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Abstract

 A finite-elements-based time-domain system identification technique is presented in this paper for 
health assessment of three dimensional structures and denoted as 3D GILS-EKF-UI. It is a model-
based procedure and represents structures by finite elements. The method integrates an iterative 
least-squares technique and the extended Kalman filter-based concept for detecting location(s) of 
defect(s) and their severity for the rapid assessment of structural health. It tracks the changes in 
stiffness parameters at the finite element level using dynamic response information. The procedure 
does not require information on dynamic excitation and uses noise-contaminated responses 
measured only at small part(s) of the structure. With the help of examples, it is demonstrated that 
the method is capable of accurately identifying defect-free and defective states of three dimensional 
structures. The method addresses several implementation issues for rapid, economical, and easier 
assessment of structural health. Considering the accuracy and robustness, it is expected that the 
procedure can be used as a vibration-based nondestructive health assessment procedure.

Keywords- Finite elements; Time-domain; System identification; Unknown input excitation; Defects; 
Health assessment

1. introduction

Structural health assessment (SHA) of 
aging infrastructures has become one of the 
major challenges to the engineering community 
and attracted multidisciplinary worldwide 
research interest in the recent past. Lack of 
available resources to build new or replace old 
infrastructures prompted the researchers to 
develop alternatives to extend life of existing 
infrastructures. Most aged structures are expected 
to contain few defects; thus assessing their overall 
health as defective may not be of interest.  Also, 
all defects are not equally important. It will be 
most advantageous if the defect(s) and their 
severity can be identified at the local element 
level. This will help to take appropriate remedial 
actions when necessary. With the availability of 
the advanced computational capabilities and 
sensor technologies, this alternative has become 
very attractive. The basic concept behind SHA has 
been under development by multidisciplinary 

research teams over the past several decades and 
a volume of information is already available in 
the existing literature. One can find a paper by 
Kerschen et al. (2006) with 446 references. Several 
state-of-the-art papers on civil engineering 
applications will also establish the extent of 
interest in the research communities (Lew et al., 
1993; Ghanem and Shinozuka, 1995; Shinozuka 
and Ghanem, 1995; Doebling et al., 1996; Farrar 
and Doebling, 1997; Salawu, 1997; Carden and 
Fanning, 2004; Sohn et al., 2004; Kerschen et al., 
2006; Humar et al., 2006; Nasrellah, 2009; Fan 
and Qiao, 2010). Several methods with various 
levels of sophistication are now available. It is 
not possible to identify them here and discuss 
their merits and demerits.  However, they may 
not be directly applied to assess health of large 
structural systems, providing information 
on location(s), number, types of defects and 
their severity, thus limiting their application 
potential (Das et al, 2012). Considering accuracy, 
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efficiency, robustness, and economy, a new SHA 
technique is urgently needed and presented in 
this paper. It will provide an alternative to the 
commonly used subjective visual inspection-
based SHA procedure. The ineffectiveness of 
visual inspections is extensively documented in 
the literature (Fritzen, 2006).  

2. necessity of a new SHA method

To develop a new SHA method using modern 
technology, some of its desirable features need to 
be identified first. It has been established in the 
profession that measuring the current dynamic 
responses of a structure as opposed to static 
responses is more attractive for the SHA purpose 
(Das et al., 2012). Limiting discussion on SHA 
using dynamic response information only, the 
new procedure can be developed in the frequency 
or time domain. Since frequency-domain modal 
properties represent global properties, it may not 
be efficient to locate defects at the local element 
level. This leads to the conclusion by the authors 
and their research team that a time-domain 
approach is necessary.

In locating defects at the local structural 
elements, i.e., in beams, columns, or other 
structural elements, an inverse transformation 
technique, commonly known as the system 
identification (SI) algorithm is widely used. In 
a typical SI-based algorithm, the three essential 
components are: (i) excitation(s) that will excite 
a structure to be identified, (ii) the structure, 
generally represented in an algorithmic form, 
i.e., in a finite elements (FEs) representation, and 
(iii) dynamic response information measured at 
different parts of the structure. Using information 
on the excitation and responses, the dynamic 
properties of the structure in terms of mass 
and stiffness properties of all the elements and 
damping can be identified. Assuming that the 
masses of all the elements can be estimated with 
sufficient accuracy and damping is applicable to 
the whole structure, the stiffness properties of 
all the elements can be tracked for the structural 
health assessment purpose. By comparing 
the identified stiffness properties with the 
expected values, or reference values obtained 
from the design drawings, or changes from the 

previous values if inspections are carried out 
periodically, or variations from one member 
to another with similar sectional properties, 
the location(s), number, and severity of defects 
can be established. The procedure should also 
be applicable to evaluate repaired structures 
indicating the effectiveness of the repairing 
process and whether all the defects are properly 
identified and repaired or not.

The basic concept behind SI-based SHA 
methods appears to be straight forward. Some 
of the basic questions generally raised are on 
how to establish the uniqueness of the identified 
parameters and the convergence criteria. 
Assuming at this time that the numerical aspects 
of the SI-based formulation can be adequately 
addressed, the question remains is whether it 
can be successfully implemented to assess health 
of large structural systems. The implementation 
issues were generally overlooked in the past. To 
incorporate implementation issues appropriately, 
the basic SI-based SHA concept will need 
significant modifications or improvements. The 
improvements, as discussed next, will provide a 
platform for a novel concept.

Measuring excitation information accurately 
is a major challenge even in the controlled 
laboratory environment. It will be a major 
challenge if excitation information needs to be 
measured for real existing structures in field 
conditions. Therefore, it will be highly desirable 
if a system can be identified using only measured 
response information, completely ignoring 
the excitation information. However, it will be 
mathematically challenging since two of the 
three basic components of SI algorithm will 
be unknown. Several implementation issues 
also need to be appropriately addressed in the 
novel SHA procedure. First, considering the 
advance nature of current sensor technology, 
the most appropriate sensor for measuring 
dynamic responses in time-domain will be smart 
accelerometers with very high sampling rate. 
However, the acceleration time-histories, even 
when measured by smart accelerometers, are 
expected to be noise contaminated. The presence 
of noise in the measured responses requires 
special attention. Second, a large number of 
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dynamic degrees of freedom (DDOFs) will be 
necessary to represent large structural systems. 
It will be practically impossible and economically 
infeasible to instrument sensors at all DDOFs 
of large systems. Response information may be 
available only at a small part(s) of the structure 
where sensors are placed. The above discussions 
suggest that a novel time-domain SI-based SHA 
technique needs to be developed that can identify 
large structure systems, represented by finite 
elements, using only limited noise-contaminated 
response information measured at small part(s) 
of the structure and completely ignoring the 
excitation information.

The research team at the University of 
Arizona has been working on developing 
such a novel approach. The method can be 
economically implemented with relative ease for 
rapid diagnostic of the health of a structure. The 
implementation of the approach for assessing 
health of large three dimensional (3D) structures 
is specifically addressed in this paper.

3. Mathematical formulation

Identification of large structural systems 
with limited measured response information 
will necessitate the use of a substructure concept. 
Based on the locations of sensors, a substructure 
can be defined first. It will then be necessary to 
identify the substructure completely ignoring the 
excitation information, as suggested by Wang 
and Haldar (1994). The extended Kalman filter 
(EKF)-based algorithm is generally used when 
the response information is limited and noise 
contaminated (Wang and Haldar, 1997). The 
structural responses can be nonlinear due to 
presence of large deformation, defects, or high 
level of excitation. To incorporate a moderate 
level of nonlinearity, the EKF can be used by 
modeling structural behavior as piece-wise linear. 
The use of EKF will also help to incorporate error 
in the basic mathematical model representing 
the structure as well as the presence of noise in 
the response information. However, there are 
two fundamental obstructions of use of EKF in 
structural identification. To satisfy the dynamic 
governing equations even for the substructure, the 
excitation information must be known. However, 

it is considered to be unknown at this stage, thus 
defeating one of the main desirable features of 
the novel approach. Also, the initial state vector 
of the whole structure must be known, but it is 
unknown at this stage; it is supposed to be the 
outcomes of the identification process to assess 
structural health.  The discussions clearly indicate 
that the basic EKF-based method available in 
the literature cannot be used; the information 
required to implement it must be intelligently 
generated.                  

To meet the basic objective of a novel SHA 
technique, the research team proposed a two-
stage approach. In stage 1, the substructure 
discussed earlier will be identified without using 
excitation information by using a procedure 
already developed by the team (Katkhuda and 
Haldar, 2008). When Stage 1 is implemented 
properly, it will generate excitation information. 
This will satisfy one of the two basic obstructions 
to implement the EKF concept. Also, the 
identified stiffness properties of all the elements 
in the substructure, if used judicially, can provide 
information on the initial state vector, as will 
be discussed later in detail. This will satisfy the 
second basic obstruction to implement the EKF 
concept. With the generated information on the 
unknown time history of excitation and the initial 
state vector in Stage 1, the stiffness parameters 
for the whole structure can be identified using 
the EKF concept in Stage 2. By combining Stages 
1 and 2, a novel SHA method will be developed. 
It will be denoted hereafter as the 3D Generalized 
Iterative Least-Squares Extended Kalman Filter 
with Unknown Input method or 3D GILS-EKF-
UI.  As discussed earlier, the identified stiffness 
parameters of all the structural elements can 
be used to assess the structural health.  The 
mathematical concepts behind these two stages 
are discussed very briefly next.

Health assessment of three dimensional structures: 
Stage 1 – Concept of 3D GILS-UI

Without losing the generality, suppose the 
health of a three dimensional structure shown 
in Figure 1 needs to be assessed. However, the 
response information is measured only at node 
1, 2, 3, and 5. The task is to identify the health of 
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the whole structure using only limited response 
information available in the substructure.

Based on the available response information, 
the required substructure in Stage 1 can be 
selected as shown with double lines in Figure 1. 
The whole structure consists of 12 beams and 12 
columns. The substructure consists of two beams 
and one column. From the implementation point 
of view, it is expected that the point of application 
of the excitation and measured responses at 
node points will be close to each other. To set up 
the inspection process, it is necessary that the 
unknown exciting force will be applied at a node 
in the substructure.  

respectively. The subscript ‘sub’ is used to 
denote substructure.

For a typical 3D frame element, the mass 
matrix Mi and stiffness matrix Ki of the ith 
member, in the local coordinate system are 
expressed as (Paz, 1985):

This will satisfy one of the two basic obstructions to
implement the EKF concept. Also, the identified stiffness 
properties of all the elements in the substructure, if used
judicially, can provide information on the initial state vector, 
as will be discussed later in detail. This will satisfy the second 
basic obstruction to implement the EKF concept. With the 
generated information on the unknown time history of
excitation and the initial state vector in Stage 1, the stiffness 
parameters for the whole structure can be identified using the 
EKF concept in Stage 2. By combining Stages 1 and 2, a 
novel SHA method will be developed. It will be denoted
hereafter as the 3D Generalized Iterative Least-Squares
Extended Kalman Filter with Unknown Input method or 3D 
GILS-EKF-UI.  As discussed earlier, the identified stiffness 
parameters of all the structural elements can be used to assess 
the structural health.  The mathematical concepts behind these 
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substructure in Stage 1 can be selected as shown with double 
lines in Figure 1. The whole structure consists of 12 beams 
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one column. From the implementation point of view, it is 
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To set up the inspection process, it is necessary that the
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Figure 1. FE representation of a three dimensional frame
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Haldar, 2004):
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respectively. The subscript ‘sub’ is used to denote
substructure.

For a typical 3D frame element, the mass matrix iM and

stiffness matrix iK of the ith member, in the local coordinate 
system are expressed as (Paz, 1985):
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and
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f(t)

where Msub is the global mass matrix; Ksub 
is the global stiffness matrix; , and 
Xsub(t) are the vectors containing the acceleration, 
velocity, and displacement, respectively, at 
time t; fsub(t) is the input excitation vector at 
time t; and α and β are the mass and stiffness 
proportional Rayleigh damping coefficients, 

where Li, Ai, Ei, and are the length, 
cross-section area, material Young’s modulus of 
elasticity, and mass per unit length, respectively, 
of the ith frame element; and ci, ai , and bi are 
defined as: 

where Izi and Iyi are the cross-sectional 
moment of inertias with respect to the major 
and minor principal axes, respectively; Ji is the 
torsional moment of inertia; u is the Poisson’s 
ratio of the material, and is the polar mass 
moment of inertia per unit length of the member. 
Denoting the coefficient matrix in the square 
bracket by Si, Eq. 3 can be written as Ki = kiSi, 
where ki = Ei Izi/Li , is defined as the stiffness 
parameter for the ith member. Matrices Mi and 
Ki in the element local coordinate system need to 
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be transformed to the global coordinate system 
using appropriate transformation matrix ti to 
obtain the global mass and stiffness matrices, 

iM  and iK , as (Paz, 1985):

and used to solve these equations as discussed 
below.

Considering that the responses at all n time 
points are available, the Eq. 9 can be reorganized 
with Ndkey×n number of equations for the 
key node(s) (Katkhuda and Haldar, 2008) as:  
 

(10)

where Ndkey is the number of DDOFs for 
the key node(s) in the substructure. Vector 
F on the left hand side of Eq. 10 contains the 
unknown input excitations and the inertia 
forces at all n time points. Matrix A on the right 
hand side contains the measured displacement 
and velocity responses at all n time points. 
To implement the least-squares minimization 
technique, an error function (e) is defined as: 
 

(11)

To satisfy the necessary condition for e to be the 
minimum, the derivative of the error function with 
respect to vector p must be equated to zero, that is 
 

Equation 12 leads to the least-square 
estimator given by  

 

where Li, Ai, Ei, and im are the length, cross-section area, 
material Young’s modulus of elasticity, and mass per unit 

length, respectively, of the ith frame element; and ic , ia , and 

ib are defined as: 

i mi i
c I m= i y zi i

a I I= 2(1 )i i zib J Iυ = + 
(4)

where zi
I

and yi
I

are the cross-sectional moment of inertias 
with respect to the major and minor principal axes,

respectively; iJ is the torsional moment of inertia; υ is the 

Poisson’s ratio of the material, and miI
is the polar mass 

moment of inertia per unit length of the member. Denoting the 
coefficient matrix in the square bracket by S i, Eq. 3 can be 

written as Ki = kiS i, where ki = i z ii
E I L

, is defined as the 
stiffness parameter for the ith member. Matrices Mi and Ki in

the element local coordinate system need to be transformed to 
the global coordinate system using appropriate transformation 
matrix Ti to obtain the global mass and stiffness matrices, 

iM and iK , as (Paz, 1985):
T

i i i i=M T M T T
i i i i i i ik k= =K T S T S (5)

Considering all the elements in the substructure and using Eq. 
5, the global mass and stiffness matrices for the substructure 
can be formulated as: 

1
i

nesub
sub

i=
= ∑M M

(6)

1 1
i i i

nesub nesub
sub

i i
k

= =
= =∑ ∑K K S

(7)

where nesub is the total number of elements in the
substructure. Using Eq. 7, Eq. 1 can be reorganized as:

1 1 2 2

1 1 2 2

( ) ( ) ( ) ( )
 ( ) ( ) ( )

sub sub sub nesub nesub sub

nesub nesub sub sub sub

t t k k k t
k k k t tβ α

− = + + +
+ + + + +

f M X S S S X
S S S X M X

&& L
& &L (8)

Equivalently,

1 2 1 2

( ) ( )

[ ( )  ( )  ( ) ( ) ( )  ( )  ( )]
sub sub sub

sub sub nesub sub sub sub nesub sub sub sub

t t

t t t t t t t

− =f M X

S X S X S X S X S X S X M X P

&&

& & & &L L (9)

In the above equation, P is defined as

1 2 1 2[  ]Tnesub nesubk k k k k kβ β β α=P L L . It
contains unknown stiffness and damping parameters.
Obviously, to solve for P, at least Lsub = 2 nesub + 1 number
of equations must be formed. As mentioned earlier,
acceleration time histories will be measured at high sampling 
rates, i.e., the responses will be available at large number of 
time points. This will create a situation where the number of 
equations will be larger than required, indicating an over-
determined system of equations. Using the error minimization 
technique, a least squares technique is formulated and used to 
solve these equations as discussed below.

Considering that the responses at all n time points are
available, the Eq. 9 can be reorganized with Ndkey×n number of 
equations for the key node(s) (Katkhuda and Haldar, 2008) as:

. 1 . 1Ndkeyn Ndkeyn Lsub Lsub× × ×=F A P (10)

where Ndkey is the number of DDOFs for the key node(s) in the 
substructure. Vector F on the left hand side of Eq. 10 contains 
the unknown input excitations and the inertia forces at all n

time points. Matrix A on the right hand side contains the 
measured displacement and velocity responses at all n time
points. To implement the least-squares minimization
technique, an error function ( ε ) is defined as:

2.

1 1

Ndkeyn Lsub

r rs s
r s

F A Pε
= =

 
= − 

 
∑ ∑

(11)

To satisfy the necessary condition for ε to be the minimum, 
the derivative of the error function with respect to vector P
must be equated to zero, that is

0d
d

ε =
P (12)

Equation 12 leads to the least-square estimator given by 

1
1 . . . . 1( )T T

Lsub Lsub Ndkeyn Ndkeyn Lsub Lsub Ndkeyn Ndkeyn
−

× × × × ×=P A A A F
(13)

(13)=

It is relatively simple to solve for p using Eq. 
13 provided the vector f is known. However, since 
the information on input excitations is not known, 
f becomes partially known. To start the iteration 
process using the least-squares technique, the 
excitation information was initially assumed 
to be zero for few time points as discussed by 
Wang and Haldar (1994). Katkhuda et al. (2005) 
implemented the iterative procedure by assuming 
the excitation information to be zero for all the 
time points. The iteration process is continued 
until the excitation time history converges at 
all time points, considering two successive 
iterations, with a predetermined tolerance 

Considering all the elements in the 
substructure and using Eq. 5, the global mass 
and stiffness matrices for the substructure can 
be formulated as: 

where nesub is the total number of elements 

It contains unknown stiffness and damping 
parameters. Obviously, to solve for P, at least 
Lsub = 2 nesub + 1 number of equations must be 
formed. As mentioned earlier, acceleration time 
histories will be measured at high sampling 
rates, i.e., the responses will be available at large 
number of time points. This will create a situation 
where the number of equations will be larger than 
required, indicating an over-determined system 
of equations. Using the error minimization 
technique, a least squares technique is formulated 

in the substructure. Using Eq. 7, Eq. 1 can be 
reorganized as:
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level. It is important to note that acceleration 
time histories will be measured during an 
inspection. To evaluate p, the corresponding 
velocity and displacement time histories are 
necessary. The acceleration time histories can be 
successively integrated to generate the velocity 
and displacement time histories as discussed in 
more detail by Vo and Haldar (2003). The concept 
has been extensively verified, analytically and 
experimentally, for two dimensional structures. 
For three dimensional structures discussed in 
this paper, the 3D GILS-UI procedure can be 
implemented using the following steps.

Steps to identify substructure in Stage 1 - 3d 
giLS-ui 

Step 1 – Generate velocity and displacement 
time histories from measured acceleration time 
histories.

Step 2 - Form the Ndkey × Lsub matrix A(tk) 
in Eq. 9 for all discrete time steps tk, for k = 1, 2, 
…, n, using the available dynamic responses in 
terms of velocities and displacements. Form the 
(Ndkey.n) × Lsub matrix A by appending all the 
A(tk) matrices, i.e., 

Step 7 - Update the input excitation force 
vector f using Eq. 1 and then update the system 
parameter vector p again.

Continue the iteration procedure until a 
predetermined convergence tolerance level (d) 
on the input excitation is satisfied i.e. fi+1 – fi ≤ d, 
where fi+1 and fi are the excitation forces estimated 
in two consecutive iterations for all n time steps. 
A convergence tolerance level of 10-6 is considered 
for this study.

3d giLS-EKf-ui – Stage 2

As mentioned earlier, information generated 
in Stage 1 can be used to implement Stage 2 and 
the stiffness parameter of all the elements in the 
structural system can be evaluated. The EKF 
concept is relatively new and may not be known 
to all the readers. A brief discussion is made 
below to introduce the basic EKF concept for the 
readers who are not familiar with it.  

Concept of EKf-Wgi procedure

In order to implement the EKF concept, it is 
necessary to describe the dynamic system by a set 
of nonlinear differential equations. In the absence 
of any process noise, i.e., assuming the governing 
differential equation of motion Equation 1 is 
correct, expressing it in the state-space form will 
result a set of first-order nonlinear differential 
equation (Saridis, 1995) as: 

Step 3 - Assume that the Ndkey×1 input 
excitation force vectors f(tk) to be zero for all the 
time steps, i.e., f(tk) = 0, for k = 1, 2, ..., n. Form the 
(Ndkey.n) × 1 vector f by appending all the f(tk) 
vectors. Using matrix A and force vector f obtain 
the first estimation of Lsub × 1 system parameter 
vector p using Eq. 13.

Step 4 - Substitute the system parameters p 
estimated in step 3 into Eq. 1 to obtain unknown 
input force vector f.

Step 5 - Apply force constraints to the input 
excitation f obtained in step 4. For example, if the 
input excitation is known to be exactly zero at jth 
DDOF, the constraint fj(tk) = 0, where k = 1, 2, …, 
n, needs to be introduced. 

Step 6 - Obtain the updated information on 
the system parameter vector p using step 3.

where f(z(t),t) is the nonlinear function of the 
states and z(t) can be mathematically expressed as: 
 

where the subscript  s  denotes the 
components of the system state vector and 
p denotes the system parameter vector to be 
identified. The vectors (t) and (t) contain 
displacement and velocity responses of the 
system, respectively, and vector contains the 
unknown system parameters assumed to remain 
invariant during the identification process. 
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For a structure consisting of ne numbers of 
elements, can be defined as = [k2    k2     ...    
kne ]

T , where ki is the stiffness parameter of the 
ith element. Equation 17 can be rewritten as: 
 

 

Equation 16 is essentially a compact 
representation of Eq. 18. 

Displacements and velocities are considered 
to be available at a constant time interval of 
∆t, at a discrete time instances tk = k ∆t for 
a total duration of, say, T seconds. The 
discrete time measurement equation y(k) 
is linear and noise contaminated, and it 
can be expressed at any discrete time k as: 
 

                          (19)                                          

where H is the measurement matrix; for 
measured responses it becomes a unit diagonal 
matrix, and v(k) is a zero-mean Gaussian white 
random process indicating the presence of noise. 
It is generally presented as: 

( ) (0, ( ))k N kV R�                                    (20)

where R(k) is the discrete measurement 
noise matrix consisting of covariance values 
considering noise source in each measurement at 
any discrete time k. The noise covariance matrix 
is generally assumed to be diagonal and the 
values remain constant with time. In this study 
it is assumed to be of the same magnitude of 10-4 
for all responses. 

As mentioned earlier, before staring the 
filtering algorithm, it is necessary to have initial 
estimate of the uncertain state vector containing 
information of stiffness parameters of all the 
elements in the structure. It can be developed from 
the information generated in Stage 1. Suppose, the 
substructure contains a beam and a column and 
their stiffness parameters are identified in Stage 1. 
To develop the initial estimate of the state vector, all 
the beams in the structure will be assigned the same 
stiffness parameter value as obtained for the beam 
in the substructure. For columns, similar procedure 

will be followed. This is expected to be very 
reasonable since all the beams and all columns in 
the structure are expected to have respective similar 
stiffness parameters. This may help to accelerate the 
convergence process of their estimates. 

To start the filtering process, the initial as 
well as the subsequent estimates of the state 
vector are considered to be uncertain and 
generally modeled as a Gaussian. Considering 
the initial state vector as represented as (0 | 0)Z , 
it can be expressed as: 

ˆ(0 | 0) ( (0 | 0), (0 | 0))=Z Z P                     (21) 

where ˆ (0 | 0)Z is a vector containing the 
mean values. Since the initial values of the 
responses in the state vector are not available, they 
can be assumed to be zero. The initial values for 
the stiffness parameters, as discussed above, are 
assigned by judiciously using the values obtained 
in stage 1. Thus the initial state vector is exressed as:  
 

The uncertainty in the assumption of the 
initial state mean is considered by an initial error 
covariance matrix (0 | 0)P  defined as: 

s

p

(0 | 0) 0
(0 | 0)

0 (0 | 0)

 
=  

 

P
P

P

 

                                                                    (24)

The subscripts s and p are defined earlier. 
Generally, s (0 | 0)P is considered to be a unit 
diagonal matrix as previously used by Hoshiya 
and Saito (1984), Koh et al. (1991), Wang and 
Haldar (1997). p (0 | 0)P  is a diagonal matrix with 
large numbers in the diagonals representing the 
uncertainty in their initial values; it will depend 
on the magnitude of the stiffness parameters 
of the structural members. Jazwinski (1970) 
commented that the large positive numbers for 
the covariance values for the system parameters 
accelerate the convergence of the local iteration. 
Thus, in this study (0 | 0)P is defined as:
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1

2

0
(0 | 0)

0 λ
 

=  
 

I
P

I                                 (25)

where i1 and i2 are unit matrices and l is 
the large positive number assumed to be of the 
order of 1000.

The discussions clearly indicate that to start 
the filtering the information on 

where H is the measurement matrix; for measured responses it 
becomes a unit diagonal matrix, and V(k) is a zero-mean
Gaussian white random process indicating the presence of 
noise. It is generally presented as: 

( ) (0, ( ))k N kV R:
(20)

where R(k) is the discrete measurement noise matrix
consisting of covariance values considering noise source in 
each measurement at any discrete time k. The noise
covariance matrix is generally assumed to be diagonal and the 
values remain constant with time. In this study it is assumed to 
be of the same magnitude of 10-4 for all responses. 

As mentioned earlier, before staring the filtering algorithm, it 
is necessary to have initial estimate of the uncertain state 
vector containing information of stiffness parameters of all the 
elements in the structure. It can be developed from the
information generated in Stage 1. Suppose, the substructure 
contains a beam and a column and their stiffness parameters 
are identified in Stage 1. To develop the initial estimate of the 
state vector, all the beams in the structure will be assigned the 
same stiffnes s parameter value as obtained for the beam in the 
substructure. For columns, similar procedure will be followed. 
This is expected to be very reasonable since all the beams and 
all columns in the structure are expected to have respective 
similar stiffness parameters. This may help to accelerate the 
convergence process of their estimates. 

To start the filtering process, the initial as well as the
subsequent estimates of the state vector are considered to be 
uncertain and generally modeled as a Gaussian. Considering

the initial state vector as represented as (0|0)Z , it can be 
expressed as: 

ˆ(0|0) ( (0|0), (0|0))=Z Z P
(21)

where
ˆ (0|0)Z is a vector containing the mean values. Since 

the initial values of the responses in the state vector are not 
available, they can be assumed to be zero. The initial values 
for the stiffness parameters, as discussed above, are assigned 
by judiciously using the values obtained in stage 1. Thus the 
initial state vector is expressed as: 

ˆ (0|0)
ˆˆ (0|0) (0|0)

(0|0)

 
 
 =
 
  

X

Z X
K

&
%

(23)

The uncertainty in the assumption of the initial state mean is

considered by an initial error covariance matrix (0|0)P
defined as: 

s

p

(0|0) 0
(0|0)

0 (0|0)
 

=  
 

P
P

P

(24)

The subscripts s and p are defined earlier. Generally,

s (0|0)P is considered to be a unit diagonal matrix as
previously used by Hoshiya and Saito (1984), Koh et al. 

(1991), Wang and Haldar (1997). p (0|0)P is a diagonal 
matrix with large numbers in the diagonals representing the 
uncertainty in their initial values; it will depend on the
magnitude of the stiffness parameters of the structural
members. Jazwinski (1970) commented that the large positive 
numbers for the covariance values for the system parameters 
accelerate the convergence of the local iteration. Thus, in this 

study (0|0)P is defined as:

1

2

0
(0|0)

0 λ
 

=  
 

I
P

I

(25)

where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.

The discussions clearly indicate that to start the filtering the 

information on
ˆ (0|0)Z , (0|0)P and R(k ) is necessary.

After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
ˆ ( | )k kZ and error covariance ( | )k kP at

time k are propagated one step forward in time to predict the 

new state mean
ˆ ( 1| )k k+Z and new error covariance

( 1 | )k k+P at time k +1 by numerically solving the following 
differential equations as:

( 1)
ˆ ˆ( 1| ) ( | ) ( ( | ), )

k t

k t

k k k k f t k t dt
+ ∆

∆

+ = + ∫Z Z Z

(26 )

( 1 | ) ( 1 | ) ( | ) ( 1| ))Tk k k k k k k k+ = + +P F P F
(27)

where ( 1| )k k+F is the state transition matrix of the
system. For small t∆ , it can be approximately defined as: 

,  
and R(k) is necessary.     

After the uncertain initial conditions are 
assigned appropriately, the filtering process is 
performed in the following two steps:

(i) Prediction of new state mean and its new error 
covariance – The state mean 

where H is the measurement matrix; for measured responses it 
becomes a unit diagonal matrix, and V(k) is a zero-mean
Gaussian white random process indicating the presence of 
noise. It is generally presented as: 

( ) (0, ( ))k N kV R:
(20)

where R(k) is the discrete measurement noise matrix
consisting of covariance values considering noise source in 
each measurement at any discrete time k. The noise
covariance matrix is generally assumed to be diagonal and the 
values remain constant with time. In this study it is assumed to 
be of the same magnitude of 10-4 for all responses. 

As mentioned earlier, before staring the filtering algorithm, it 
is necessary to have initial estimate of the uncertain state 
vector containing information of stiffness parameters of all the 
elements in the structure. It can be developed from the
information generated in Stage 1. Suppose, the substructure 
contains a beam and a column and their stiffness parameters 
are identified in Stage 1. To develop the initial estimate of the 
state vector, all the beams in the structure will be assigned the 
same stiffnes s parameter value as obtained for the beam in the 
substructure. For columns, similar procedure will be followed. 
This is expected to be very reasonable since all the beams and 
all columns in the structure are expected to have respective 
similar stiffness parameters. This may help to accelerate the 
convergence process of their estimates. 

To start the filtering process, the initial as well as the
subsequent estimates of the state vector are considered to be 
uncertain and generally modeled as a Gaussian. Considering

the initial state vector as represented as (0|0)Z , it can be 
expressed as: 

ˆ(0|0) ( (0|0), (0|0))=Z Z P
(21)

where
ˆ (0|0)Z is a vector containing the mean values. Since 

the initial values of the responses in the state vector are not 
available, they can be assumed to be zero. The initial values 
for the stiffness parameters, as discussed above, are assigned 
by judiciously using the values obtained in stage 1. Thus the 
initial state vector is expressed as: 

ˆ (0|0)
ˆˆ (0|0) (0|0)

(0|0)

 
 
 =
 
  

X

Z X
K

&
%

(23)

The uncertainty in the assumption of the initial state mean is

considered by an initial error covariance matrix (0|0)P
defined as: 
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p

(0|0) 0
(0|0)

0 (0|0)
 
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 

P
P

P

(24)

The subscripts s and p are defined earlier. Generally,

s (0|0)P is considered to be a unit diagonal matrix as
previously used by Hoshiya and Saito (1984), Koh et al. 

(1991), Wang and Haldar (1997). p (0|0)P is a diagonal 
matrix with large numbers in the diagonals representing the 
uncertainty in their initial values; it will depend on the
magnitude of the stiffness parameters of the structural
members. Jazwinski (1970) commented that the large positive 
numbers for the covariance values for the system parameters 
accelerate the convergence of the local iteration. Thus, in this 

study (0|0)P is defined as:

1
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0
(0|0)

0 λ
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where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.

The discussions clearly indicate that to start the filtering the 

information on
ˆ (0|0)Z , (0|0)P and R(k ) is necessary.

After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
ˆ ( | )k kZ and error covariance ( | )k kP at

time k are propagated one step forward in time to predict the 

new state mean
ˆ ( 1| )k k+Z and new error covariance

( 1 | )k k+P at time k +1 by numerically solving the following 
differential equations as:
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where ( 1| )k k+F is the state transition matrix of the
system. For small t∆ , it can be approximately defined as: 
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becomes a unit diagonal matrix, and V(k) is a zero-mean
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where R(k) is the discrete measurement noise matrix
consisting of covariance values considering noise source in 
each measurement at any discrete time k. The noise
covariance matrix is generally assumed to be diagonal and the 
values remain constant with time. In this study it is assumed to 
be of the same magnitude of 10-4 for all responses. 

As mentioned earlier, before staring the filtering algorithm, it 
is necessary to have initial estimate of the uncertain state 
vector containing information of stiffness parameters of all the 
elements in the structure. It can be developed from the
information generated in Stage 1. Suppose, the substructure 
contains a beam and a column and their stiffness parameters 
are identified in Stage 1. To develop the initial estimate of the 
state vector, all the beams in the structure will be assigned the 
same stiffnes s parameter value as obtained for the beam in the 
substructure. For columns, similar procedure will be followed. 
This is expected to be very reasonable since all the beams and 
all columns in the structure are expected to have respective 
similar stiffness parameters. This may help to accelerate the 
convergence process of their estimates. 

To start the filtering process, the initial as well as the
subsequent estimates of the state vector are considered to be 
uncertain and generally modeled as a Gaussian. Considering

the initial state vector as represented as (0|0)Z , it can be 
expressed as: 

ˆ(0|0) ( (0|0), (0|0))=Z Z P
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where
ˆ (0|0)Z is a vector containing the mean values. Since 

the initial values of the responses in the state vector are not 
available, they can be assumed to be zero. The initial values 
for the stiffness parameters, as discussed above, are assigned 
by judiciously using the values obtained in stage 1. Thus the 
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The uncertainty in the assumption of the initial state mean is

considered by an initial error covariance matrix (0|0)P
defined as: 
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The subscripts s and p are defined earlier. Generally,

s (0|0)P is considered to be a unit diagonal matrix as
previously used by Hoshiya and Saito (1984), Koh et al. 

(1991), Wang and Haldar (1997). p (0|0)P is a diagonal 
matrix with large numbers in the diagonals representing the 
uncertainty in their initial values; it will depend on the
magnitude of the stiffness parameters of the structural
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numbers for the covariance values for the system parameters 
accelerate the convergence of the local iteration. Thus, in this 
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where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.

The discussions clearly indicate that to start the filtering the 
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ˆ (0|0)Z , (0|0)P and R(k ) is necessary.

After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
ˆ ( | )k kZ and error covariance ( | )k kP at
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The uncertainty in the assumption of the initial state mean is
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where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.
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After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
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where ( 1| )k k+F is the state transition matrix of the
system. For small t∆ , it can be approximately defined as: 
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The uncertainty in the assumption of the initial state mean is
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uncertainty in their initial values; it will depend on the
magnitude of the stiffness parameters of the structural
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where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.
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After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
ˆ ( | )k kZ and error covariance ( | )k kP at
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elements in the structure. It can be developed from the
information generated in Stage 1. Suppose, the substructure 
contains a beam and a column and their stiffness parameters 
are identified in Stage 1. To develop the initial estimate of the 
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same stiffnes s parameter value as obtained for the beam in the 
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This is expected to be very reasonable since all the beams and 
all columns in the structure are expected to have respective 
similar stiffness parameters. This may help to accelerate the 
convergence process of their estimates. 
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where
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The uncertainty in the assumption of the initial state mean is

considered by an initial error covariance matrix (0|0)P
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matrix with large numbers in the diagonals representing the 
uncertainty in their initial values; it will depend on the
magnitude of the stiffness parameters of the structural
members. Jazwinski (1970) commented that the large positive 
numbers for the covariance values for the system parameters 
accelerate the convergence of the local iteration. Thus, in this 

study (0|0)P is defined as:

1

2

0
(0|0)

0 λ
 

=  
 

I
P

I

(25)

where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.

The discussions clearly indicate that to start the filtering the 
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ˆ (0|0)Z , (0|0)P and R(k ) is necessary.

After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
ˆ ( | )k kZ and error covariance ( | )k kP at

time k are propagated one step forward in time to predict the 
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where ( 1| )k k+F is the state transition matrix of the
system. For small t∆ , it can be approximately defined as: 
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substructure. For columns, similar procedure will be followed. 
This is expected to be very reasonable since all the beams and 
all columns in the structure are expected to have respective 
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where
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available, they can be assumed to be zero. The initial values 
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The uncertainty in the assumption of the initial state mean is

considered by an initial error covariance matrix (0|0)P
defined as: 
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The subscripts s and p are defined earlier. Generally,

s (0|0)P is considered to be a unit diagonal matrix as
previously used by Hoshiya and Saito (1984), Koh et al. 

(1991), Wang and Haldar (1997). p (0|0)P is a diagonal 
matrix with large numbers in the diagonals representing the 
uncertainty in their initial values; it will depend on the
magnitude of the stiffness parameters of the structural
members. Jazwinski (1970) commented that the large positive 
numbers for the covariance values for the system parameters 
accelerate the convergence of the local iteration. Thus, in this 
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where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.

The discussions clearly indicate that to start the filtering the 

information on
ˆ (0|0)Z , (0|0)P and R(k ) is necessary.

After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
ˆ ( | )k kZ and error covariance ( | )k kP at

time k are propagated one step forward in time to predict the 
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The uncertainty in the assumption of the initial state mean is

considered by an initial error covariance matrix (0|0)P
defined as: 
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matrix with large numbers in the diagonals representing the 
uncertainty in their initial values; it will depend on the
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where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.

The discussions clearly indicate that to start the filtering the 
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After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
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Gaussian white random process indicating the presence of 
noise. It is generally presented as: 

( ) (0, ( ))k N kV R:
(20)

where R(k) is the discrete measurement noise matrix
consisting of covariance values considering noise source in 
each measurement at any discrete time k. The noise
covariance matrix is generally assumed to be diagonal and the 
values remain constant with time. In this study it is assumed to 
be of the same magnitude of 10-4 for all responses. 

As mentioned earlier, before staring the filtering algorithm, it 
is necessary to have initial estimate of the uncertain state 
vector containing information of stiffness parameters of all the 
elements in the structure. It can be developed from the
information generated in Stage 1. Suppose, the substructure 
contains a beam and a column and their stiffness parameters 
are identified in Stage 1. To develop the initial estimate of the 
state vector, all the beams in the structure will be assigned the 
same stiffnes s parameter value as obtained for the beam in the 
substructure. For columns, similar procedure will be followed. 
This is expected to be very reasonable since all the beams and 
all columns in the structure are expected to have respective 
similar stiffness parameters. This may help to accelerate the 
convergence process of their estimates. 

To start the filtering process, the initial as well as the
subsequent estimates of the state vector are considered to be 
uncertain and generally modeled as a Gaussian. Considering

the initial state vector as represented as (0|0)Z , it can be 
expressed as: 

ˆ(0|0) ( (0|0), (0|0))=Z Z P
(21)

where
ˆ (0|0)Z is a vector containing the mean values. Since 

the initial values of the responses in the state vector are not 
available, they can be assumed to be zero. The initial values 
for the stiffness parameters, as discussed above, are assigned 
by judiciously using the values obtained in stage 1. Thus the 
initial state vector is expressed as: 

ˆ (0|0)
ˆˆ (0|0) (0|0)

(0|0)

 
 
 =
 
  

X

Z X
K

&
%

(23)

The uncertainty in the assumption of the initial state mean is

considered by an initial error covariance matrix (0|0)P
defined as: 

s

p

(0|0) 0
(0|0)

0 (0|0)
 

=  
 

P
P

P

(24)

The subscripts s and p are defined earlier. Generally,

s (0|0)P is considered to be a unit diagonal matrix as
previously used by Hoshiya and Saito (1984), Koh et al. 

(1991), Wang and Haldar (1997). p (0|0)P is a diagonal 
matrix with large numbers in the diagonals representing the 
uncertainty in their initial values; it will depend on the
magnitude of the stiffness parameters of the structural
members. Jazwinski (1970) commented that the large positive 
numbers for the covariance values for the system parameters 
accelerate the convergence of the local iteration. Thus, in this 

study (0|0)P is defined as:

1

2

0
(0|0)

0 λ
 

=  
 

I
P

I

(25)

where I1 and I2 are unit matrices and λ is the large positive 
number assumed to be of the order of 1000.

The discussions clearly indicate that to start the filtering the 

information on
ˆ (0|0)Z , (0|0)P and R(k ) is necessary.

After the uncertain initial conditions are assigned
appropriately, the filtering process is performed in the
following two steps:

(i) Prediction of new state mean and its new error covariance 

– The state mean 
ˆ ( | )k kZ and error covariance ( | )k kP at

time k are propagated one step forward in time to predict the 

new state mean
ˆ ( 1| )k k+Z and new error covariance

( 1 | )k k+P at time k +1 by numerically solving the following 
differential equations as:

( 1)
ˆ ˆ( 1| ) ( | ) ( ( | ), )

k t

k t

k k k k f t k t dt
+ ∆

∆

+ = + ∫Z Z Z

(26 )

( 1 | ) ( 1 | ) ( | ) ( 1| ))Tk k k k k k k k+ = + +P F P F
(27)

where ( 1| )k k+F is the state transition matrix of the
system. For small t∆ , it can be approximately defined as: 

   

w h e r e ( 1| )k k+Ö i s  t h e  s t a t e  t r a n -
sit ion matrix of  the system. For small

t∆ ,  it can be approximately defined as: 
 

ˆ( ) ( | )

(( ( ), )
( 1| )

( ) t k k

f t t
k k t

t =

 ∂+ = + ∆  ∂ Z Z

Z
Ö I

Z
  

                                                                           (28)

All other terms were defined earlier. 
Numerical solution of Equation (26) will introduce 
the piece-wise linear approximation in the 
formulation.

(ii) Updating the predicted state mean 
and its error covariance – Using the available 
measurements at time k+1, the predicted 
state mean and error covariance are updated 
using the Kalman gain matrix K(k+1) as: 
 
 
 
 

  
 ( 1| 1) [ ( 1) ] ( 1| )[ ( 1) ] ( 1) ( 1) ( 1)T Tk k k k k k k k k+ + = − + + − + + + + +P I K H P I K H K R K

( 1| 1) [ ( 1) ] ( 1| )[ ( 1) ] ( 1) ( 1) ( 1)T Tk k k k k k k k k+ + = − + + − + + + + +P I K H P I K H K R K
                                                             

where  
 

1( 1) ( 1| ) [ ( 1| ) ( 1)]T Tk k k k k k −+ = + + + +K P H HP H R
1( 1) ( 1| ) [ ( 1| ) ( 1)]T Tk k k k k k −+ = + + + +K P H HP H R

 

                                                                     

As discussed earlier, for the purpose of 
structural identification, the dynamic responses 
will be measured at every t∆  s time interval for 
a total duration of, say T s, providing a total of n 
samples. The prediction and updating operations 
described by Eq. 26 through Eq. 31 will be carried 
out locally for each of the time points, i.e., k = 1, 
2, …, n, generally termed as the local iteration. 
When the local iteration is performed for all the 
time points in the entire time-history, it is denoted 
as global iteration procedure. Jazwinski (1970) 
suggested that the global iteration procedure 
should be repeated until the two successive states 
are essentially identical. After the completion 
of the first global iteration, considering the 
stability and convergence, Hoshiya and Saito 
(1984) proposed a weighted global iteration 
(WGI) scheme in the EKF procedure to be 
carried out in the subsequent global iterations. 
It is commonly known as the EKF-WGI 
procedure. It can be mathematically presented as: 

 
  
 

 

 
                    

Steps in EKf-Wgi procedure 

The WGI method in the EKF-WGI procedure 
is carried out by scaling up the covariance values 
of the system parameters, obtained at the end of 
the previous global iteration, by a sufficiently 
large weight factor (w). This will satisfy the 
stability and convergence of the identified system 
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parameters towards the true solution. Following 
are the steps involved:
(i) Develop the initial state vector ˆ (0 | 0)Z  

and error covariance matrix (0 | 0)P for the 
whole system as described in Eq. 23 and 24, 
respectively. 

(ii) Carry out the local iterations comprising of 
the prediction and updating the state mean 
and error covariance in the EKF procedure 
for all the time steps considering k = 1, 2, 
…, n, completing the first global iteration 
producing the updated (1)ˆ ( | )n nZ and 

(1) ( | )n nP at the end of the last time step.
(iii) As described in Eq. 32 and 33, define the 

initial state vector (2)ˆ (0 | 0)Z and error 
variance matrix (2) (0 | 0)P for the second 
global iteration using the system parameters 
and their covariance values obtained in step 
(ii) by scaling up the covariance values by a 
large positive weight factor (w). 

(iv) Carry out the local iteration steps of the EKF 
procedure within the second global iteration 
to obtain (2)ˆ ( | )n nZ and (2) ( | )n nP .

(iv) Continue the iterative procedure until the 
updated system parameters at the end of a 
global iteration show no longer improvement 
from their assumed values, ensuring the 
convergence of the parameters. In the 
numerical procedure in this study a value of 
1% is used for estimated relative error (c) to 
stop the iteration process.

The covariance values provide a measure of 
the filter performance and indicate the stability 
of estimated states. The use of weight factor in 
the initial covariance matrix introduces high 
fluctuation of the state vector ˆ ( | )k kZ  in the initial 
stage. Although the weight factor seemed to play 
an important role in the later stage to assure 
convergence (Hoshiya and Saito, 1984), the global 
iteration procedure does not essentially guarantee 
the convergence of the iteration scheme; in fact, it 
may diverge because of incorrect assumption of 
initial state vector, modeling error, limitation of 
computer processing power, numerical precision, 
etc. (Jazwinski, 1970; Simon, 2006; Speyer and 
Chung, 2008). In any case, the stability and 
convergence of the estimated system parameters 
can be judged by the nature of an objective 

function (q) (not presented here), as suggested 
by Hoshiya and Saito (1984). The same objective 
function is implemented in this study. When the 
identified system parameters tend to diverge, the 
best estimated values are obtained corresponding 
to the minimum objective function. 

4. Examples 

4.1 Health assessment of a 3d frame

Health assessment processes of a 3D frame 
considering defect-free and various defective 
states are presented in the following sections.

description of the frame

A 3D three-story frame with square base 
of sides 9.14 m each and story height of 3.66 
m, as shown in Fig. 1, is considered. The 
beams and columns are made of W21x68 and 
W14x61sections, respectively, of Grade 50 steel. 
In FE representation, the frame is represented 
by 16 nodes, denoted by numbers in regular 
typescript, and 24 elements, denoted by numbers 
in italic typescript with underline. For easier 
visualization, the elements in the two back sides 
are shown by dotted lines. All the elements 
are considered to be three dimensional beam 
elements with rigid connections. The support 
condition at the base of the frame (node 13, 14, 
15, 16) is considered to be fixed. Each node has six 
DDOFs: three translational and three rotational. 
Thus, the total number of DDOFs for the frame is 
72. The actual theoretical stiffness parameters ki 
defined in terms of (EiIzi/Li) are calculated to be 
13476 kN-m and 14553 kN-m for a typical beam 
and a column, respectively. First two natural 
frequencies of the frame are estimated to be f1 
= 2.7229 Hz and f2 = 3.5717 Hz, respectively. 
Following the procedure described in Clough and 
Penzien (1993), Rayleigh damping coefficient a 
and b are calculated to be 0.97077 and 0.0025284, 
respectively, for an equivalent modal damping of 
5%  (commonly used in model codes in the U.S.) 
of the critical for the first two modes.

Supposed structural responses are measured 
at all DDOFs in the substructure. The task 
is to identify stiffness parameters of all 24 
elements using responses measured only in the 
substructure, i.e., at nodes 1, 2, 3, and 5. 
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During an actual inspection, the responses 
will be measured. For this illustrative example to 
demonstrate the application potential of the 3D 
GILS-EKF-UI procedure, responses are generated 
numerically for theoretical verification. The frame 
is excited by a sinusoidal load f(t) = 10sin(20t) 
kN, applied at node 1 in the horizontal direction 
as shown in Fig. 1. Responses are analytically 
generated using a commercial software ANSYS 
(ver. 11). After the responses are generated, the 
information on the excitation force is completely 
ignored.  The responses are generated at every 
0.0001 s time interval. Responses between 0.31 
s and 0.63 s, providing 3201 samples are used 
in this example to assess the health of the 3D 
frame. 

4.2 Health assessment of defect-free frame

Using only responses at four nodes in 
the substructure, the stiffness and damping 
parameters and the time-history of unknown 
input force are identified using the 3D GILS-UI 
procedure in Stage 1. The identified stiffness 
parameters and the errors in identification 
are shown in columns 3 and 4 of Table 1(a), 
respectively. As commonly used in the literature, 
the errors are defined as the percentage deviation 
of identified values (at the current state) with 
respect to the initial theoretical values used to 
generate the response information. In actual field 
inspections, the information can be obtained from 
design drawings, or from previous inspections, 
if available. The errors in the stiffness parameter 
identification of the three members in the 
substructure are very small. The excitation time 
history was also identified very accurately, but 
not shown here for the sake of brevity. 

The stiffness parameters of all 24 elements of 
the frame are then estimated using the 3D GILS-
EKF-UI procedure in Stage 2 using only responses 
at nodes 1, 2, 3, and 5. The identified stiffness 
parameters and corresponding errors are shown 
in columns 3 and 4 of Table 1(b). The magnitudes 
of errors are large and varied significantly from 
members to members; obviously, the method 
failed to identify the defect-free state of the frame. 
To identify all the stiffness parameters, the EKF 
algorithm calculates the responses at all the 

DDOFs in the whole structure using the piece-
wise linear approximation in the mathematical 
formulation and then update the information 
using the measured responses. Obviously, 
the accuracy in the identification increases 
with the increase in the number of measured 
responses. Observing the errors in the identified 
stiffness parameters, it can be concluded that 
the measured responses at 24 DDOFs are not 
sufficient enough to generate responses at the 
rest of the DDOFs.  To improve the accuracy, 
it is essential to obtain additional observations 
besides at the substructure. This is the basic 
challenge in the EKF procedure since during 
an actual field inspections, it will be extremely 
difficult to decide the absolute minimum 
number of required responses for the successful 
identification. Furthermore, it is expected to be 
different for different structures and will greatly 
depend on the experience of the inspectors. It 
will cost more money to measure additional 
responses. In this numerical study, a scaling 
approach suggested by Vo and Haldar (2004), 
is used to explore the possibility of avoiding 
measuring additional responses. An extensive 
numerical study on different types of structures 
indicates that if the responses are assumed to 
be linear, as expected during the inspection, 
structural responses at one node can be scaled 
from other nodes. This is also found to be valid for 
the frame under consideration. It is observed that 
responses at nodes 4 and 6 are almost identical 
to responses at nodes 3 and 5, respectively; 
indicating that the responses at nodes 4 and 6 can 
be scaled from the responses measured at nodes 
3 and 5 to facilitate the identification process in 
stage 2. Two additional responses (out-of plane 
translation and rotation about the horizontal axis 
in the plane of the paper (see Fig. 1) at nodes 7 
and 8 can be scaled using the responses at node 5. 
Following this concept, additional responses at 16 
DDOFs can also be generated without conducting 
any experiments.  Thus, the total number of 
measured responses can be increased from 24 to 
40 without spending any additional resources. 
Using 40 responses and 3D GILS-EKF-UI, the 
identified stiffness parameters and corresponding 
errors in the identification are shown columns 
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5 and 6 in Table 1b. The maximum error in the 
identification is reduced from 82.41% to 2.84%, 
indicating the benefit of additional responses. In 
fact, if responses are available at all 72 DDOFs, the 
maximum error in the identification is expected to 
be similar to that observed for the substructure. 
In the subsequent discussions, identified stiffness 

table 1. Stiffness parameter (ki) identification of defect-free frame using 3D GILS-EKF-UI  
 (a) Stage 1 – Identification of the substructure

Element (ki) theoretical values Identified values Error (%)
(1) (2) (3) (4)

1-2 (k1) 13476 13476 -0.003
1-3 (k7) 13476 13476 -0.001
1-5 (k13) 14553 14553 -0.001

(b) Stage 2 – Identification of the whole frame 

Element 
(ki)

theoretical values
24 ddofs 40 ddofs

Identified values Error (%) Identified values Error (%)
(1) (2) (3) (4) (5) (6)

1-2 (k1) 13476 13580 0.77 13485 0.06
5-6 (k2) 13476 12316 -8.61 13482 0.04
9-10 (k3) 13476 23452 74.02 13599 0.91
3-4 (k4) 13476 9658 -28.33 13520 0.33
7-8 (k5) 13476 21654 60.68 13305 -1.27

11-12 (k6) 13476 14635 8.60 13859 2.84
1-3 (k7) 13476 13711 1.74 13480 0.03
5-7 (k8) 13476 11807 -12.39 13478 0.01
9-11 (k9) 13476 16447 22.05 13578 0.76
2-4 (k10) 13476 11339 -15.86 13499 0.17
6-8 (k11) 13476 24227 79.78 13459 -0.13

10-12 (k12) 13476 13928 3.35 13549 0.54
1-5 (k13) 14553 14953 2.75 14548 -0.03
3-7 (k14) 14553 10757 -26.08 14655 0.70
5-9 (k15) 14553 11931 -18.02 14572 0.13
7-11 (k16) 14553 26546 82.41 14513 -0.28
9-13 (k17) 14553 14476 -0.53 14500 -0.36
11-15 (k18) 14553 17089 17.43 14438 -0.79
2-6 (k19) 14553 15075 3.58 14567 0.10
4-8 (k20) 14553 11938 -17.97 14625 0.49
6-10 (k21) 14553 14338 -1.48 14567 0.09
8-12 (k22) 14553 14852 2.06 14423 -0.89
10-14 (k23) 14553 13171 -9.49 14532 -0.14
12-16 (k24) 14553 7827 -46.22 14573 0.14

parameter values will be given considering 
responses available at 40 DDOFs.  In this example, 
since the error values are very small and do not 
change significantly from members to members, 
it is implied that the frame is defect-free and 3D 
GILS-EKF-UI correctly identified the defect-free 
state of the frame.
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table 2. Stiffness parameter (ki) identification defective frames using 3D GILS-EKF-UI

 (a) Stage 1 – Identification of the substructures

Element  
(ki)

theoretical  
values

20% thickness 
reduction for 5-6

50% thickness 
reduction for 5-6

99% thickness reduction for 5-6

Identified 
values

Error  
(%)

Identified 
values

Error 
(%)

Identified 
values

Error (%)

(1) (2) (3) (4) (5) (6) (7) (8)
1-2 (k1) 13476 13476 -0.003 13476 -0.003 13476 -0.003
1-3 (k7) 13476 13476 -0.001 13476 -0.001 13476 -0.002
1-5 (k13) 14553 14553 -0.001 14553 -0.001 14553 -0.002

(b) Stage 2 – Identification of the whole frames 

Element 
(ki)

theoretical 
values

20% thickness reduction 
for 5-6

50% thickness 
reduction for 5-6

99% thickness reduction for 
5-6

Identified alues Error (%) Identified 
values

Error 
(%)

Identified 
values

Error (%)

(1) (2) (3) (4) (5) (6) (7) (8)
1-2 (k1) 13476 13516 0.30 13522 0.34 13514 0.28
5-6 (k2) 13476 10471 -22.30 6436 -52.24 128 -99.05
9-10 (k3) 13476 15086 11.94 14967 11.06 13530 0.40
3-4 (k4) 13476 13604 0.95 13578 0.75 13570 0.69
7-8 (k5) 13476 13120 -2.64 13216 -1.93 13141 -2.49

11-12 (k6) 13476 14219 5.51 14157 5.05 15437 14.55
1-3 (k7) 13476 13492 0.12 13495 0.14 13521 0.33
5-7 (k8) 13476 13384 -0.69 13363 -0.84 13400 -0.57
9-11 (k9) 13476 13809 2.47 13839 2.69 14008 3.95
2-4 (k10) 13476 13509 0.25 13513 0.27 13513 0.27
6-8 (k11) 13476 13362 -0.85 13337 -1.03 13442 -0.25

10-12 (k12) 13476 13752 2.05 13777 2.23 13909 3.21
1-5 (k13) 14553 14545 -0.05 14545 -0.05 14515 -0.26
3-7 (k14) 14553 14562 0.06 14537 -0.11 14741 1.29
5-9 (k15) 14553 14589 0.25 14609 0.39 14660 0.74
7-11 (k16) 14553 14516 -0.25 14562 0.06 14305 -1.71
9-13 (k17) 14553 14161 -2.69 14167 -2.65 14457 -0.66
11-15 (k18) 14553 14352 -1.38 14320 -1.60 14191 -2.49

2-6 (k19) 14553 14563 0.07 14564 0.08 14571 0.13
4-8 (k20) 14553 14509 -0.30 14481 -0.49 14738 1.27
6-10 (k21) 14553 14582 0.20 14597 0.30 14697 0.99
8-12 (k22) 14553 14302 -1.72 14322 -1.59 14135 -2.87
10-14 (k23) 14553 14197 -2.45 14206 -2.39 14433 -0.82
12-16 (k24) 14553 14640 0.60 14649 0.66 14423 -0.89
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4.3 Health assessment of defective frames

After successful identification of the defect-
free frame, a member 2, between node 5 and 6, is 
assumed to be corroded or defective. Experience 
gained from laboratory experiments (Marinez-
Flores and Haldar, 2007; Martinez-Flores et al., 
2008), prompted the authors to consider three 
(low, moderate, and severe) defective states by 
reducing the thicknesses of web and flange of 
member 2 by 20%, 50%, and 99%, respectively. 
Similar cases were used by Marinez-Flores and 
Haldar (2007) and Martinez-Flores et al., (2008) for 
2D frames, in their experimental investigations. 

The reduction in the web and flange 
thicknesses caused the reduction in the principal 
moment of inertias about major axis (Iz) by 22.15%, 
52.14%, and 99.07%, respectively; principal 
moment of inertias about the minor axis (Iy) by 
20.05%, 50.07%, and 99.0%, respectively; and 
cross-sectional areas (A) by 20.74%, 50.47%, 
and 99.01%, respectively. The FE model of the 
frame and the substructure for the three cases 
remain same as in the defect-free case. Using the 
reduced cross sectional properties of member 2 
and using ANSYS, the analytical responses were 
generated as before for the three defective states.  
Using responses measured between 0.31 s and 
0.63 s at node 1, 2, 3, and 5, the substructures for 
the three defective cases are identified and the 
results are summarized in columns 3, 5, and 7 
of Table 2(a). Obviously, the substructures are 
identified very accurately. As discussed before, 
using 40 responses between 0.31 s and 0.63 s, all 
24 elements in the frame are identified for the 
three defective states and the results are shown 
in column 3, 5, and 7 of Table 2(b). The identified 
stiffness parameter for member 2 reduces by 
22.30%, 52.24%, and 99.05%, respectively, for the 
three defective cases. The reductions are much 
higher than other 23 members, indicating location 
and severity of the defect. It can be concluded 
that 3D-GILS-EKF-UI also correctly identified 
the three defective states. 

It is to be noted that for this example, the 
defective member is not in the substructure. 
Our experience indicates that if it were in the 
substructure, the defect identification capability 

of 3D-GILS-EKF-UI will improve significantly. 
On the other hand, if the defective member is 
further away from the substructure, the defect 
identification capability of the method will 
reduce. In this example, the defective member 
is close to the substructure and the defect 
identification capability of 3D-GILS-EKF-UI 
did not suffer. The example also demonstrated 
that the defective member need not be in the 
substructure. The method can be used to identify 
multiple defective members. Since locations of 
defects may not be known prior to inspection, 
in most cases, the authors recommend using 
multiple substructures, assuring that defect 
locations will be close to at least one of them.  

5. Conclusions 

A finite-elements-based time domain system 
identification technique, denoted as 3D GILS-
EKF-UI, is developed in this paper for health 
assessment of three dimensional structures. The 
method uses dynamic response information and 
integrates an iterative least-squares technique 
and the extended Kalman filter-based concept for 
detecting location(s) of defect(s) and their severity 
for the rapid assessment of structural health. 
It tracks the changes in stiffness parameters at 
the finite element level. The unique features 
of the procedure are that it does not require 
information on dynamic excitation and uses 
noise-contaminated responses measured only 
at small part(s) of the structure. The required 
mathematics are developed using a two-stage 
approach. With the help of examples, it is 
demonstrated that the method is capable of 
accurately identifying defect-free and defective 
states of three dimensional structures.  The 
method addresses several implementation issues 
for rapid, economical, and easier assessment of 
structural health. Considering the accuracy and 
robustness, it is expected that the procedure can 
be used as a vibration-based nondestructive 
health assessment procedure.
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1. introduction

It is commonly accepted that reliability 
is defined as a probability that a system will 
maintain a required function during a stated 
period of time. As a probability cannot be seen 
or measured directly there seems to be a certain 
fundamental difficulty in understanding and 
interpreting statistical and probability functions 
in real life. This is because physical characteristics 
of a system like the weight, temperature, volume 
and similar have a clear and measurable meaning. 
However, the concepts of probability, and hence 
reliability, is an abstract property of a system that 
obtains a physical meaning only when behaviour 
of a large sample of systems is considered. Hence, 
understanding of reliability is reduced to the 
physical observation and analysis of system 
failures, which are observable and measurable 
physical characteristics. 

According to the Mirce Mechanics, system 
failures are negative functionability events that 
cause transition of a system from positive to 
negative functionability state [1] due to some of 
the following reasons, or combinations of them:
a) Built-in design errors (incorrect selection of 

materials, stresses shapes, etc)
b) Production errors (human errors in assembly, 

delivery and installation tasks)
c) Irreversible changes in the condition of 

components with time due to wear, fatigue, 
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creep, corrosion, and similar degradation 
processes 

d) Imposition of external stresses resulting from 
collisions, harsh landings, extreme weather 
conditions, etc

e) Human errors in execution of maintenance 
tasks

f) Human errors in execution of in-service 
support tasks

At the MIRCE Akademy a large number of 
negative functionability events and associated 
phenomena have been observed and analysed to 
understand the physical mechanisms that leads 
to their occurrences.  

Consequently, systematic studies are 
applied to understand phenomena that cause 
thermal aging, thermal buckling, photo-chemical 
degradation, reduction in dielectric strength, 
evaporation, metal fatigue, actinic degradation, 
photo-oxidation, swelling/ shrinking, degradation 
of optical qualities, fogging, photochemical 
decomposition of paint, blistering, warping, 
thermal stress, breakdown of lubrication film, 
increased structural loads, shift in the centre of 
gravity, jammed control surfaces, attenuation of 
energy, clutter echoes, blocking of air intakes, 
decreased lift and increased drag, unequal 
loading, removal of coating protection, pitting, 
roughening of the surface, acid reactions, leakage 
currents, promotion of mould growth, reduction 
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of heat transfer, caking and drying, premature 
cracking, hot spots creation, erosion, bleaching 
preservatives, abrasive wear, corrosion, alkaline 
reactions and similar. 

For years, research studies, international 
conferences, summer schools and other events 
have been organised in order to understand just 
a physical scale at which failure phenomena 
should be studied and understood. In order to 
understand the motion of negative functionability 
events it is necessary to understand the physical 
mechanisms of that motion. That represented 
a real challenge, as the answers to the question 
“what are physical and chemical processes that 
lead to the occurrence of negative functionability 
events” have to be provided. Without accurate 
answers to those questions the prediction of their 
future occurrences is not possible, and without 
ability to predict the future, the use of the word 
science becomes inappropriate.

After a numerous discussions, studies and 
trials, it has been concluded that any serious 
studies in this direction, from Mirce Mechanics 
point of view, have to be based between the 
following two boundaries:

l the “bottom end” of the physical world, which 
is at the level of the atoms and molecules that 
exists in the region of 10-10 of a metre [3],

l the “top end” of the physical world, which is 
at the level of the solar system that stretches 
in the physical scale around 10+10 of a metre. 
[4] 

This range is the minimum sufficient “physical 
scale” which enables scientific understanding of 
relationships between system functionability 
processes and system functionability events.

As matter is composed of atoms, its property 
is a consequence of the manner in which the 
atomic elements are arranged into molecules. 
Consequently, the main objective of this paper is 
to argue that the scientific approach to reliability 
is the only way forward for all members of the 
reliability community who wish to make accurate 
predictions that will be confirmed during the 
operational processes of the future systems.  For 

that to happen scientific understanding of failure 
phenomena is required.  This paper advocates 
that research of this nature must start with the 
understanding of the properties of atoms and 
their bonding to form molecules, in order for 
negative functionability events to be understood.  
Then and only then, accurate and meaningful 
reliability predictions become possible, which 
finally leads to the reduction of the probability of 
the occurrence of negative functionability events 
during the life of a system. 

2. Electronic Structure of an Atom

The understanding and prediction of the 
properties of matter at the atomic level represents 
one of the great achievements of twentieth-
century science. As matter is composed of atoms, 
this paper starts with its property and the manner 
in which the atomic elements are arranged. 
Electron density describes the distribution of the 
electronic charge throughout real space resulting 
from the attractive forces generated by nuclei. 
It is a measurable property that determines 
the appearance and form of matter. The theory 
developed to describe the behaviour of electrons, 
atoms and molecules differs radically from 
known Newtonian physics, which governs the 
motions of macroscopic bodies and the physical 
events of our everyday experiences. That new 
theory, which is able to account for all observable 
behaviour of matter, was named quantum 
mechanics. 

The proper formulation of quantum 
mechanics and its application to a specific 
problem requires a rather elaborate mathematical 
framework, as do proper statements and 
applications of Newtonian physics. Hence, 
principles of quantum mechanics and its basic 
concepts are used for the studies of the motion 
and relationship between atoms in molecules. 
Thus, the physical laws governing the behaviour 
of electrons and their arrangements, when 
bound to nuclei, to form atoms and molecules 
have been discovered, and termed the electronic 
structure of the atom or molecule. Furthermore, 
understanding of the relationship between the 
electronic structure of an atom and its physical 
properties enables understanding of the change 
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of electronic structure during a chemical reaction, 
where only the number and arrangement of 
the electrons are changed while the nucleus 
remaining unaltered. Thus, the unchanging 
charge of the atomic nucleus is responsible for 
retaining the atom’s chemical identity through 
any chemical reaction. Therefore, for the purpose 
of understanding the chemical properties and 
behaviour of atoms, the nucleus may be regarded 
as simply a point charge of constant magnitude 
for a given element, giving rise to a central field 
of force that binds the electrons to the atom. [2] 

3. Atomic phenomena

Rutherford’s nuclear model for the atom set 
the stage for the understanding of the structure 
of atoms and the forces holding them together. 
From Rutherford’s alpha-scattering experiments 
it was clear that the atom consisted of a positively-
charged nucleus with negatively-charged 
electrons arranged in some fashion around it, 
the electrons occupying a volume of space many 
times larger than that occupied by the nucleus. 
The diameters of nuclei fall in the range of  
l×10-14 to 1×10-15 m, while the diameter of an atom 
is typically of the order of magnitude of 1×10-10 m. 
The forces responsible for binding the atom, and 
in fact all matter apart from the nuclei themselves, 
are electrostatic in origin: the positively charged 
nucleus attracts the negatively charged electrons. 
There are attendant magnetic forces that arise 
from the motions of the charged particles. These 
magnetic forces give rise to many important 
physical phenomena, but they are smaller in 
magnitude than are the electrostatic forces and 
they are not responsible for the binding found 
in matter. 

4. Single Atom Structure

When a stable atom is formed, the electron 
is attracted to the nucleus, and as the radius is 
less than infinity, the energy has a negative sign, 
which implies that it must be supplied to the 
system if the electron is to overcome the attractive 
force of the nucleus and escape from the atom. 

The motion of the electron is not free. 
The electron is bound to the atom by the 
attractive force of the nucleus and consequently 

quantum mechanics predicts that the total 
energy of the electron is quantised and equal to

( ) ( )2 4 2 2 22 / , 1, 2,3,.....nE me Z n h nπ= − = , where 
m is the mass of the electron, e is the magnitude 
of the electronic charge, n is a quantum number, 
h is Planck’s constant and Z is the atomic number, 
which is the number of positive charges in the 
nucleus. 

Since the motion of the electron occurs 
in three dimensions it is correct to anticipate 
three quantum numbers for the hydrogen atom. 
However, as the energy depends only on the 
quantum number n it is called the principal 
quantum number. When n is equal to infinity 
and energy is equal to zero the electron is free of 
the attractive force of the nucleus.  The average 
distance between the nucleus and the electron 
increases as the energy or the value of n increases. 
Hence, energy must be supplied to pull the 
electron away from the nucleus. 

4.1 the probability distributions for the 
Hydrogen Atom 

To what extent is possible to pinpoint the 
position of an electron when it is bound to an 
atom? An order of magnitude for the answer 
to this question could be obtained by applying 
the uncertainty principle x p h∆ ∆ =  to estimate 
∆x. The value of ∆x represents the minimum 
uncertainty in our knowledge of the position of 
the electron. The momentum of an electron in 
an atom is of the order of magnitude of 9x10-19 
g cm/sec. The uncertainty in the momentum 
∆p must necessarily be of the same order of 
magnitude. According to Bader [2] the answer 
is 27 19 87 10 / 9 10 10  cmx − − −∆ = × × ≈ .

The uncertainty in the position of the 
electron is of the same order of magnitude as 
the diameter of the atom itself. As long as the 
electron is bound to the atom, it is not possible 
to say much more about its position than that it 
is in the atom. This fact invalidated all models of 
the atom that describe the electron, as a particle 
following a definite trajectory or orbit.  

Energy and one or more wave functions could 
be obtained for every value of n, the principal 
quantum number, by solving Schrödinger’s 
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equation for the hydrogen atom. Knowledge of 
the wave functions, or probability amplitudes, 
allows calculation of the probability distributions 
for the electron in any given quantum level. 
When n=1, the wave function and the derived 
probability function are independent of direction 
and depend only on the distance between the 
electron and the nucleus. 

An experiment designed to detect the 
position of the electron with an uncertainty much 
less than the diameter of the atom itself, when 
repeated a large number of times, shown that 
the electron is detected close to the nucleus most 
frequently and the probability of observing it at 
some distance from the nucleus decreases rapidly 
with increasing radial distance [2]. The atom was 
ionised in making each of these observations 
because the energy of the photons with a 
wavelength much less than 10-8 cm is greater 
than the amount of energy required to ionise 
the hydrogen atom. If light with a wavelength 
comparable to the diameter of the atom was 
used in the experiment, then the electron would 
not have been excited and the knowledge of its 
position would have been correspondingly less 
precise. 

When the electron is in a definite energy 
level, the electron density distributions describe 
the manner in which the total electronic charge 
is distributed in space. The electron density is 
expressed in terms of the number of electronic 
charges per unit volume of space, e-/V. The 
volume V is usually expressed in atomic units 
of length cubed, and one atomic unit of electron 
density is then e-/a0

3. To give an idea of the 
order of magnitude of an atomic density unit, 
1 au of charge density e-/a0

3 = 6.7 electronic 
charges per 10-8 cm3. That is, a cube with a length 
of 0.52917x10-8 cm, if uniformly filled with an 
electronic charge density of 1 au, would contain 
6.7 electronic charges. 

The important point of the above discussion 
is that both the angular momentum and the 
energy of an atom remain constant if the atom is 
left undisturbed. Any physical quantity that is 
constant in a classical system is both conserved 
and quantised in a quantum mechanical system. 

Thus both the energy and the angular momentum 
are quantised for an atom. 

Since an electron may exhibit a magnetic 
moment even when it does not possess orbital 
angular momentum, it must possess some internal 
motion. This motion is known as the electron spin 
and it is treated in quantum mechanics as another 
kind of angular momentum. Experimentally, 
however, all that is known is that the electron 
possesses an intrinsic magnetic moment. The 
remarkable feature of this intrinsic magnetic 
moment is that its magnitude and the number 
of components along a given axis are fixed. 
A given electron may exhibit only one of two 
possible components; it may be aligned with 
the field or against it. Hence only one quantum 
number is required to describe completely the 
spin properties of a single electron.

Finally, a total of four quantum numbers 
is required to specify completely the state of 
an electron when it is bound to an atom. The 
quantum numbers n, l and m determine its energy, 
orbital angular momentum and its component of 
orbital angular momentum. The fourth quantum 
number, the spin quantum number, summarises 
all that can be known about the spin angular 
momentum of the electron. 

5. pauli Exclusion principle

The study of the magnetic properties of the 
ground and excited states of helium is sufficient 
to point out a general principle. For the ground 
state of helium, in which both electrons are in the 
same atomic orbital, only the non-magnetic form 
exists. This would imply that when two electrons 
are in the same atomic orbital their spins must 
be paired, that is, one up and one down. This 
is an experimental fact because helium is never 
found to be magnetic when it is in its electronic 
ground state. When the electrons are in different 
orbitals, then it is again an experimental fact 
that their spins may now be either paired or 
unpaired.  This lead to the creation of the Pauli 
Exclusion Principle that states: no two electrons 
in the same atom may have all four quantum 
numbers the same. The Pauli principle cannot 
be derived from, nor is it predicted by, quantum 
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mechanics. It is a law of nature that must be taken 
into account along with quantum mechanics if the 
properties of matter are to be correctly described. 
The concept of atomic orbitals, as derived from 
quantum mechanics, together with the Pauli 
Exclusion Principle that limits the occupation of 
a given orbital, provides an understanding of the 
electronic structure of many-electron atoms. [2]

The concept of atomic orbitals in conjunction 
with the Pauli principle has indeed predicted 
a periodicity in the electronic structures of the 
elements. The form of this periodicity replicates 
exactly that one found in the Mendeleev’s periodic 
table of the elements in which the periodicity is 
founded on the observed chemical and physical 
properties of the elements. 

The diameter of an atom is difficult to define 
precisely as the density distribution tails off at 
large distances. However, there is a limit as to 
how close two atoms can be pushed together in 
a solid material. The size of the atom in general 
decreases as the number of electrons in the 
quantum shell increases. This observation, which 
at first sight might appear surprising, finds a 
ready explanation through the concept of an 
effective nuclear charge. 

The electric field and hence the attractive 
force exerted by the nucleus on an electron in the 
outer quantum shell is reduced because of the 
screening effect of the other electrons which are 
present in the atom. An outer electron does not 
penetrate to any great extent the tightly bound 
density distribution of the inner shell electrons.  
Hence, each inner electron, which is an electron 
with an n value less than the n value of the 
electron in question, reduces the value of the 
nuclear charge experienced by the outer electron 
by almost one unit. The remaining outer electrons 
on the other hand are, on the average, all at the 
same distance away from the nucleus as is the 
electron under consideration. Consequently each 
outer electron screens considerably less than one 
nuclear charge from the other outer electrons. 
Thus the higher the ratio of outer shell to inner 
shell electrons, the larger is the “effective nuclear 
charge” which is experienced by an electron in 
the outer shell. [2]

6. Chemical implications of Effective nuclear 
Charge

The effective nuclear charge is a minimum 
for the group I elements in any given row of 
the periodic table. Therefore, it requires less 
energy to remove an outer electron from one of 
these elements than from any other element in 
the periodic table. The strong reducing ability 
of these elements is readily accounted for. The 
variation in the relative reducing power of 
the elements across a given period or within a 
given group is determined by the variation in 
the effective nuclear charge. The ability of the 
elements in a given row of the periodic table 
to act as reducing agents should undergo a 
continuous decrease from group I to group 
VII, since the effective nuclear charge increases 
across a given row. Similarly, the reducing ability 
should increase down a given column (group) 
in the table since the effective nuclear charge 
decreases as the principal quantum number is 
increased. Anticipating the fact that electrons 
can be transferred from one atom (the reducing 
agent) to another (the oxidizing agent) during a 
chemical reaction, it is expected that the elements 
to the left of the periodic table to exhibit a strong 
tendency to form positively charged ions. 

  The ability of the elements to act as oxidising 
agents should parallel directly the variations in 
the effective nuclear charge. Thus the oxidising 
ability should increase across a given row (from 
group I to group VII) and decreases down a 
given family. These trends are, of course, just the 
opposite of those noted for the reducing ability. 
The reducing ability should vary inversely with 
the ionisation potential, and the oxidising ability 
should vary directly with the electron affinity. 
The elements in groups VI and VII should exhibit 
a strong tendency for accepting electrons in 
chemical reactions to form negatively charged 
ions. For example, Francium, which possesses 
a single outer electron in the 7s orbital, is the 
strongest chemical reducing agent and fluorine, 
with an orbital vacancy in the 2p subshell is the 
strongest oxidizing agent. These are only a few 
examples of how knowledge of the electronic 
structure of atoms may be used to understand and 
correlate a large amount of chemical information 
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that certainly has significant impact of the failure 
mechanisms affecting the reliability of systems 
and their components. [2]

It should be pointed out that chemistry is a 
study of very complex interactions and the few 
simple concepts advanced here cannot begin to 
account for the incredible variety of phenomena 
actually observed. 

7. the Chemical bond 

With understanding of the electronic 
structure of atoms, only briefly summarised 
above, it is possible to understand the existence of 
molecules. Clearly, the force that binds the atoms 
together to form a molecule is, as in the atomic 
case, the electrostatic force of attraction between 
the nuclei and electrons. In a molecule, however, 
a force of repulsion between the nuclei in addition 
to that between the electrons is encounter. 
To account for the existence of molecules it is 
necessary to account for the predominance of the 
attractive interactions, which could be shown in 
terms of the energy of a molecule, relative to the 
energies of the constituent atoms, and in terms of 
the forces acting on the nuclei in a molecule. 

In order to determine what attractive and 
repulsive interactions are possible in a molecule, 
an instantaneous configuration of the nuclei and 
electrons in a hydrogen molecule is considered, 
as shown in Figure 1.When the two atoms are 
initially far apart, the distance R is very large, 
the only potential interactions are the attraction 
of nucleus A for electron number (1) and the 
attraction of nucleus B for electron number (2). 
When R is comparable to the diameter of an atom 
(A and B are close enough to form a molecule) 
then new interactions appear. Nucleus A now 
attracts electron (2) as well as (1) and similarly 
nucleus B attracts electron (1) as well as (2). The 
dashed lines represent the repulsive interactions 
between like charges and the solid lines indicate 
the attractive interactions between opposite 
charges.

The number of attractive interactions has 
been doubled from what it was when the atoms 
were far apart. However, the reduction in R 
introduces two repulsive interactions as well, 

namely the two electrons now repel one another 
as do the two nuclei. If the two atoms are to 
remain together to form a molecule, the attractive 
interactions must exceed the repulsive ones. It 
is clear from Figure 1 that the new attractive 
interactions, nucleus A attracting electron (2) and 
nucleus B attracting electron (1), is large only if 
there is a high probability of both electrons being 
found in the region between the nuclei.  When 
the average potential energy is calculated by 
quantum mechanics, the attractive interactions 
are found to predominate over the repulsive 
ones because quantum mechanics does indeed 
predict a high probability for each electron being 
in the region between the nuclei. This general 
consideration of the energy demonstrates that 
electron density must be concentrated between 
the nuclei if a stable molecule is to be formed, for 
only in this way can the attractive interaction be 
maximised.

In the atomic case it is possible to fix the 
position of the nucleus in space and consider 
only the motion of the electrons relative to the 
nucleus. However, in molecules, the nuclei may 
also change positions relative to one another. This 
additional movement can be neglected as the 
nuclei are very massive compared to the electrons 
and their average velocities are consequently 
much smaller than those possessed by the 
electrons. In a classical picture of the molecule 
we would see a slow, lumbering motion of the 
nuclei accompanied by a very rapid motion of the 
electrons. The physical implication of this large 
disparity in the two sets of velocities is that the 
electrons can immediately adjust to any change 
in the position of the nuclei. The positions of the 
nuclei determine the potential field in which the 
electrons move. However, as the nuclei change 

figure 1: One possible set of the instantaneous relative 
positions of the electrons and nuclei in a hydrogen molecule. 
[2]
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their positions and hence the potential field, the 
electrons can immediately adjust to the new 
positions. Thus the motion of the electrons is 
determined by where the nuclei are but not by 
how fast the nuclei are moving. 

For a given distance between the nuclei it 
is possible to determine the energy, the wave 
function and the electron density distribution 
of the electrons, the nuclei being held in fixed 
positions. Then the distance between the nuclei 
is changed to a new value, and the calculation 
of the energy, wave function and electron 
density distribution of the electrons is performed 
again. This process, repeated for every possible 
internuclear distance, allows understanding of 
how the energy of the electrons changes as the 
distance between the nuclei is changed. However, 
for the purpose on this analysis only the motion 
of the electrons and hold the nuclei stationary 
at some particular value for the internuclear 
distance R, could be considered. 

The energy of the electrons in a molecule is 
quantised, as it is in atoms. When the nuclei are 
held stationary at some fixed value of R, there are a 
number of allowed energy levels for the electrons. 
There are, however, no simple expressions for the 
energy levels of a molecule in terms of a set of 
quantum numbers, such as was the case with the 
hydrogen atom. As in the case of atoms, there is a 
wave function that governs the motion of all the 
electrons for each of the allowed energy levels. 
Each wave function again determines the manner 
in which the electronic charge is distributed in 
three-dimensional space. 

7.1 An Electrostatic interpretation of the 
Chemical bond 

In the light of the above discussion of 
a molecular electron density distribution, a 
molecule may be regarded as two or more 
nuclei imbedded in a rigid three-dimensional 
distribution of negative charge. There is a 
theorem of quantum mechanics that states 
that the force acting on a nucleus in a molecule 
may be determined by the methods of classical 
electrostatics. The nuclei in a molecule repel 
one another, since they are of like charge. This 
repulsive force, if unbalanced, would push the 

nuclei apart and the molecule would separate into 
atoms. In a stable molecule, however, an attractive 
force exerted by the negatively charged electron 
density distribution balances the nuclear force of 
repulsion. The usefulness of this approach lies in 
the fact that the stability of molecules in terms 
of the classical concept of a balance between the 
electrostatic forces of attraction and repulsion 
could be considered. 

A chemical bond is thus the result of the 
accumulation of negative charge density in the 
region between the nuclei to an extent sufficient 
to balance the nuclear forces of repulsion. [2] This 
corresponds to a state of electrostatic equilibrium, 
as the net force acting on each nucleus, is zero 
for this one particular value of the internuclear 
distance. If the distance between the nuclei is 
increased from the equilibrium value, the nuclear 
force of repulsion is decreased. At the same time 
the force of attraction exerted by the electron 
density distribution is increased as the binding 
region is increased in size. Thus, when the radial 
distance is increased from its equilibrium value 
there are net forces of attraction acting on the 
nuclei which pull the two nuclei together again. 
A definite force would have to be applied to 
overcome the force of attraction exerted by the 
electron density distribution and separate the 
molecule into atoms. Similarly, if the value of 
radial distance is decreased from its equilibrium 
value, the force of nuclear repulsion is increased 
over its equilibrium value. At the same time, the 
attractive force exerted by the electron density 
is decreased, because the binding region is 
decreased in size. In this case there is a net force of 
repulsion pushing the two nuclei apart and back 
to their equilibrium separation. There is thus one 
value of radial distance for which the forces on 
the nuclei are zero and the whole molecule is in 
a state of electrostatic equilibrium. [2]

This is an important result as it shows that 
the density distribution in a molecule cannot be 
considered as the simple sum of the two atomic 
charge densities. The overlap of rigid atomic 
densities does not place sufficient charge density 
in the binding region to overcome the nuclear force 
of repulsion. Hence it is reasonable to conclude 
that the original atomic charge distributions 
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must be distorted in the formation of a molecule, 
and the distortion is such that charge density 
is concentrated in the binding region between 
the nuclei. A quantum mechanical calculation 
predicts this very result. The calculation shows 
that there is a continuous distortion of the original 
atomic density distributions, a distortion that 
increases as the internuclear distance decreases. 

The changes in the original atomic density 
distributions caused by the formation of the 
chemical bond may be isolated and studied 
directly by the construction of a density difference 
distribution. Such a distribution is obtained 
by subtracting the density obtained from the 
overlap of the undistorted atomic densities 
separated by a radial distance, from the molecular 
charge distribution evaluated at the same value. 
Wherever this density difference is positive in 
value it means that the electron density in the 
molecule is greater than that obtained from the 
simple overlap of the original atomic densities. 
Where the density difference is negative, it 
means that there is less density at this point in 
space in the molecule than in the distribution 
obtained from the overlap of the original 
atomic distributions. Such a density difference 
map thus provides a detailed picture of the 
net reorganisation of the charge density of the 
separated atoms accompanying the formation 
of a molecule.  This just proves that the density 
distribution resulting from the overlap of the 
undistorted atomic densities does not place 
sufficient charge density in the binding region 
to balance the forces of nuclear repulsion. The 
regions of charge increase in the density difference 
maps are, therefore, the regions to which charge 
is transferred relative to the separated atoms to 
obtain a state of electrostatic equilibrium and 
hence a chemical bond. From this point of view 
a density difference map provides a picture of 
the “bond density.” 

7.2 the Effect of the pauli principle on 
Chemical binding 

The Pauli exclusion principle plays as 
important a role in the understanding of the 
electronic structure of molecules as it does in the 
case of atoms. The end result of the Pauli principle 

is to limit the amount of electronic charge density 
that can be placed at any one point in space. 
For example, the Pauli principle prevents the 1s 
orbital in an atom from containing more than 
two electrons. Since the 1s orbital places most of 
its charge density in regions close to the nucleus, 
the Pauli principle, by limiting the occupation of 
the 1s orbital, limits the amount of density close 
to the nucleus. Any remaining electrons must be 
placed in orbitals that concentrate their charge 
density further from the nucleus. [2]

It is proven that the reason the electron 
doesn’t fall onto the nucleus is because it must 
possess kinetic energy if Heisenberg’s uncertainty 
principle is not to be violated. This is one reason 
why matter doesn’t collapse. The Pauli principle 
is equally important in this regard. The electron 
density of the outer electrons in an atom cannot 
collapse and move closer to the nucleus since 
it can do so only if the electrons occupy an 
orbital with a lower n value. If, however, the 
inner orbital contains two electrons, then the 
Pauli principle states that the collapse cannot 
occur. The Pauli principle demands that when 
two electrons are placed in the same orbital 
their spins must be paired. What restriction is 
placed on the spins of the electrons during the 
formation of a molecule, when two orbitals, each 
on a different atom, overlap one another?  To 
address this question a hydrogen molecule that 
consists of two hydrogen atoms is considered, 
where atom A has the configuration 1s1 and atom 
B has the configuration 1s1. Even when the atoms 
approach very close to one another the Pauli 
principle would be satisfied as the spins of the 
two electrons are opposed. This is the situation 
that has been assumed in all discussions of the 
hydrogen molecule. 

However, what would occur if two hydrogen 
atoms approached one another and both had the 
same configuration and spin, say 1s1? When two 
atoms are relatively close together the electrons 
become indistinguishable. It is no longer possible 
to say which electron is associated with which 
atom as both electrons move in the vicinity of 
both nuclei. Indeed this is the effect which gives 
rise to the chemical bond. In so far as the region 
around each atom to be governed by its own 
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atomic orbital can be considered, distorted as 
it may be, two electrons with the same spin are 
not be able to concentrate their density in the 
binding region. This region is common to the 
orbitals on both atoms, and since the electrons 
possess the same spin they cannot both be there 
simultaneously. In the region of greatest overlap 
of the orbitals, the binding region, the presence 
of one electron tends to exclude the presence of 
the other if their spins are parallel. Hence, instead 
of density accumulating in the binding region as 
two atoms approach, electron density is removed 
from this region and placed in the antibinding 
region behind each nucleus where the overlap of 
the orbitals is much smaller. Thus, the approach 
of two hydrogen atoms with parallel spins does 
not result in the formation of a stable molecule. 
This repulsive state of the hydrogen molecule, 
in which both electrons have the same spin and 
atomic orbital quantum numbers, can be detected 
spectroscopically. [2]

Consequently, the general requirements 
for the formation of a chemical bond can be 
formulated. Electron density must be accumulated 
in the region between the nuclei to an extent 
greater than that obtained by allowing the 
original atomic density distributions to overlap. In 
general, the increase in charge density necessary 
to balance the nuclear force of repulsion requires 
the presence of two electrons. 

In the atomic orbital approximation we 
picture the bond as resulting from the overlap of 
two distorted atomic orbitals, one centred on each 
nucleus. When the orbitals overlap, both electrons 
may move in the field of either nuclear charge as 
the electrons may now exchange orbitals. Finally, 
the pair of electrons must possess opposed 
spins. When their spins are parallel, the charge 
density from each electron is accumulated in the 
antibinding rather than in the binding region. 

7.3 Classification of Chemical Bonds 

To make a quantitative assessment of the 
type of binding present in a particular molecule 
it is necessary to have a measure of the extent of 
charge transfer present in the molecule relative to 
the charge distributions of the separated atoms. 
This information is contained in the density 

difference or bond density distribution, the 
distribution obtained by subtracting the atomic 
densities from the molecular charge distribution. 
Such a distribution provides a detailed measure 
of the net reorganisation of the charge densities of 
the separated atoms accompanying the formation 
of the molecule. 

The density distribution resulting from 
the overlap of the undistorted atomic densities 
(the distribution which is subtracted from 
the molecular distribution) does not place 
sufficient charge density in the binding region 
to balance the nuclear forces of repulsion. The 
regions of charge increase in a bond density 
map are, therefore, the regions to which charge 
is transferred relative to the separated atoms to 
obtain a state of electrostatic equilibrium and 
hence a chemical bond. Thus, it is possible to 
use the location of this charge increase relative 
to the positions of the nuclei to characterise 
the bond and to obtain an explanation for its 
electrostatic stability. 

A bond is classified as covalent when the 
bond density distribution indicates that the 
charge increase responsible for the binding of the 
nuclei is shared by both nuclei. It is not necessary 
for covalent binding that the density increase 
in the binding region be shared equally.  It is 
possible to encounter molecules with different 
nuclei, in which the net force binding the nuclei is 
exerted by a density increase that, while shared, is 
not shared equally between the two nuclei. [2]

The charge distribution of a molecule with 
an ionic bond is characterised not only by the 
transfer of electronic charge from one atom to 
another, but also by a polarisation of each of the 
resulting ions in a direction counter to the transfer 
of charge. [2]

In a covalent bond the increase in charge 
density that binds both nuclei is shared between 
them, while in an ionic bond the forces exerted by 
the charge density localised on a single nucleus 
bind both nuclei. It must be stressed that there 
is no fundamental difference between the forces 
responsible for a covalent or an ionic bond, as 
they are electrostatic in both cases.
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7.4 interaction between Molecules 

The properties of matter observed on 
the macroscopic level are determined by the 
properties of the constituent molecules and the 
interactions between them. The polar or non-
polar character of a molecule is clearly important 
in determining the nature of its interactions with 
other molecules. There are relatively strong forces 
of attraction acting between molecules with large 
dipole moments. To a first approximation, the 
energy of interaction between dipolar molecules 
can be considered as completely electrostatic in 
origin, the negative end of one molecule attracting 
the positive end of another.

The presence of intermolecular forces 
accounts for the existence of solids and liquids. 
A molecule in a condensed phase is in a region of 
low potential energy, as a result of the attractive 
forces that the neighbouring molecules exert on 
it. By supplying energy in the form of heat, a 
molecule in a solid or liquid phase can acquire 
sufficient kinetic energy to overcome the potential 
energy of attraction and escape into the vapour 
phase. The pressure of the vapour in equilibrium 
with a solid or liquid, at a given temperature, 
provides a measure of the tendency of a molecule 
in a condensed phase to escape into the vapour 
(the larger the vapour pressure, the greater the 
escaping tendency). The average kinetic energy of 
the molecule in the vapour is directly proportional 
to the absolute temperature. Thus the observation 
of a large vapour pressure at a low temperature 
implies that relatively little kinetic energy is 
required to overcome the potential interactions 
between the molecules in the condensed phase. 

7.5 polyatomic Molecules 

The concept of a molecular orbital is readily 
extended to provide a description of the electronic 
structure of a polyatomic molecule. Indeed 
molecular orbital theory forms the basis for most 
of the quantitative theoretical investigations of 
the properties of large molecules. 

In general a molecular orbital in a polyatomic 
system extends over all the nuclei in a molecule 
are essential, if the spatial properties of the 
orbitals are to be understood and predicted. 

An analysis of the molecular orbitals for the 
water molecule provides a good introduction to 
the way in which the symmetry of a molecule 
determines the forms of the molecular orbitals 
in a polyatomic system. 

8. Conclusion 

The main objective of this paper was 
to present Mirce Mechanics approach to 
Reliability, one that is based on the laws of 
science. This approach is in direct agreement 
with the observed with occurrence of negative 
functionability phenomena resulting from 
physical processes like corrosion, fatigue, creep, 
wear and similar. 

Finally, it is essential to distinguish 
the scientific formulation of the motion of 
functionability through the life of a system, 
contained in Mirce Mechanics and presented in 
this paper, from the best “industrial practices” 
approach that is based on reliability models 
of systems that are created to demonstrate the 
contractual compliance of the legally binding 
acquisition processes. As science is the proved 
model of reality that is confirmed through 
observation, the summary message of this paper 
to reliability professionals is to move from 
the universe in which the laws of science are 
suspended to the universe that is based on the 
laws of science that govern behaviour of atoms 
in molecules of the matter, in order for their 
predictions to become future realities.
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1. introduction

Suppose that the state of a system can only be 
revealed through the inspection. This research we 
study an optimal inspection-maintenance strategy for 
repairable systems subject to degradation and random 
shocks. Grall et al [1] study the inspection-maintenance 
strategy for a single unit deteriorating system. The 
degradation is expressed by the Gamma process which 
implies the stationary and independent increment 
property. The maintenance cost function is developed 
based on regenerative and semi-regenerative process. 
Preventive and inspection schedule are two decision 
variables. While, in this research, it is assumed that 
the degradation and shock damage are measurable, 
otherwise there are some parameters associated with 
the processes which can be traced. The maintenance 
decision is made on the amount of degradation and 
shock damage which are measured, not on something 
abstract such as the distribution parameters or 
transition probability. 

Grall, Berenguer and Dieulle [2] consider a 
system subject to a random deterioration process. They 
develop a model that allow to investigate the joint 
influence of the preventive maintenance threshold 
and inspection dates based on the average long-run 
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cost rate assuming that the degradation process is a 
stationary law. In this research, we do not assume the 
stationary degradation process but the degradation 
follows the degradation paths and hope that, it is more 
practical. Pham et. al. [21] present a degradation model 
for predicting the reliability of k-out-of-n systems 
based on a Markov approach in which components 
are subject to multi-stage degradation and catastrophic 
failures. The same authors [22] later study models 
for predicting the availability and mean lifetime of 
multi-stage degraded systems with partial repairs. 
They, however, have not considered the maintenance 
aspects in their studies. Wang and Pham [23] recently 
develop a dependent competing risk model for 
systems subject to multiple degradation processes 
and random shocks using time-varying copulas. Their 
model considers a flexible dependence relationship 
between random shocks and degradation processes 
as well as the dependent relationship among various 
degradation processes.

So [6] studies the control limit policies for a 
multistate deteriorating system which is modeled by 
a semi-Markov process with a state space {0,…,M}. 
A control limit policy is a policy such that when the 
system condition is worse than a certain threshold n 
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I. INTRODUCTION 
Suppose that the state of a system can only be revealed 
through the inspection. This research we study an optimal 
inspection-maintenance strategy for repairable systems subject 
to degradation and random shocks. Grall et al [1] study the 
inspection-maintenance strategy for a single unit deteriorating 
system. The degradation is expressed by the Gamma process 
which implies the stationary and independent increment 
property. The maintenance cost function is developed based 
on regenerative and semi-regenerative process. Preventive and 
inspection schedule are two decision variables. While, in this 
research, it is assumed that the degradation and shock damage 
are measurable, otherwise there are some parameters 
associated with the processes which can be traced. The 

maintenance decision is made on the amount of degradation 
and shock damage which are measured, not on something 
abstract such as the distribution parameters or transition 
probability.  
 
Grall, Berenguer and Dieulle [2] consider a system subject to 
a random deterioration process. They develop a model that 
allow to investigate the joint influence of the preventive 
maintenance threshold and inspection dates based on the 
average long-run cost rate assuming that the degradation 
process is a stationary law. In this research, we do not assume 
the stationary degradation process but the degradation follows 
the degradation paths and hope that, it is more practical. Pham 
et. al. [21] present a degradation model for predicting the 
reliability of k-out-of-n systems based on a Markov approach 
in which components are subject to multi-stage degradation 
and catastrophic failures. The same authors [22] later study 
models for predicting the availability and mean lifetime of 
multi-stage degraded systems with partial repairs. They, 
however, have not considered the maintenance aspects in their 
studies. Wang and Pham [23] recently develop a dependent 
competing risk model for systems subject to multiple 
degradation processes and random shocks using time-varying 
copulas. Their model considers a flexible dependence 
relationship between random shocks and degradation 
processes as well as the dependent relationship among various 
degradation processes. 
 
So [6] studies the control limit policies for a multistate 
deteriorating system which is modeled by a semi-Markov 
process with a state space {0,…,M}. A control limit policy is a 
policy such that when the system condition is worse than a 

certain threshold n )1( Mn  , a restoration is initiated. 
Chelbi and Ait-Kadi [3] address the optimal inspection 
strategies for deteriorating equipments. They consider both 
preventive and corrective maintenance policies. If the value of 
the degradation process exceeds the alarm value, then 
preventive maintenance will be taken; if the system fails, a 
corrective maintenance will be performed. In their research, 
the inspection time xi is a decision variable which is 

restoration is initiated. Chelbi and 
Ait-Kadi [3] address the optimal inspection strategies 
for deteriorating equipments. They consider both 
preventive and corrective maintenance policies. If the 
value of the degradation process exceeds the alarm 
value, then preventive maintenance will be taken; 
if the system fails, a corrective maintenance will be 
performed. In their research, the inspection time xi 

is a decision variable which is determined with a 
conditional probability pi where pi is defined as the 
probability that the alarm threshold is exceeded within 
the time interval [xi-1,xi] given that such situation is not 
yet found at the inspection time xi-1. Wang and Pham 
[15] recently study a multi-objective maintenance 
optimization embedded within the imperfect PM 
for a single-unit system with dependent competing 
risks of degradation wear and random shocks. They 
consider two kinds of random shocks in the system 
such as fatal shocks that will cause the system to fail 
immediately, and nonfatal shocks that will increase 
the system degradation level by a certain cumulative 
shock amount. In this research, we consider the two 
competing processes and then derive the expected 
maintenance cost rate based on the degradation paths 
instead of the conditional probability pi. Markov 
process [4,8,24], semi-Markov process [11], and 
the stationary degradation process [1,2] have been 
commonly used to develop models for the systems 
subject to degradation. 

In this research, we consider the two different 
degradation functions that describe degradation paths 
such as:  (1) 
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 are independent and 
identically distributed (i.i.d.) and N(t) is a random variable 

follows a Poisson process, i.e., )(~)( PoissontN . We 
also assume that the degradation Y(t) and random shock D(t) 
are independent. Let T denote the time-to-failure and is 

defined as })(  )(:0inf{ StDorGtYtT  , where 
G is the critical value for degradation and S is the threshold 
level for D(t). Therefore, T is defined in terms of G and S. 
 
Generally, maintenance is classified into condition-based or 
time-based. For the former, the action taken depends on the 
state of the system detected after each inspection, which could 
be determined to perform a PM, CM or nothing. For the CM, 
the maintenance action is performed at predetermined time 
intervals to bring the system to an improved working 
condition and would prefer as the condition-based 
maintenance. In this research, two maintenance actions are 
considered: preventive and corrective maintenance. The 
system is instantaneously inspected by time I1,…,In. At 
inspection time In, one of the two decisions has to be made: 
(1) Determine whether the maintenance action is PM, CM, or 
the system as is, and 
(2) Determine the time to next inspection. 
 
In other words, 
(i) When the state of a system revealed by an inspection is as 

StDLtY  )()(  , 

the system is left as it is since the system is at very health 
condition.  
(ii) When the system state upon the inspection is found as 

StDGtYL  )()(  , the functioning system is 
considered as worn-out and a PM is triggered.  
 
When the system fails caused by either degradation or random 
shocks, a CM is taken to restore the system to as good as new. 
PM is an active action to avoid the failure of a system during 
the actual operation since the cost and /or damage when the 
system failure is often large. L is called PM threshold level 
which is a control limit value. When the system state 
deteriorates to or beyond L, the system is preventively 
maintained.  
 
It is assumed that no continuous monitoring is performed on 
the system. So the state of the system is only revealed after 
each inspection. The choice of the inspection times 

,...},...,{ 1 iII  and PM threshold level L have great influence 
on the maintenance cost rate. L effectively divides the system 
state into two sets. On the one hand, a low L values will result 
in a frequently PM action and prevents the full usage of the 
residual life of the systems. Frequent PMs might reduce the 
chances of high deterioration and failures but it also costly. 
On the other hand, a high L values will keep the system 
working in a high risk condition. For the condition-based 
maintenance, the regular inspection (equal inter-inspection) is 
more convenient to schedule. Although the losses due to down 
time can be reduced by frequent inspections, it might not 
always worthwhile to inspect the unit, especial if the 
inspection is expensive. Sequential inspection is more 
realistic. Li and Pham [20] recently discuss a condition-based 
maintenance modeling aspect in which the system is 
periodically inspected at an increasing equally time of 
intervals such as I, 2I, 3I,…nI where I is the first inspection 
time interval. A reason for such approach is that in some 
applications today, the preventive maintenance threshold is 
likely to be set conservatively and the inspection schedule 
may be performed more than necessary. 
 
In reality, on the other hand, because of the aging effect, 
accumulated degradation, and shock damages, many systems 
are degenerative in the sense that the successive inspection 
time interval will be shorter and shorter. In other words, the 
inter-inspection times are decreasing. In this research, we 
consider such situation where a geometric sequence approach 

is applied. The inspection times sequence ,...},...,{ 1 iII and a 
PM threshold level L are two important factors to be 
considered as decision variables for minimizing the expected 
long-run average cost rate. We develop a condition-based 
maintenance model for selecting the optimal inspection 
schedule and the PM threshold L for a single-unit system in 
order to balance the cost among PM, CM, inspection and 
losses due to idle time. In section 2, we describe the model 
assumptions and the inspection-maintenance policy. Sections 
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In other words, 
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When the system fails caused by either degradation or random 
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PM is an active action to avoid the failure of a system during 
the actual operation since the cost and /or damage when the 
system failure is often large. L is called PM threshold level 
which is a control limit value. When the system state 
deteriorates to or beyond L, the system is preventively 
maintained.  
 
It is assumed that no continuous monitoring is performed on 
the system. So the state of the system is only revealed after 
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realistic. Li and Pham [20] recently discuss a condition-based 
maintenance modeling aspect in which the system is 
periodically inspected at an increasing equally time of 
intervals such as I, 2I, 3I,…nI where I is the first inspection 
time interval. A reason for such approach is that in some 
applications today, the preventive maintenance threshold is 
likely to be set conservatively and the inspection schedule 
may be performed more than necessary. 
 
In reality, on the other hand, because of the aging effect, 
accumulated degradation, and shock damages, many systems 
are degenerative in the sense that the successive inspection 
time interval will be shorter and shorter. In other words, the 
inter-inspection times are decreasing. In this research, we 
consider such situation where a geometric sequence approach 
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PM threshold level L are two important factors to be 
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long-run average cost rate. We develop a condition-based 
maintenance model for selecting the optimal inspection 
schedule and the PM threshold L for a single-unit system in 
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losses due to idle time. In section 2, we describe the model 
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probability pi. Markov process [4,8,24], semi-Markov process 
[11], and the stationary degradation process [1,2] have been 
commonly used to develop models for the systems subject to 
degradation.  
 
In this research, we consider the two different degradation 
functions that describe degradation paths such as: (1) 
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 are independent and 
identically distributed (i.i.d.) and N(t) is a random variable 

follows a Poisson process, i.e., )(~)( PoissontN . We 
also assume that the degradation Y(t) and random shock D(t) 
are independent. Let T denote the time-to-failure and is 

defined as })(  )(:0inf{ StDorGtYtT  , where 
G is the critical value for degradation and S is the threshold 
level for D(t). Therefore, T is defined in terms of G and S. 
 
Generally, maintenance is classified into condition-based or 
time-based. For the former, the action taken depends on the 
state of the system detected after each inspection, which could 
be determined to perform a PM, CM or nothing. For the CM, 
the maintenance action is performed at predetermined time 
intervals to bring the system to an improved working 
condition and would prefer as the condition-based 
maintenance. In this research, two maintenance actions are 
considered: preventive and corrective maintenance. The 
system is instantaneously inspected by time I1,…,In. At 
inspection time In, one of the two decisions has to be made: 
(1) Determine whether the maintenance action is PM, CM, or 
the system as is, and 
(2) Determine the time to next inspection. 
 
In other words, 
(i) When the state of a system revealed by an inspection is as 

StDLtY  )()(  , 

the system is left as it is since the system is at very health 
condition.  
(ii) When the system state upon the inspection is found as 

StDGtYL  )()(  , the functioning system is 
considered as worn-out and a PM is triggered.  
 
When the system fails caused by either degradation or random 
shocks, a CM is taken to restore the system to as good as new. 
PM is an active action to avoid the failure of a system during 
the actual operation since the cost and /or damage when the 
system failure is often large. L is called PM threshold level 
which is a control limit value. When the system state 
deteriorates to or beyond L, the system is preventively 
maintained.  
 
It is assumed that no continuous monitoring is performed on 
the system. So the state of the system is only revealed after 
each inspection. The choice of the inspection times 

,...},...,{ 1 iII  and PM threshold level L have great influence 
on the maintenance cost rate. L effectively divides the system 
state into two sets. On the one hand, a low L values will result 
in a frequently PM action and prevents the full usage of the 
residual life of the systems. Frequent PMs might reduce the 
chances of high deterioration and failures but it also costly. 
On the other hand, a high L values will keep the system 
working in a high risk condition. For the condition-based 
maintenance, the regular inspection (equal inter-inspection) is 
more convenient to schedule. Although the losses due to down 
time can be reduced by frequent inspections, it might not 
always worthwhile to inspect the unit, especial if the 
inspection is expensive. Sequential inspection is more 
realistic. Li and Pham [20] recently discuss a condition-based 
maintenance modeling aspect in which the system is 
periodically inspected at an increasing equally time of 
intervals such as I, 2I, 3I,…nI where I is the first inspection 
time interval. A reason for such approach is that in some 
applications today, the preventive maintenance threshold is 
likely to be set conservatively and the inspection schedule 
may be performed more than necessary. 
 
In reality, on the other hand, because of the aging effect, 
accumulated degradation, and shock damages, many systems 
are degenerative in the sense that the successive inspection 
time interval will be shorter and shorter. In other words, the 
inter-inspection times are decreasing. In this research, we 
consider such situation where a geometric sequence approach 

is applied. The inspection times sequence ,...},...,{ 1 iII and a 
PM threshold level L are two important factors to be 
considered as decision variables for minimizing the expected 
long-run average cost rate. We develop a condition-based 
maintenance model for selecting the optimal inspection 
schedule and the PM threshold L for a single-unit system in 
order to balance the cost among PM, CM, inspection and 
losses due to idle time. In section 2, we describe the model 
assumptions and the inspection-maintenance policy. Sections  the 
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follows a Poisson process, i.e., )(~)( PoissontN . We 
also assume that the degradation Y(t) and random shock D(t) 
are independent. Let T denote the time-to-failure and is 

defined as })(  )(:0inf{ StDorGtYtT  , where 
G is the critical value for degradation and S is the threshold 
level for D(t). Therefore, T is defined in terms of G and S. 
 
Generally, maintenance is classified into condition-based or 
time-based. For the former, the action taken depends on the 
state of the system detected after each inspection, which could 
be determined to perform a PM, CM or nothing. For the CM, 
the maintenance action is performed at predetermined time 
intervals to bring the system to an improved working 
condition and would prefer as the condition-based 
maintenance. In this research, two maintenance actions are 
considered: preventive and corrective maintenance. The 
system is instantaneously inspected by time I1,…,In. At 
inspection time In, one of the two decisions has to be made: 
(1) Determine whether the maintenance action is PM, CM, or 
the system as is, and 
(2) Determine the time to next inspection. 
 
In other words, 
(i) When the state of a system revealed by an inspection is as 
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shocks, a CM is taken to restore the system to as good as new. 
PM is an active action to avoid the failure of a system during 
the actual operation since the cost and /or damage when the 
system failure is often large. L is called PM threshold level 
which is a control limit value. When the system state 
deteriorates to or beyond L, the system is preventively 
maintained.  
 
It is assumed that no continuous monitoring is performed on 
the system. So the state of the system is only revealed after 
each inspection. The choice of the inspection times 
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on the maintenance cost rate. L effectively divides the system 
state into two sets. On the one hand, a low L values will result 
in a frequently PM action and prevents the full usage of the 
residual life of the systems. Frequent PMs might reduce the 
chances of high deterioration and failures but it also costly. 
On the other hand, a high L values will keep the system 
working in a high risk condition. For the condition-based 
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more convenient to schedule. Although the losses due to down 
time can be reduced by frequent inspections, it might not 
always worthwhile to inspect the unit, especial if the 
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time interval. A reason for such approach is that in some 
applications today, the preventive maintenance threshold is 
likely to be set conservatively and the inspection schedule 
may be performed more than necessary. 
 
In reality, on the other hand, because of the aging effect, 
accumulated degradation, and shock damages, many systems 
are degenerative in the sense that the successive inspection 
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identically distributed (i.i.d.) and N(t) is a random variable 

follows a Poisson process, i.e., )(~)( PoissontN . We 
also assume that the degradation Y(t) and random shock D(t) 
are independent. Let T denote the time-to-failure and is 

defined as })(  )(:0inf{ StDorGtYtT  , where 
G is the critical value for degradation and S is the threshold 
level for D(t). Therefore, T is defined in terms of G and S. 
 
Generally, maintenance is classified into condition-based or 
time-based. For the former, the action taken depends on the 
state of the system detected after each inspection, which could 
be determined to perform a PM, CM or nothing. For the CM, 
the maintenance action is performed at predetermined time 
intervals to bring the system to an improved working 
condition and would prefer as the condition-based 
maintenance. In this research, two maintenance actions are 
considered: preventive and corrective maintenance. The 
system is instantaneously inspected by time I1,…,In. At 
inspection time In, one of the two decisions has to be made: 
(1) Determine whether the maintenance action is PM, CM, or 
the system as is, and 
(2) Determine the time to next inspection. 
 
In other words, 
(i) When the state of a system revealed by an inspection is as 

StDLtY  )()(  , 

the system is left as it is since the system is at very health 
condition.  
(ii) When the system state upon the inspection is found as 
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When the system fails caused by either degradation or random 
shocks, a CM is taken to restore the system to as good as new. 
PM is an active action to avoid the failure of a system during 
the actual operation since the cost and /or damage when the 
system failure is often large. L is called PM threshold level 
which is a control limit value. When the system state 
deteriorates to or beyond L, the system is preventively 
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It is assumed that no continuous monitoring is performed on 
the system. So the state of the system is only revealed after 
each inspection. The choice of the inspection times 
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on the maintenance cost rate. L effectively divides the system 
state into two sets. On the one hand, a low L values will result 
in a frequently PM action and prevents the full usage of the 
residual life of the systems. Frequent PMs might reduce the 
chances of high deterioration and failures but it also costly. 
On the other hand, a high L values will keep the system 
working in a high risk condition. For the condition-based 
maintenance, the regular inspection (equal inter-inspection) is 
more convenient to schedule. Although the losses due to down 
time can be reduced by frequent inspections, it might not 
always worthwhile to inspect the unit, especial if the 
inspection is expensive. Sequential inspection is more 
realistic. Li and Pham [20] recently discuss a condition-based 
maintenance modeling aspect in which the system is 
periodically inspected at an increasing equally time of 
intervals such as I, 2I, 3I,…nI where I is the first inspection 
time interval. A reason for such approach is that in some 
applications today, the preventive maintenance threshold is 
likely to be set conservatively and the inspection schedule 
may be performed more than necessary. 
 
In reality, on the other hand, because of the aging effect, 
accumulated degradation, and shock damages, many systems 
are degenerative in the sense that the successive inspection 
time interval will be shorter and shorter. In other words, the 
inter-inspection times are decreasing. In this research, we 
consider such situation where a geometric sequence approach 
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PM threshold level L are two important factors to be 
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long-run average cost rate. We develop a condition-based 
maintenance model for selecting the optimal inspection 
schedule and the PM threshold L for a single-unit system in 
order to balance the cost among PM, CM, inspection and 
losses due to idle time. In section 2, we describe the model 
assumptions and the inspection-maintenance policy. Sections 
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condition. For the condition-based maintenance, the 
regular inspection (equal inter-inspection) is more 
convenient to schedule. Although the losses due to 
down time can be reduced by frequent inspections, 
it might not always worthwhile to inspect the unit, 
especial if the inspection is expensive. Sequential 
inspection is more realistic. Li and Pham [20] recently 
discuss a condition-based maintenance modeling 
aspect in which the system is periodically inspected 
at an increasing equally time of intervals such as I, 2I, 
3I,…nI where I is the first inspection time interval. A 
reason for such approach is that in some applications 
today, the preventive maintenance threshold is likely 
to be set conservatively and the inspection schedule 
may be performed more than necessary.

In reality, on the other hand, because of the aging 
effect, accumulated degradation, and shock damages, 
many systems are degenerative in the sense that the 
successive inspection time interval will be shorter and 
shorter. In other words, the inter-inspection times are 
decreasing. In this research, we consider such situation 
where a geometric sequence approach is applied. 
The inspection times sequence 

determined with a conditional probability pi where pi is 
defined as the probability that the alarm threshold is exceeded 
within the time interval [xi-1,xi] given that such situation is not 
yet found at the inspection time xi-1. Wang and Pham [15] 
recently study a multi-objective maintenance optimization 
embedded within the imperfect PM for a single-unit system 
with dependent competing risks of degradation wear and 
random shocks. They consider two kinds of random shocks in 
the system such as fatal shocks that will cause the system to 
fail immediately, and nonfatal shocks that will increase the 
system degradation level by a certain cumulative shock 
amount. In this research, we consider the two competing 
processes and then derive the expected maintenance cost rate 
based on the degradation paths instead of the conditional 
probability pi. Markov process [4,8,24], semi-Markov process 
[11], and the stationary degradation process [1,2] have been 
commonly used to develop models for the systems subject to 
degradation.  
 
In this research, we consider the two different degradation 
functions that describe degradation paths such as: (1) 
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follows a Poisson process, i.e., )(~)( PoissontN . We 
also assume that the degradation Y(t) and random shock D(t) 
are independent. Let T denote the time-to-failure and is 

defined as })(  )(:0inf{ StDorGtYtT  , where 
G is the critical value for degradation and S is the threshold 
level for D(t). Therefore, T is defined in terms of G and S. 
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time-based. For the former, the action taken depends on the 
state of the system detected after each inspection, which could 
be determined to perform a PM, CM or nothing. For the CM, 
the maintenance action is performed at predetermined time 
intervals to bring the system to an improved working 
condition and would prefer as the condition-based 
maintenance. In this research, two maintenance actions are 
considered: preventive and corrective maintenance. The 
system is instantaneously inspected by time I1,…,In. At 
inspection time In, one of the two decisions has to be made: 
(1) Determine whether the maintenance action is PM, CM, or 
the system as is, and 
(2) Determine the time to next inspection. 
 
In other words, 
(i) When the state of a system revealed by an inspection is as 
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the system is left as it is since the system is at very health 
condition.  
(ii) When the system state upon the inspection is found as 
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considered as worn-out and a PM is triggered.  
 
When the system fails caused by either degradation or random 
shocks, a CM is taken to restore the system to as good as new. 
PM is an active action to avoid the failure of a system during 
the actual operation since the cost and /or damage when the 
system failure is often large. L is called PM threshold level 
which is a control limit value. When the system state 
deteriorates to or beyond L, the system is preventively 
maintained.  
 
It is assumed that no continuous monitoring is performed on 
the system. So the state of the system is only revealed after 
each inspection. The choice of the inspection times 

,...},...,{ 1 iII  and PM threshold level L have great influence 
on the maintenance cost rate. L effectively divides the system 
state into two sets. On the one hand, a low L values will result 
in a frequently PM action and prevents the full usage of the 
residual life of the systems. Frequent PMs might reduce the 
chances of high deterioration and failures but it also costly. 
On the other hand, a high L values will keep the system 
working in a high risk condition. For the condition-based 
maintenance, the regular inspection (equal inter-inspection) is 
more convenient to schedule. Although the losses due to down 
time can be reduced by frequent inspections, it might not 
always worthwhile to inspect the unit, especial if the 
inspection is expensive. Sequential inspection is more 
realistic. Li and Pham [20] recently discuss a condition-based 
maintenance modeling aspect in which the system is 
periodically inspected at an increasing equally time of 
intervals such as I, 2I, 3I,…nI where I is the first inspection 
time interval. A reason for such approach is that in some 
applications today, the preventive maintenance threshold is 
likely to be set conservatively and the inspection schedule 
may be performed more than necessary. 
 
In reality, on the other hand, because of the aging effect, 
accumulated degradation, and shock damages, many systems 
are degenerative in the sense that the successive inspection 
time interval will be shorter and shorter. In other words, the 
inter-inspection times are decreasing. In this research, we 
consider such situation where a geometric sequence approach 

is applied. The inspection times sequence ,...},...,{ 1 iII and a 
PM threshold level L are two important factors to be 
considered as decision variables for minimizing the expected 
long-run average cost rate. We develop a condition-based 
maintenance model for selecting the optimal inspection 
schedule and the PM threshold L for a single-unit system in 
order to balance the cost among PM, CM, inspection and 
losses due to idle time. In section 2, we describe the model 
assumptions and the inspection-maintenance policy. Sections 

 and a 
PM threshold level L are two important factors to be 
considered as decision variables for minimizing the 
expected long-run average cost rate. We develop a 
condition-based maintenance model for selecting the 
optimal inspection schedule and the PM threshold L 
for a single-unit system in order to balance the cost 
among PM, CM, inspection and losses due to idle time. 
In section 2, we describe the model assumptions and 
the inspection-maintenance policy. Sections 3 and 4 
present a mathematical formulation for the cost rate 
model and the model optimization, respectively. 
Section 5 provides numerical examples to illustrate 
the results and finally conclude in section 6.

notation

Y(t) Degradation value
D(t) Cumulative shock damage value up to time t
G A critical value for degradation process
S A critical value for shock damage
Ci Cost per inspection
Cc Cost per CM action
Cp Cost per PM action
Cm Loss per unit idle time
C(t) Cumulative maintenance cost up to time t

E[C1] Average total maintenance cost during a cycle
E[W1] Mean cycle length
EC(I1,L) Expected long-run cost rate function
L PM critical value
E[NI] Mean inspection number during a cycle
Np(t) Number of PM actions up to time t
Nc(t) Number of CM actions up to time t
NI(t) Number of inspection in (0,t]
ξ(t) Cumulative idle times in (0,t]
E[ξ] Mean idle time during a cycle
{Ii}i∈N Inspection sequence
{Ui}i∈N Inter-inspection sequence
{Wi}i∈N Renewal times, W1 first renewal time
T Time to failure

Pi+1

Probability that there are total i+1 inspections 
in a renewal cycle

Pp Probability that a renewal cycle ends by a PM 
action

Pc Probability that a renewal cycle ends by a CM 
action

2. Model description and Assumptions

2.1 Assumptions

The system starts at a new condition. The 
assumptions are as follows:

1. The system is not continuously monitored, 
but its can be detected only by inspection. 
Inspections are assumed instantaneous, 
perfect and non-destructive.

2. The system failure is only detected by 
inspection. Therefore, if the system fails, it 
remains failed until the next inspection which 
causes a loss of Cm per unit time. The system 
is then correctively replaced.

3. PM or CM will restore the system state to a 
as-good-as-new state.

4. As to the cost parameters, it is assumed that 
corrective maintenance is more costly than 
a PM. And, a PM costs much more than an 
inspection. That implies 3 and 4 present a mathematical formulation for the cost rate 

model and the model optimization, respectively. Section 5 
provides numerical examples to illustrate the results and 
finally conclude in section 6. 
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II. MODEL DESCRIPTION AND ASSUMPTIONS 
 

A. Assumptions 

The system starts at a new condition. The assumptions are as 
follows: 

1. The system is not continuously monitored, but its can 
be detected only by inspection. Inspections are 
assumed instantaneous, perfect and non-destructive. 

2. The system failure is only detected by inspection. 
Therefore, if the system fails, it remains failed until 
the next inspection which causes a loss of Cm per 
unit time. The system is then correctively replaced. 

3. PM or CM will restore the system state to a as-good-
as-new state. 

4. As to the cost parameters, it is assumed that 
corrective maintenance is more costly than a PM. 
And, a PM costs much more than an inspection. That 

implies ipc CCC 
. 

5. Y(t) and D(t) are two random variables and are 
independent. 

 

B. Inspection -Maintenance Policy 

In this research, the system is proposed to be inspected at 
times I1, I2,…In. As the system ages, the more frequent 
inspection is needed. Hence, inspection intervals between two 
successive inspections become shorter and shorter. A 
geometric sequence is suitable for such situation. Therefore, 
the inspection sequence can be constructed as 
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geometric sequence. 

 

According to the state detected at each inspection epoch, one 
has to take one of the following actions:  
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5. Y(t) and D(t) are two random variables and 
are independent.
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2.2. inspection -Maintenance policy

In this research, the system is proposed to be 
inspected at times I1, I2,…In. As the system ages, the 
more frequent inspection is needed. Hence, inspection 
intervals between two successive inspections 
become shorter and shorter. A geometric sequence is 
suitable for such situation. Therefore, the inspection 
sequence can be constructed as 

3 and 4 present a mathematical formulation for the cost rate 
model and the model optimization, respectively. Section 5 
provides numerical examples to illustrate the results and 
finally conclude in section 6. 
 
Notation 
Y(t) Degradation value 
D(t) Cumulative shock damage value up to 

time t 
G A critical value for degradation process 
S A critical value for shock damage 
Ci Cost per inspection 
Cc Cost per CM action 
Cp Cost per PM action 
Cm Loss per unit idle time 
C(t) Cumulative maintenance cost up to time t 
E[C1] Average total maintenance cost during a 

cycle 
E[W1] Mean cycle length 
EC(I1,L) Expected long-run cost rate function 
L PM critical value 
E[NI] Mean inspection number during a cycle 
Np(t) Number of PM actions up to time t 
Nc(t) Number of CM actions up to time t 
NI(t) Number of inspection in (0,t] 
(t) Cumulative idle times in (0,t] 
E[] Mean idle time during a cycle 
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{Ui}iN Inter-inspection sequence 
{Wi}iN Renewal times, W1 first renewal time 
T Time to failure 
Pi+1 Probability that there are total i+1 

inspections in a renewal cycle 
Pp       Probability that a renewal cycle ends by a PM action 
Pc       Probability that a renewal cycle ends by a CM action 
 

II. MODEL DESCRIPTION AND ASSUMPTIONS 
 

A. Assumptions 

The system starts at a new condition. The assumptions are as 
follows: 

1. The system is not continuously monitored, but its can 
be detected only by inspection. Inspections are 
assumed instantaneous, perfect and non-destructive. 

2. The system failure is only detected by inspection. 
Therefore, if the system fails, it remains failed until 
the next inspection which causes a loss of Cm per 
unit time. The system is then correctively replaced. 

3. PM or CM will restore the system state to a as-good-
as-new state. 

4. As to the cost parameters, it is assumed that 
corrective maintenance is more costly than a PM. 
And, a PM costs much more than an inspection. That 

implies ipc CCC 
. 

5. Y(t) and D(t) are two random variables and are 
independent. 
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There will be a total of (i+1) inspections during 
a cycle if the first time to trigger a PM or CM action 
within the time interval (Ii,Ii+1]. In other word, the 
inspection will stop when the current inspection 

Fig. 1 : The diagram of the possible renewal cycle
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finds that a PM or CM condition satisfied while this 
situation is not revealed in the previous inspection. 
Let P{N1=i+1} be the probability that a total of 
(i+1) inspections occurred in one cycle. Therefore, 
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The above equations can be uniquely solved for 
a and b in terms of y1 and y2 with solutions given by
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continuous partial derivatives. The following is a 22
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jointly continuous with a joint density function given by: 
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In the above, we have paved the path how to compute 
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3) When 1 ii ITI  the unit will be idle during the 

interval ],[ 1iIT . Let ][E  denote the average idle time 
between the failure occurrence epoch and its inspection during 
one cycle. ][E is calculated as follows: 
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Next we will need to obtain the expected cycle length 
function. The mean cycle length ][ 1WE  is calculated as 
follows: 

]]|[[][ 11 INWEEWE   

     }{]|[
0

1 iNPiNWE
i

iI  




 

     1
0

1 




 i

i
i PI                                                    (10) 

EC is a function of inspection times },,,,,,,,{ 1 iII and PM 

threshold L through pP , cP , ],[ INE  ][E  and ].[ 1WE  
We then, in section 4, determine the optimal inspection 
sequence ,...},...,{ 1 iII and PM threshold level L which 
minimizes the long run average cost per unit time, EC. 
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function. The mean cycle length ][ 1WE  is calculated as 
follows: 

]]|[[][ 11 INWEEWE   

     }{]|[
0

1 iNPiNWE
i

iI  




 

     1
0

1 




 i

i
i PI                                                    (10) 
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We then, in section 4, determine the optimal inspection 
sequence ,...},...,{ 1 iII and PM threshold level L which 
minimizes the long run average cost per unit time, EC. 
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continuous partial derivatives. The following is a 22
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It can be shown that the random vector ))(),(( 1ii IYIY  are 
jointly continuous with a joint density function given by: 

)),(()),((),( 21221121)(),( 1
yyhfyyhfJyyf BAIYIY ii




     

(7) 

For example, given ],0[~ aUA and ),(~ WeibullB . 
The joint pdf is given by 

Where
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EC is a function of inspection times {I1,,,,Ii,,,,} 
and PM threshold L through, Pp , Pc ,E[NI], E[z] and 
E[W1]. We then, in section 4, determine the optimal 
inspection sequence {I1,.....,Ii ,....} and PM threshold 
level L which minimizes the long run average cost 
per unit time, EC.

4. optimization Maintenance policy

In section 3, we discuss each component of 
the expected long-run maintenance cost rate. In this 
section, we determine I1 and L so that the expected 
long-run maintenance cost rate is minimized. The 
following optimization problem is formulated 
in terms of decision variables I1 and L (0<L ≤G)  
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In the above, we have paved the path how to compute 
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3) When 1 ii ITI  the unit will be idle during the 

interval ],[ 1iIT . Let ][E  denote the average idle time 
between the failure occurrence epoch and its inspection during 
one cycle. ][E is calculated as follows: 

  15
1 12

0
[ ] ( )  ( ) ( )i

i

I

i j i Tj I
i

E P E I t f t dt 


 


    

    






   







1 )())((})({})(,)({ 11
0

i

i

I

Iiiiii
i

i dttFIIIFSIDPGIYLIYP    (9) 

where ( ) ( ( )),T
df t F t
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 is the p.d.f of T and 
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Next we will need to obtain the expected cycle length 
function. The mean cycle length ][ 1WE  is calculated as 
follows: 
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EC is a function of inspection times },,,,,,,,{ 1 iII and PM 

threshold L through pP , cP , ],[ INE  ][E  and ].[ 1WE  
We then, in section 4, determine the optimal inspection 
sequence ,...},...,{ 1 iII and PM threshold level L which 
minimizes the long run average cost per unit time, EC. 
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It is difficult to obtain the closed-form expression for the 
optimal inspection-maintenance policy ),( **

1 LI  that 
minimizes the equation (11). Since this is a two-dimension 
decision variable, one can use the traditional optimization 
method to obtain a local minimal optimum solution. General 
idea is to fix one dimension such as I1 and search for a local 
minimal value L and so forth, given that one needs to provide 
the initial value for I1. However, depend on the initial value of 
I1, the local solution may still not closed enough to the 
optimum solution. To improve the search for obtaining a 
closed-best solution, we use the idea in [20] by considering 
the mean time to first failure as an initial solution for I1 to 
begin with for searching the optimum solution. After several 
trials and numerous calculations compared between the 
traditional optimization method (that is, without the 
knowledge of the mean time to first failure calculation) and 
our proposed procedure, we observe that our approach 
converges quickly to the “best” local solution, if not global 
solution. Below is our proposed algorithm that uses to obtain 
the “best” local solution for the proposed model in equation 
(11). 

 
Algorithm: 

Step 1: Initialize the cost parameters . and ,, mcpi CCCC  
Let initial I1=E[T], where 
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Step 2: Search one-dimensional minimal value along L 
direction and record it as ).,( **

1 LIEC        

Step 3: Increase I1 value. Let ,11  II  where   is a 
small increment. 

Step 4: Search new one-dimensional minimal value along L 
direction and record it as ).,( ''

1 LIEC       

Step 5: If 
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And, go to Step 3. If  ),,(),( ''
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1
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1 LIECLIEC  , and go to Step 6. 

Step 6: Stop. 

                                                                                                

 

V. . NUMERICAL EXAMPLES 
 

For the degradation function )()( tBgAtY  assuming 

that ]2,0[~ UA , ~ ( 0.2)B Exp  and ttetg 01.0)(  . For the 

random shock damage 


)(

1
)( tN

i iXtD , assuming that

)04.0(~ tExpX i   and )1.0(~)( PoissontN . Given 

G=50, S=100, 0.98  and the cost parameters as: Ci = 200 
per inspection, Cc = 5600 per CM, Cp = 3000 per PM, Cm = 
700 per unit time. 

 

The inspection sequence ,...},...,{ 1 nII is constructed using 

the formula ,11
1II n

j
j

n  
   where .98.0 We now 

determine both the value of 1I and L so that the expected total 
cost per unit time, EC(I1,L), is minimized. We first need to 
calculate the mean time to first failure and from equation (12), 
we obtain [ ] 40.8E T  . Therefore, an initial value for I1 is

1 40.8I  .  

 

Figure 2 pictures a 3D long-run average total cost rate in 
terms of L and I1. The optimum solutions for the PM threshold 
level and inspection sequence are 1 58I  and L=28, 
respectively, and the corresponding expected long-run cost 
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our proposed procedure, we observe that our approach 
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Step 2: Search one-dimensional minimal value along 
L direction and record it as  EC(I*1,L*)     

Step 3: Increase I1 value. Let I1 = I1 + D where D is a 
small increment.

Step 4: Search new one-dimensional minimal value 
along L direction and record it as  EC (I1’,L’)

Step 5: If EC (I1*,L*) > EC (I1’,L’)EC (I1*,L*) = EC (I1’,L’) 
And, go to Step 3. If EC (I1*,L*)> EC (I1’,L’), EC (I1*,L*)= 
EC (I1’,L’) and go to Step 6. 

Step 6: Stop.

5. numerical Examples

For the degradation function Y(t)=A+Bg(t)
assuming A~U [0,2], B~Exp (-0.2) and g (t) = te 0.01t.For 
the random shock damage 

         
 

























0
111

0
11

})(,)({})(,)({

})({})(,)({1

i
iiiii

i
iiic

SIDLIYPSIDLIYPI

SIDPGIYLLIYPC

 

          
 

















0
111

0
1

})(,)({})(,)({

})({})(,)({

i
iiiii

i
iiim

SIDLIYPSIDLIYPI

SIDPGIYLIYPC
     (11)  

   
It is difficult to obtain the closed-form expression for the 
optimal inspection-maintenance policy ),( **

1 LI  that 
minimizes the equation (11). Since this is a two-dimension 
decision variable, one can use the traditional optimization 
method to obtain a local minimal optimum solution. General 
idea is to fix one dimension such as I1 and search for a local 
minimal value L and so forth, given that one needs to provide 
the initial value for I1. However, depend on the initial value of 
I1, the local solution may still not closed enough to the 
optimum solution. To improve the search for obtaining a 
closed-best solution, we use the idea in [20] by considering 
the mean time to first failure as an initial solution for I1 to 
begin with for searching the optimum solution. After several 
trials and numerous calculations compared between the 
traditional optimization method (that is, without the 
knowledge of the mean time to first failure calculation) and 
our proposed procedure, we observe that our approach 
converges quickly to the “best” local solution, if not global 
solution. Below is our proposed algorithm that uses to obtain 
the “best” local solution for the proposed model in equation 
(11). 

 
Algorithm: 

Step 1: Initialize the cost parameters . and ,, mcpi CCCC  
Let initial I1=E[T], where 

dtStDGtYPdttTPTE 



00

})(,)({}{][
          (12) 

Step 2: Search one-dimensional minimal value along L 
direction and record it as ).,( **

1 LIEC        

Step 3: Increase I1 value. Let ,11  II  where   is a 
small increment. 

Step 4: Search new one-dimensional minimal value along L 
direction and record it as ).,( ''

1 LIEC       

Step 5: If 
).,(),( ),,(),( ''

1
**

1
''

1
**

1 LIECLIECLIECLIEC 

And, go to Step 3. If  ),,(),( ''
1

**
1 LIECLIEC   

),(),( **
1

**
1 LIECLIEC  , and go to Step 6. 

Step 6: Stop. 

                                                                                                

 

V. . NUMERICAL EXAMPLES 
 

For the degradation function )()( tBgAtY  assuming 

that ]2,0[~ UA , ~ ( 0.2)B Exp  and ttetg 01.0)(  . For the 

random shock damage 


)(

1
)( tN

i iXtD , assuming that

)04.0(~ tExpX i   and )1.0(~)( PoissontN . Given 

G=50, S=100, 0.98  and the cost parameters as: Ci = 200 
per inspection, Cc = 5600 per CM, Cp = 3000 per PM, Cm = 
700 per unit time. 

 

The inspection sequence ,...},...,{ 1 nII is constructed using 

the formula ,11
1II n

j
j

n  
   where .98.0 We now 

determine both the value of 1I and L so that the expected total 
cost per unit time, EC(I1,L), is minimized. We first need to 
calculate the mean time to first failure and from equation (12), 
we obtain [ ] 40.8E T  . Therefore, an initial value for I1 is

1 40.8I  .  

 

Figure 2 pictures a 3D long-run average total cost rate in 
terms of L and I1. The optimum solutions for the PM threshold 
level and inspection sequence are 1 58I  and L=28, 
respectively, and the corresponding expected long-run cost 

 assuming 
that Xi~Exp(-0.04t) and N(t)~Poisson(0.1). Given  G=50, 
S=100, a = 0.98 and the cost parameters as: Ci = 200 
per inspection, Cc = 5600 per CM, Cp = 3000 per PM, 
Cm = 700 per unit time.

The inspection sequence {I1, . . . . . ,In, .. . .} is 
constructed using the formula 

         
 

























0
111

0
11

})(,)({})(,)({

})({})(,)({1

i
iiiii

i
iiic

SIDLIYPSIDLIYPI

SIDPGIYLLIYPC

 

          
 

















0
111

0
1

})(,)({})(,)({

})({})(,)({

i
iiiii

i
iiim

SIDLIYPSIDLIYPI

SIDPGIYLIYPC
     (11)  

   
It is difficult to obtain the closed-form expression for the 
optimal inspection-maintenance policy ),( **

1 LI  that 
minimizes the equation (11). Since this is a two-dimension 
decision variable, one can use the traditional optimization 
method to obtain a local minimal optimum solution. General 
idea is to fix one dimension such as I1 and search for a local 
minimal value L and so forth, given that one needs to provide 
the initial value for I1. However, depend on the initial value of 
I1, the local solution may still not closed enough to the 
optimum solution. To improve the search for obtaining a 
closed-best solution, we use the idea in [20] by considering 
the mean time to first failure as an initial solution for I1 to 
begin with for searching the optimum solution. After several 
trials and numerous calculations compared between the 
traditional optimization method (that is, without the 
knowledge of the mean time to first failure calculation) and 
our proposed procedure, we observe that our approach 
converges quickly to the “best” local solution, if not global 
solution. Below is our proposed algorithm that uses to obtain 
the “best” local solution for the proposed model in equation 
(11). 

 
Algorithm: 

Step 1: Initialize the cost parameters . and ,, mcpi CCCC  
Let initial I1=E[T], where 

dtStDGtYPdttTPTE 



00

})(,)({}{][
          (12) 

Step 2: Search one-dimensional minimal value along L 
direction and record it as ).,( **

1 LIEC        

Step 3: Increase I1 value. Let ,11  II  where   is a 
small increment. 

Step 4: Search new one-dimensional minimal value along L 
direction and record it as ).,( ''

1 LIEC       

Step 5: If 
).,(),( ),,(),( ''

1
**

1
''

1
**

1 LIECLIECLIECLIEC 

And, go to Step 3. If  ),,(),( ''
1

**
1 LIECLIEC   

),(),( **
1

**
1 LIECLIEC  , and go to Step 6. 

Step 6: Stop. 

                                                                                                

 

V. . NUMERICAL EXAMPLES 
 

For the degradation function )()( tBgAtY  assuming 

that ]2,0[~ UA , ~ ( 0.2)B Exp  and ttetg 01.0)(  . For the 

random shock damage 


)(

1
)( tN

i iXtD , assuming that

)04.0(~ tExpX i   and )1.0(~)( PoissontN . Given 

G=50, S=100, 0.98  and the cost parameters as: Ci = 200 
per inspection, Cc = 5600 per CM, Cp = 3000 per PM, Cm = 
700 per unit time. 

 

The inspection sequence ,...},...,{ 1 nII is constructed using 

the formula ,11
1II n

j
j

n  
   where .98.0 We now 

determine both the value of 1I and L so that the expected total 
cost per unit time, EC(I1,L), is minimized. We first need to 
calculate the mean time to first failure and from equation (12), 
we obtain [ ] 40.8E T  . Therefore, an initial value for I1 is

1 40.8I  .  

 

Figure 2 pictures a 3D long-run average total cost rate in 
terms of L and I1. The optimum solutions for the PM threshold 
level and inspection sequence are 1 58I  and L=28, 
respectively, and the corresponding expected long-run cost 

 where 
a = 0.8.We now determine both the value of I1and L 
so that the expected total cost per unit time, EC(I1,L), 
is minimized. We first need to calculate the mean 
time to first failure and from equation (12), we obtain 
E[T]=40.8. Therefore, an initial value for I1 is I1 = 40.8

Figure 2 pictures a 3D long-run average total cost 
rate in terms of L and I1. The optimum solutions for 
the PM threshold level and inspection sequence are  
I1 = 58 and L=28, respectively, and the corresponding 
expected long-run cost rate is EC(I1,L) = 94.63 where 
the average total maintenance cost during a cycle and 
the mean cycle length are, respectively, E[C1] =5685.13 
and E[W1] = 60.07. The optimal results balance the cost 
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Table 1 lists the optimal inspection sequence and its 
probability Pi+1 . 
Figure 3 depicts the values of Pp vs PM threshold 
values of L for various values of I1’s such as I1=62, 
I1=60, I1=58 and  I1=56

N o t e  t h a t  t h i s  p r o b a b i l i t y  f u n c t i o n 
 

rate is EC(I1,L) = 94.63 where the average total maintenance 
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optimal results balance the cost of inspections, preventive 
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with idle time. Table 1 lists the optimal inspection sequence 
and its probability 1iP .  
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as L increases since .1 pc PP   From the figure 3, we 
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Figure 4 pictures the expected idle time during a cycle ][E
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also increases as L increases. From the figure 4, we also 
observe that ][E  is an increasing function of L.  

VI. CONCLUSION  
 
This paper we present a condition-based inspection-
maintenance model for degraded systems with respect to 
degradation process and random shocks based on geometric 
sequences for inspection intervals. We determine the optimum 
decision variables for the PM threshold level L and the 
inspection sequence that minimizes the expected long-run cost 
rate. The difference between the proposed condition-based 
inspection/maintenance policy and a classical periodic 
inspection is that the periodic inspection times which 
constitutes a shorter and shorter inter-inspection sequence, 
instead of a larger inter-inspection sequence [20]. This 
sequence brings realistic implementations to several critical 
applications in practices using geometric sequence approach. 
The proposed policy is based on the measurable amount of the 
degradation and shock damage instead of assuming the 
processes modeled by Markov, semi-Markov process or 
imposing some constraints on the process in order to make the 
model computable. These advantages make our model 
practicable and interesting.  

 

REFERENCES 
1. A. Grall, L. Dieulle, C. Berenguer and M. Roussignol, 

“Continuous-time predictive-maintenance scheduling for a 

deteriorating system”, IEEE Trans. Reliability, Vol. 51, No. 2, pp 
141-150, 2002 

2. A. Grall, C. Berenguer and L. Dieulle, “A condition-based 
maintenance policy for stochastically deteriorating systems”, 
Reliability Engineering and System Safety, vol. 76, pp 167-180, 
2002 

3. A. Chelbi and D. Ait-Kadi, “An optimal inspection strategy for 
randomly failing equipment”, Reliability Engineering System 
Safety, vol. 63, pp 127-131, 1999 

4.  S. Bloch-Mercier, “A preventive maintenance policy with 
sequential checking procedure for a Markov deteriorating system”, 
European Journal of Operational Research, Vol.147, pp 548-576, 
2002 

5. M. Ohnishi, H. Kawai and H. Mine, “An optimal inspection and 
replacement policy for a deteriorating system”, Journal of Applied 
Probability. vol.23, pp 973-988, 1986 

6. K.C. So, “Optimality of control limit policies in replacement 
models”, Naval Research Logistics, vol.39, pp 685-697, 1992 

7.  M.M. Hosseini, R.M. Kerr and R.B. Randall, “An inspection 
model with minimal and major maintenance for a system with 
deterioration and Poisson Failures”, IEEE Trans. on Reliability, 
vol. 49, no.1, pp 88-98, 2000 

8. C.T. Lam, and R.H. Yeh, “Optimal maintenance-policies for 
deteriorating systems under various maintenance strategies”, 
IEEE Trans. on Reliability, Vol.43, No.3, pp 423-430, 1994 

9. C.T. Lam, and R.H. Yeh, “Optimal replancement policies for 
multistate deteriorating systems”, Naval Research Logistics, vol. 
41, pp 303-315, 1994 

10. Sheu, S.H., “Extended optimal replacement model for 
deteriorating systems”, European Journal of Operational 
Research, vol.112, pp 503-516, 1999 

11. R.M. Feldman, “Optimal replacement with semi-Markov shock 
models”,Journal of Applied Probability, vol.13, pp 108-117, 1976 

12. C.T Chen, Y.W. Chen and J. Yuan, “On a dynamic preventive 
maintenance policy for a system under inspection”, Reliability 
Engineering and System Safety, vol.80, pp 41-47, 2003 

13. H.Z. Wang, “A survey of maintenance policies of deteriorating 
systems”, European Journal of Operational Research, vol.139, pp 
469-489, 2002 

versus the PM critical values 
of L for various inspection sequences such as: 

 

Figure 4.  ][E vs PM Critical Value L 

Figure 4 pictures the expected idle time during a cycle ][E
versus the PM critical values of L for various inspection 
sequences such as: ,621 I ,601 I 581 I and 1 56.I   

 

 

 

 

 

 

 

Since
 

2
)(

)(
)(

)())()((2

)(
)( 121)(),(1

1

1

21

1

2 1
),(})(,)({ dydyyyfGIYLIYP i

i

i

iii

i

i ii
Ig
ILg

G
Ig

IgyIgIg

Ig
Igy IYIYii  













  is an increasing function as 

L increases, it can be shown that the mean idle time during a cycle
1

1 1
0

[ ] { ( ) , ( ) } { ( ) } ( ) ( )i

i

I

i i i i TI
i

E P Y I L Y I G P D I S I t f t dt 


 


       

also increases as L increases. From the figure 4, we also 
observe that ][E  is an increasing function of L.  

VI. CONCLUSION  
 
This paper we present a condition-based inspection-
maintenance model for degraded systems with respect to 
degradation process and random shocks based on geometric 
sequences for inspection intervals. We determine the optimum 
decision variables for the PM threshold level L and the 
inspection sequence that minimizes the expected long-run cost 
rate. The difference between the proposed condition-based 
inspection/maintenance policy and a classical periodic 
inspection is that the periodic inspection times which 
constitutes a shorter and shorter inter-inspection sequence, 
instead of a larger inter-inspection sequence [20]. This 
sequence brings realistic implementations to several critical 
applications in practices using geometric sequence approach. 
The proposed policy is based on the measurable amount of the 
degradation and shock damage instead of assuming the 
processes modeled by Markov, semi-Markov process or 
imposing some constraints on the process in order to make the 
model computable. These advantages make our model 
practicable and interesting.  

 

REFERENCES 
1. A. Grall, L. Dieulle, C. Berenguer and M. Roussignol, 

“Continuous-time predictive-maintenance scheduling for a 

deteriorating system”, IEEE Trans. Reliability, Vol. 51, No. 2, pp 
141-150, 2002 

2. A. Grall, C. Berenguer and L. Dieulle, “A condition-based 
maintenance policy for stochastically deteriorating systems”, 
Reliability Engineering and System Safety, vol. 76, pp 167-180, 
2002 

3. A. Chelbi and D. Ait-Kadi, “An optimal inspection strategy for 
randomly failing equipment”, Reliability Engineering System 
Safety, vol. 63, pp 127-131, 1999 

4.  S. Bloch-Mercier, “A preventive maintenance policy with 
sequential checking procedure for a Markov deteriorating system”, 
European Journal of Operational Research, Vol.147, pp 548-576, 
2002 

5. M. Ohnishi, H. Kawai and H. Mine, “An optimal inspection and 
replacement policy for a deteriorating system”, Journal of Applied 
Probability. vol.23, pp 973-988, 1986 

6. K.C. So, “Optimality of control limit policies in replacement 
models”, Naval Research Logistics, vol.39, pp 685-697, 1992 

7.  M.M. Hosseini, R.M. Kerr and R.B. Randall, “An inspection 
model with minimal and major maintenance for a system with 
deterioration and Poisson Failures”, IEEE Trans. on Reliability, 
vol. 49, no.1, pp 88-98, 2000 

8. C.T. Lam, and R.H. Yeh, “Optimal maintenance-policies for 
deteriorating systems under various maintenance strategies”, 
IEEE Trans. on Reliability, Vol.43, No.3, pp 423-430, 1994 

9. C.T. Lam, and R.H. Yeh, “Optimal replancement policies for 
multistate deteriorating systems”, Naval Research Logistics, vol. 
41, pp 303-315, 1994 

10. Sheu, S.H., “Extended optimal replacement model for 
deteriorating systems”, European Journal of Operational 
Research, vol.112, pp 503-516, 1999 

11. R.M. Feldman, “Optimal replacement with semi-Markov shock 
models”,Journal of Applied Probability, vol.13, pp 108-117, 1976 

12. C.T Chen, Y.W. Chen and J. Yuan, “On a dynamic preventive 
maintenance policy for a system under inspection”, Reliability 
Engineering and System Safety, vol.80, pp 41-47, 2003 

13. H.Z. Wang, “A survey of maintenance policies of deteriorating 
systems”, European Journal of Operational Research, vol.139, pp 
469-489, 2002 

Since 

 

Figure 4.  ][E vs PM Critical Value L 

Figure 4 pictures the expected idle time during a cycle ][E
versus the PM critical values of L for various inspection 
sequences such as: ,621 I ,601 I 581 I and 1 56.I   

 

 

 

 

 

 

 

Since
 

2
)(

)(
)(

)())()((2

)(
)( 121)(),(1

1

1

21

1

2 1
),(})(,)({ dydyyyfGIYLIYP i

i

i

iii

i

i ii
Ig
ILg

G
Ig

IgyIgIg

Ig
Igy IYIYii  













  is an increasing function as 

L increases, it can be shown that the mean idle time during a cycle
1

1 1
0

[ ] { ( ) , ( ) } { ( ) } ( ) ( )i

i

I

i i i i TI
i

E P Y I L Y I G P D I S I t f t dt 


 


       

also increases as L increases. From the figure 4, we also 
observe that ][E  is an increasing function of L.  

VI. CONCLUSION  
 
This paper we present a condition-based inspection-
maintenance model for degraded systems with respect to 
degradation process and random shocks based on geometric 
sequences for inspection intervals. We determine the optimum 
decision variables for the PM threshold level L and the 
inspection sequence that minimizes the expected long-run cost 
rate. The difference between the proposed condition-based 
inspection/maintenance policy and a classical periodic 
inspection is that the periodic inspection times which 
constitutes a shorter and shorter inter-inspection sequence, 
instead of a larger inter-inspection sequence [20]. This 
sequence brings realistic implementations to several critical 
applications in practices using geometric sequence approach. 
The proposed policy is based on the measurable amount of the 
degradation and shock damage instead of assuming the 
processes modeled by Markov, semi-Markov process or 
imposing some constraints on the process in order to make the 
model computable. These advantages make our model 
practicable and interesting.  

 

REFERENCES 
1. A. Grall, L. Dieulle, C. Berenguer and M. Roussignol, 

“Continuous-time predictive-maintenance scheduling for a 

deteriorating system”, IEEE Trans. Reliability, Vol. 51, No. 2, pp 
141-150, 2002 

2. A. Grall, C. Berenguer and L. Dieulle, “A condition-based 
maintenance policy for stochastically deteriorating systems”, 
Reliability Engineering and System Safety, vol. 76, pp 167-180, 
2002 

3. A. Chelbi and D. Ait-Kadi, “An optimal inspection strategy for 
randomly failing equipment”, Reliability Engineering System 
Safety, vol. 63, pp 127-131, 1999 

4.  S. Bloch-Mercier, “A preventive maintenance policy with 
sequential checking procedure for a Markov deteriorating system”, 
European Journal of Operational Research, Vol.147, pp 548-576, 
2002 

5. M. Ohnishi, H. Kawai and H. Mine, “An optimal inspection and 
replacement policy for a deteriorating system”, Journal of Applied 
Probability. vol.23, pp 973-988, 1986 

6. K.C. So, “Optimality of control limit policies in replacement 
models”, Naval Research Logistics, vol.39, pp 685-697, 1992 

7.  M.M. Hosseini, R.M. Kerr and R.B. Randall, “An inspection 
model with minimal and major maintenance for a system with 
deterioration and Poisson Failures”, IEEE Trans. on Reliability, 
vol. 49, no.1, pp 88-98, 2000 

8. C.T. Lam, and R.H. Yeh, “Optimal maintenance-policies for 
deteriorating systems under various maintenance strategies”, 
IEEE Trans. on Reliability, Vol.43, No.3, pp 423-430, 1994 

9. C.T. Lam, and R.H. Yeh, “Optimal replancement policies for 
multistate deteriorating systems”, Naval Research Logistics, vol. 
41, pp 303-315, 1994 

10. Sheu, S.H., “Extended optimal replacement model for 
deteriorating systems”, European Journal of Operational 
Research, vol.112, pp 503-516, 1999 

11. R.M. Feldman, “Optimal replacement with semi-Markov shock 
models”,Journal of Applied Probability, vol.13, pp 108-117, 1976 

12. C.T Chen, Y.W. Chen and J. Yuan, “On a dynamic preventive 
maintenance policy for a system under inspection”, Reliability 
Engineering and System Safety, vol.80, pp 41-47, 2003 

13. H.Z. Wang, “A survey of maintenance policies of deteriorating 
systems”, European Journal of Operational Research, vol.139, pp 
469-489, 2002 

    
is an increasing function as L increases, it can 
be shown that the mean idle time during a cycle  

 

Figure 4.  ][E vs PM Critical Value L 

Figure 4 pictures the expected idle time during a cycle ][E
versus the PM critical values of L for various inspection 
sequences such as: ,621 I ,601 I 581 I and 1 56.I   

 

 

 

 

 

 

 

Since
 

2
)(

)(
)(

)())()((2

)(
)( 121)(),(1

1

1

21

1

2 1
),(})(,)({ dydyyyfGIYLIYP i

i

i

iii

i

i ii
Ig
ILg

G
Ig

IgyIgIg

Ig
Igy IYIYii  













  is an increasing function as 

L increases, it can be shown that the mean idle time during a cycle
1

1 1
0

[ ] { ( ) , ( ) } { ( ) } ( ) ( )i

i

I

i i i i TI
i

E P Y I L Y I G P D I S I t f t dt 


 


       

also increases as L increases. From the figure 4, we also 
observe that ][E  is an increasing function of L.  

VI. CONCLUSION  
 
This paper we present a condition-based inspection-
maintenance model for degraded systems with respect to 
degradation process and random shocks based on geometric 
sequences for inspection intervals. We determine the optimum 
decision variables for the PM threshold level L and the 
inspection sequence that minimizes the expected long-run cost 
rate. The difference between the proposed condition-based 
inspection/maintenance policy and a classical periodic 
inspection is that the periodic inspection times which 
constitutes a shorter and shorter inter-inspection sequence, 
instead of a larger inter-inspection sequence [20]. This 
sequence brings realistic implementations to several critical 
applications in practices using geometric sequence approach. 
The proposed policy is based on the measurable amount of the 
degradation and shock damage instead of assuming the 
processes modeled by Markov, semi-Markov process or 
imposing some constraints on the process in order to make the 
model computable. These advantages make our model 
practicable and interesting.  
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6. Conclusion 

This paper we present a condition-based 
inspection-maintenance model for degraded systems 
with respect to degradation process and random shocks 

rate is EC(I1,L) = 94.63 where the average total maintenance 
cost during a cycle and the mean cycle length are, 
respectively, ][ 1CE =5685.13 and 1[ ] 60.07.E W  The 
optimal results balance the cost of inspections, preventive 
maintenance, corrective maintenance and penalty associated 
with idle time. Table 1 lists the optimal inspection sequence 
and its probability 1iP .  
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Figure 3 depicts the values of pP vs PM threshold values of L 
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is also a decreasing function of L. Consequently, Pc increases 
as L increases since .1 pc PP   From the figure 3, we 

easily observe that, pP  is a decreasing function of L.  
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Safety Journal, vol. 56, pp. 169-173, 1997

23. Y. Wang and H. Pham, “Modeling the dependent 
competing risks with multiple degradation processes and 
random shock using time-varying copulas”, IEEE Trans. 
on Reliability, vol. 60, no.4, December 2011 (in press) 

24. M.J. Zuo, B. Liu and D.N.P Murthy, “Replacement-repair 
policy for multi-state deteriorating products under 
warranty”, European Journal of Operational Research, vol. 
123, pp 519-530, 2000

based on geometric sequences for inspection intervals. 
We determine the optimum decision variables for 
the PM threshold level L and the inspection sequence 
that minimizes the expected long-run cost rate. The 
difference between the proposed condition-based 
inspection/maintenance policy and a classical periodic 
inspection is that the periodic inspection times which 
constitutes a shorter and shorter inter-inspection 
sequence, instead of a larger inter-inspection sequence 
[20]. This sequence brings realistic implementations 
to several critical applications in practices using 
geometric sequence approach. The proposed policy is 
based on the measurable amount of the degradation 
and shock damage instead of assuming the processes 
modeled by Markov, semi-Markov process or 
imposing some constraints on the process in order to 
make the model computable. These advantages make 
our model practicable and interesting. 
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