides the basic RF signal which is amplified by presiding amplifier stage and fed to 
the RF cavity for producing the required electric field in the cavity, acceleration start 
point in terms of Ica (ASPIca in A) which defines the system state and depends of various 
factors, Cavity resonant frequency (fcav in GHz) it is the resonant frequency of the cavity 
at the particular time and depends primarily of the cavity temperature and electron 
emission level in cavity. The outputs of the model are Emission (E in V) which gives the 
measure of electrons emitted from cathode, Fast current transformer signal (FCT in V) 
which gives the measure of electrons actually accelerated to 20MeV level, beam position 
(X and Y in mm) at the extraction point, reflected power signal (RP in V) that gives the 
measure of power reflected by the cavity. The Eq. 1 to 9 gives the interdependence 
between different parameters used for Microtron modeling.   
 





>−
≤−

=
cacaca

cacaca

ASPIII

ASPIII
E

for      11.35324.1

for        6.12635.4
                                                        (1) 

 
 











>
<
>−+−

≤

=

4.7for                                                 .10
1.3for                                                   0

for      036.3389.11318.0

for                                                .20
2

E

E

ASPIIEE

ASPII

FCT caca

caca

E                            (2) 

 
 









<
<<++−+−−

>−<

=
0for                                                                             0

 6.0   0.6-for      3415.03748.003362.0889.2007.5

6.0r    6.0for                                                                         .010
2345

FCT

fFCTfffff

fof

FCT E δδδδδδ
δδ

                                                                                                                          (3) 
 





>
≤

=
caca

caca
E ASPIIE .

ASPIIE.
X

for                                      29350

for                                     089350
                                (4) 

 





>
≤

=
caca

caca
E ASPIIE 

ASPIIE
Y

for                                      571.4

for                                       391.1
                                   (5) 

 

           (5)

 ( )














−=

−
2507.0

2

19196.0
f

f eX
δ

δ                                                                           (6) 

 
( )














−=

−
16.60

2

11300
f

f eY
δ

δ                                                                                 (7) 

 
( ) ( )

max

max
00

5758.0 0672.0   Where1115.0
2

FCT
FCTFCT

CCeRP
f −

=+













−=

− δ

     (8)     

 
where f =( frf  – fcav)  is the deviation of RF generator frequency from the cavity resonant 
frequency expressed in MHz,  and the beam position X and Y using Eq. 4 to 7 are 
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Noise at emission signal Noise(E) and noise at the reflected power signal Noise(RP) are 
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And the dynamic response transfer function (TF) for emission signal (E) and reflected 
power (RP) are modeled as given by Eq. 12 and 13.  
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For calculating the different settings the Microtron agent uses the static model thus 
bypassing the dynamic TF for E and RP.    
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Eq. 14 and 15.  Similarly the transformations from 
TL-1 start to the respective BPM are given by Eq. 
16 to 21
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C. The Booster Model 
 
The booster model accepts the beam composed of n number of macro particle and 
calculates the normalized booster current successfully injected into the booster using Eq. 
22 by evaluating the pass/lost condition for each macro particle. The pass/ lost condition 
for each particle is evaluated using Eq. 23 and 24. These equations are calculated by 
obtaining the acceptance in phase space for Booster using the MAD [18] based Booster 
model for the typical magnet settings at which Booster is normally operated.      
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Where x and y are in millimeter and x’ and y’ are in millirad the TL-1 agent uses this 
model for predicting the current injected into the booster under different operating 
conditions.  
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The booster model accepts the beam composed of n number of macro particle and 
calculates the normalized booster current successfully injected into the booster using Eq. 
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Where x and y are in millimeter and x’ and y’ are in millirad the TL-1 agent uses this 
model for predicting the current injected into the booster under different operating 
conditions.  
 
 
 

               

 c. the booster Model

The booster model accepts the beam 
composed of n number of macro particle and 
calculates the normalized booster current 
successfully injected into the booster using Eq. 
22 by evaluating the pass/lost condition for 
each macro particle. The pass/ lost condition for 

each particle is evaluated using Eq. 23 and 24. 
These equations are calculated by obtaining the 
acceptance in phase space for Booster using the 
MAD [18] based Booster model for the typical 
magnet settings at which Booster is normally 
operated.     

 









=

10
4680.11

1
yM 








−
−

=
0163.18149.0
8592.31105.2

2
yM    








−−

−
=

1138.10284.0
3016.08901.0

3
yM  

 









=

10
6840.01

1
x
BPM    








−−

−
=

52496.084182.0
99932.030238.0

2
x
BPM   








−−

−
=

50159.06402.0
8775.087364.0

3
x
BPM  

 









=

10
5440.01

1
y
BPM   








−
−

=
01634.181491.0
25144.362313.1

2
y
BPM    








−
−

=
30872.144863.0
0733.597504.0

3
y
BPM  

 
And the operations yyxx CCCC 2121 ,,, are given as below  
 









+=
=

=
)0.13/( 1

'
0

'
1

01
1

HSC

x

Ixx

xx
C                









+=
=

=
)0.13/( 2

'
0

'
1

01
2

HSC

x

Ixx

xx
C  









+=
=

=
)0.13/( 1

'
0

'
1

01
1

VSC

y

Iyy

yy
C                









+=
=

=
)0.14/( 2

'
0

'
1

01
2

VSC

y

Iyy

yy
C  

 
 

C. The Booster Model 
 
The booster model accepts the beam composed of n number of macro particle and 
calculates the normalized booster current successfully injected into the booster using Eq. 
22 by evaluating the pass/lost condition for each macro particle. The pass/ lost condition 
for each particle is evaluated using Eq. 23 and 24. These equations are calculated by 
obtaining the acceptance in phase space for Booster using the MAD [18] based Booster 
model for the typical magnet settings at which Booster is normally operated.      
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Where x and y are in millimeter and x’ and y’ are in millirad the TL-1 agent uses this 
model for predicting the current injected into the booster under different operating 
conditions.  
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Figure 3. Microtron Agent architecture 
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the machine operating point under dynamic 
conditions. The loop works on the principle of 
sense-think-control cycle where the accelerator 
environment is continuously sensed and if 
some drift in the operating point is observed the 
corresponding corrective action is calculated 
by the adaptive controller and applied to the 
accelerator environment through effecter. The 
second loop is the supervisory loop responsible 
for autonomously controlling the agent actions 
and the interaction with other agents.  The “pre-
structure model identifier” block when required 
/asked by the “logical controller” identifies 
the plant model in the pre-structured model 
form by directly taking the control of “effecter” 
and “preceptors” and using the predefined 
action recipe.  This block also provided this 
identified model to other blocks like “system 
state predictor” block, “adaptive controller” 
block and “logical controller” block for their 
functions.  The “system state predictor” block 
continuously tries to learn the system dynamics 
and predicts the system dynamics for future n 
steps using the auto-regressive moving average 
with exogenous (ARMAX) algorithm. This block 
also provides the functionalities of predicting 
the future machine states/parameters under 
the influence of dynamics using the currently 
identified Microtron model. “Service provider” 
block is the communication interface of the agent 
with the other agents. This block is responsible 
for serving the requests obtained from different 
agents and from “logic controller” which requires 
some data from other agents. The “postman” is 

the communication medium between the agent 
and the post office for exchange of messages 
between different agents. The “logic controller” 
is the brain of the agent and is responsible for 
managing and synchronizing all the activities of 
the agents towards the achievement of goals.   

b. tl-1 agent:

The TL-1 agent is developed with a model-
based, goal-based modular architecture shown 
in figure 3. [19] and optimizes the TL-1 control 
using differential evolution based algorithms. 
The “Perception” and “Execution” blocks directly 
interact with the accelerator environment. In 
TL-1 case it will interact with the TL-1 power 
supplies and beam diagnostic devices (Fast 
Current Transformer (FCT) through Oscilloscope, 
Fluorescent Beam Position Monitor (BPM) 
screens). Function of the “Perception” block is to 
read different P/S settings and read-back values, 
FCT & Oscilloscope traces and BPM images. 
Depending upon the read data it then generates 
the appropriate event.  Events are passed directly 
to the respective blocks in the form of messages 
along with the required data. The “Interpretation” 
block serves the purpose of processing the raw 
data acquired by the “perception” block to 
convert it to the required form in TL-1 this block 
extracts the beam position (x , y) and beam sizes 
(σx, σy ) from the BPM images and the injection 
current value from FCT and CRO traces. “Beliefs” 
block is the agent’s data storage. This stores the 
system state and other meta data required in 
the processing / decision making steps. “Goal” 
block contains the definition for all the goals 
and provision for enabling / disabling of goals.  
Definition of goal comprises of plan list. Plans in 
the list are the alternate plans by which the goal 
could be achieved in different system conditions.  
The position of the plan in the plan list decides 
its priority. The plan at higher level in the list has 
higher priority. The “Decision Making” block 
depending upon the current events and the agent 
beliefs decide the plans to be executed to achieve 
all the active goals.  It does this by evaluating 
the plan applicability function and selecting the 
highest priority applicable plan from the list for 
each active goal.  The “Planning” block serves Figure 4: TL-1 agent architecture
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the purpose of executing the selected plan in 
synchronised/coordinated way and updating 
the active goal list. Each plan body comprises of 
sequence of actions i.e. steps to be followed to 
attain the desired goal. The “Execution” block 
sends the commands obtained from different 
blocks in the form of messages to machine 
components after checking them for the validity. 
The “Model” block in itself is an agent comprising 
of the TL-1 model and serves the purpose of 
providing the information about the probable 
outcome of the stated actions on the machine. 

based on the dynamics learning the Microtron 
agent at the time of deciding the new operating 
point for optimisation cooperatively maximises 
the cost function J2 given by Eq. 26 considering the 
n steps ahead future disturbances based on the 
past movement history provided by the “system 
state predictor”  block.  
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dynamic behavior were calculated for the beam disturbance shown in figure 6 . Figure 7 
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operating points for which the TL-1 was adjusted by the TL-1 agent for the three 
scenarios.  Figure 9 shows the beam current provided by the Microtron for the three 
different scenarios. 
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For checking the effectiveness of this 
scheme the system comprised of accelerator 
model, Microtron agent and TL-1 agent as 
shown in figure 5 is simulated. The results of 
the agent based control when beam coming 
out of Microtron is subjected to the disturbance 
shown in figure 6 for three different scenarios, 
scenario1: when both the TL-1 and Microtron 
agent works independently to achieve their 
individual goal, scenario 2: when both of the 
agents work cooperatively to maximize the 
booster injection current, and scenario 3: when 
both of the agents cooperatively with dynamics 
learning capability works to maximize the booster 
injection current with 20 steps ahead predicted 
beam dynamic behavior were calculated for the 
beam disturbance shown in figure 6 . Figure 7 
shows the injection current in booster for the three 
scenarios. Figure 8 shows the different operating 
points for which the TL-1 was adjusted by the 
TL-1 agent for the three scenarios.  Figure 9 shows 
the beam current provided by the Microtron for 
the three different scenarios.
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For the case of cooperative optimisation 
Figure 6 Disturbance in beam added at Microtron output  

 
 
For the case of cooperative optimisation based on the dynamics learning the Microtron 
agent at the time of deciding the new operating point for optimisation cooperatively 
maximises the cost function J2 given by Eq. 26 considering the n steps ahead future 
disturbances based on the past movement history provided by the “system state predictor”  
block.   
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Simulation results    
        
For checking the effectiveness of this scheme the system comprised of accelerator model,     
Microtron agent and TL-1 agent as shown in figure 5 is simulated. The results of the 
agent based control when beam coming out of Microtron is subjected to the disturbance 
shown in figure 6 for three different scenarios, scenario1: when both the TL-1 and 
Microtron agent works independently to achieve their individual goal, scenario 2: when 
both of the agents work cooperatively to maximize the booster injection current, and 
scenario 3: when both of the agents cooperatively with dynamics learning capability 
works to maximize the booster injection current with 20 steps ahead predicted beam 
dynamic behavior were calculated for the beam disturbance shown in figure 6 . Figure 7 
shows the injection current in booster for the three scenarios. Figure 8 shows the different 
operating points for which the TL-1 was adjusted by the TL-1 agent for the three 
scenarios.  Figure 9 shows the beam current provided by the Microtron for the three 
different scenarios. 
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From Figure 7 (b) it can be seen that the 
booster current in case of cooperative optimization 
is showing lesser number of variation in Booster 
current with respect to the case when agents work 
individual (figure 7(a)). This variation further 

reduces with the application of the dynamics 
based learning algorithm (figure 7(c)). From 
figure 8 it can be seen that for the case of dynamics 
based learning the changes in operating point 
of TL-1 is minimum as compared to other two 
cases. From Figure 9 the effect of cooperative 
optimization in choosing the operating points by 
Microtron agent can be seen clearly. Where for the 
scenario 1 the Microtron current remains always 
at its best operating value but for the other two 
scenarios the agent gives priority to the common 
goals and thus opted for slightly sub optimal 
operating points.  

conclusion

In this paper the application of a multi-agent 
based approach in control of pre-injector and 
transport line at synchrotron accelerator facilities 
was discussed. The novel concept of cooperative 
optimization with system dynamics learning 
capability for multi-agent based control approach 
was presented. The individual agent architecture 
for controlling Microtron and Transport line and 
there organization as multi-agent for cooperative 
control was designed.  The simulation results of 
the presented concept for controlling the pre-
injector accelerator Microtron and Transport 
line under the influence of disturbance on beam 
shows that this scheme can be used successfully 
for their optimal control without operator 
interventions.        
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